Specially Formulated Feeds Keep Reindeer and Muskox Herds Healthy University of Alaska Fairbanks

Total Page:16

File Type:pdf, Size:1020Kb

Specially Formulated Feeds Keep Reindeer and Muskox Herds Healthy University of Alaska Fairbanks Specially Formulated Feeds Keep Reindeer And Muskox Herds Healthy University of Alaska Fairbanks Alaska’s large-animal herds are an increasingly important part of its overall economy. Because the nutritional value of pasture grasses varies with the seasons, reindeer and muskox are susceptible to nutritional deficiencies that can lead to compromised immune systems and intestinal problems. To counter this problem, researchers at the University of Alaska Fairbanks developed cost-effective, well-balanced feed rations for these unusual animals. In the late 1990s nutritional physiologist Perry Barboza and Dr. John Blake, D.V.M., attending veterinarian at University of Alaska Fairbanks, developed and tested three specialized feed products: 1) M Ration, a pelleted feed supplement for muskox, 2) C Ration, a complete diet for muskox calves, and 3) D Ration, a complete feed for reindeer and caribou. The research was conducted at the Large Animal Research Station at the University of Alaska Fairbanks and funded by Alaska Science and Technology Foundation. Professor John Blake feeding a muskox food supplements that he and his team developed at the University of Alaska. The new feeds have improved the health of the university’s captive reindeer and muskox herds and reduced the risk of life-threatening intestinal disease in muskox calves. The feeding standards developed from this research strengthen established husbandry techniques for reindeer and muskox, and facilitate the production of qiviut, a super-fine underwool that is prized for its beauty, texture and warmth. The sale of raw qiviut fiber, processed yarn, and finished clothing from captive muskox provides sustainable income for rural Alaskans. To see available technologies from research institutions, click here to visit the AUTM Innovation Marketplace. Share your story at autm.net/betterworldproject #betterworldproject.
Recommended publications
  • Cervid TB DPP Testing August 2017
    Cervid TB DPP Testing August 2017 Elisabeth Patton, DVM, PhD, Diplomate ACVIM Veterinary Program Manager Wisconsin Department of Agriculture, Trade and Consumer Protection Division of Animal Health Why Use the Serologic Test? Employ newer, accurate diagnostic test technology Minimizes capture and handling events for animal safety Expected to promote additional cervid TB testing • Requested by USAHA and cervid industry Comparable sensitivity and specificity to skin tests 2 Historical Timeline 3 Stat-Pak licensed for elk and red deer, 2009 White-tailed and fallow deer, 2010-11 2010 - USAHA resolution - USDA evaluate Stat-Pak as official TB test 2011 – Project to evaluate TB serologic tests in cervids (Cervid Serology Project); USAHA resolution to approve Oct 2012 – USDA licenses the Dual-Path Platform (DPP) secondary test for elk, red deer, white-tailed deer, and fallow deer Improved specificity compared to Stat-Pak Oct 2012 – USDA approves the Stat-Pak (primary) and DPP (secondary) as official bovine TB tests in elk, red deer, white- tailed deer, fallow deer and reindeer Recent Actions Stat-Pak is no longer in production 9 CFR 77.20 has been amended to approve the DPP as official TB program test. An interim rule was published on 9 January 2013 USDA APHIS created a Guidance Document (6701.2) to provide instructions for using the tests https://www.aphis.usda.gov/animal_health/animal_ diseases/tuberculosis/downloads/vs_guidance_670 1.2_dpp_testing.pdf 4 Cervid Serology Project Objective 5 Evaluate TB detection tests for official bovine tuberculosis (TB) program use in captive and free- ranging cervids North American elk (Cervus canadensis) White-tailed deer (Odocoileus virginianus) Reindeer (Rangifer tarandus) Primary/screening test AND Secondary Test: Dual Path Platform (DPP) Rapid immunochromatographic lateral-flow serology test Detect antibodies to M.
    [Show full text]
  • Phylogenetic Analysis of Eight Sudanese Camel Contagious Ecthyma Viruses Based on B2L Gene Sequence Abdelmalik I
    Khalafalla et al. Virology Journal (2015) 12:124 DOI 10.1186/s12985-015-0348-7 RESEARCH Open Access Phylogenetic analysis of eight sudanese camel contagious ecthyma viruses based on B2L gene sequence Abdelmalik I. Khalafalla1,2* , Ibrahim M. El-Sabagh3,4, Khalid A. Al-Busada5, Abdullah I. Al-Mubarak6 and Yahia H. Ali7 Abstract Background: Camel contagious ecthyma (CCE) is an important viral disease of camelids caused by a poxvirus of the genus parapoxvirus (PPV) of the family Poxviridae. The disease has been reported in west and east of the Sudan causing economical losses. However, the PPVs that cause the disease in camels of the Sudan have not yet subjected to genetic characterization. At present, the PPV that cause CCE cannot be properly classified because only few isolates that have been genetically analyzed. Methods and results: PCR was used to amplify the B2L gene of the PPV directly from clinical specimens collected from dromedary camels affected with contagious ecthyma in the Sudan between 1993 and 2013. PCR products were sequenced and subjected to genetic analysis. The results provided evidence for close relationships and genetic variation of the camel PPV (CPPV) represented by the circulation of both Pseudocowpox virus (PCPV) and Orf virus (ORFV) strains among dromedary camels in the Sudan. Based on the B2L gene sequence the available CPPV isolates can be divided into two genetic clades or lineages; the Asian lineage represented by isolates from Saudi Arabia, Bahrain and India and the African lineage comprising isolates from the Sudan. Conclusion: The camel parapoxvirus is genetically diverse involving predominantly viruses close to PCPV in addition to ORFVs, and can be divided into two genetically distant lineages.
    [Show full text]
  • Muskox Management Report Alaska Dept of Fish and Game Wildlife
    Muskox Management Report of survey-inventory activities 1 July 1998–30 June 2000 Mary V. Hicks, Editor Alaska Department of Fish and Game Division of Wildlife Conservation December 2001 ADF&G Please note that population and harvest data in this report are estimates and may be refined at a later date. If this report is used in its entirety, please reference as: Alaska Department of Fish and Game. 2001. Muskox management report of survey-inventory activities 1 July 1998–30 June 2000. M.V. Hicks, editor. Juneau, Alaska. If used in part, the reference would include the author’s name, unit number, and page numbers. Authors’ names can be found at the end of each unit section. Funded in part through Federal Aid in Wildlife Restoration, Proj. 16, Grants W-27-2 and W-27-3. LOCATION 2 GAME MANAGEMENT UNIT: 18 (41,159 mi ) GEOGRAPHIC DESCRIPTION: Yukon–Kuskokwim Delta BACKGROUND NUNIVAK ISLAND Muskoxen were once widely distributed in northern and western Alaska but were extirpated by the middle or late 1800s. In 1929, with the support of the Alaska Territorial Legislature, the US Congress initiated a program to reintroduce muskoxen in Alaska. Thirty-one muskoxen were introduced from Greenland to Nunivak Island in Unit 18 during 1935–1936, as a first step toward reintroducing this species to Alaska. The Nunivak Island population grew slowly until approximately 1958 and then began a period of rapid growth. The first hunting season was opened in 1975, and the population has since fluctuated between 400 and 750 animals, exhibiting considerable reproductive potential, even under heavy harvest regimes.
    [Show full text]
  • Horned Animals
    Horned Animals In This Issue In this issue of Wild Wonders you will discover the differences between horns and antlers, learn about the different animals in Alaska who have horns, compare and contrast their adaptations, and discover how humans use horns to make useful and decorative items. Horns and antlers are available from local ADF&G offices or the ARLIS library for teachers to borrow. Learn more online at: alaska.gov/go/HVNC Contents Horns or Antlers! What’s the Difference? 2 Traditional Uses of Horns 3 Bison and Muskoxen 4-5 Dall’s Sheep and Mountain Goats 6-7 Test Your Knowledge 8 Alaska Department of Fish and Game, Division of Wildlife Conservation, 2018 Issue 8 1 Sometimes people use the terms horns and antlers in the wrong manner. They may say “moose horns” when they mean moose antlers! “What’s the difference?” they may ask. Let’s take a closer look and find out how antlers and horns are different from each other. After you read the information below, try to match the animals with the correct description. Horns Antlers • Made out of bone and covered with a • Made out of bone. keratin layer (the same material as our • Grow and fall off every year. fingernails and hair). • Are grown only by male members of the • Are permanent - they do not fall off every Cervid family (hoofed animals such as year like antlers do. deer), except for female caribou who also • Both male and female members in the grow antlers! Bovid family (cloven-hoofed animals such • Usually branched.
    [Show full text]
  • What Do Caribou and Wood Bison Have in Common? by Nate Olson
    Refuge Notebook • Vol. 17, No. 4 • January 23, 2015 What do caribou and wood bison have in common? by Nate Olson Residents from the village of Shageluk on the Innoko River assist ADFG and USFWS staff in constructing a holding pen as part of the wood bison reintroduction effort. 100 wood bison are scheduled to be released on the lower Innoko River in March 2015. Photo credit: Tom Seaton, ADFG. Last weekend on a drive back from Anchorage, Wood bison are native to Alaska and were plentiful whizzing by the Alaska Wildlife Conservation Center over a large portion of the state until their extirpation at 57 miles per hour my daughter pointed out a strange in the early 1900s. The reasons for their disappearance looking moose on the side of the Seward Highway. are not clearly known but probably related to overhar- “That isn’t a moose,” I explained, “that is a woodbi- vest and habitat loss. son.” Wildlife transplants are nothing new in Alaska. And why are wood bison living in pens next to The reasons for transplanting animals generally fall the Seward Highway? They are part of a reintroduc- into two categories. The first is to provide human re- tion effort by the Alaska Department of Fish and Game lated benefits such as recreational hunting, economic (ADFG) and the Alaska Wildlife Conservation Center. gain, or an additional food supply. The second is re- The fate of these wood bison has been in the news lated to species recovery in their historic range. lately as the U.S. Fish and Wildlife Service (USFWS) Kodiak Island is a dramatic example of the first published a final rule in May 2014 that gives the green category.
    [Show full text]
  • The Preparation and Primary Structure of S-Peptides from Different Pancreatic Ribonucleases
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 40, number 1 FEBS LETTERS March 1974 THE PREPARATION AND PRIMARY STRUCTURE OF S-PEPTIDES FROM DIFFERENT PANCREATIC RIBONUCLEASES G.W. WELLING, G. GROEN, D. GABEL+, W. GAASTRA, J.J. BEINTEMA Biochemisch Laboratorium, Rijksuniversiteit, Zernikelaan, Groningen, The Netherlands Received 14 December 1973 1. Introduction Miles-Seravac Ltd. (Maidenhead). All other ribonu- cleases used in this study (goat, giraffe, gnu, reindeer, In 1955, Richards [l] described the isolation of dromedary, kangaroo, lesser rorqual, pig, and horse) ‘an active intermediate produced during the digestion were isolated according to Wierenga et al. [7] and rat of ribonuclease by subtilisin’. The characterisation RNase, according to Beintema et al. [8]. Subtilopep- and separation of the non-covalently linked compo- tidase A (Subtilisin Carlsberg) was a gift from Novo nents was described 4 years later [2] . Ribonuclease Industri (Copenhagen). Sephadex G-50 (fine) was S* possesses full enzymatic activity and the same purchased from Pharmacia (Uppsala). All other rea- holds for the enzyme reconstituted from S-peptide gents were analytical grade products from Merck AG and S-protein. The involvement of S-peptide residues (Darmstadt). in the binding of S-peptide to S-protein and in the Amino acid analysis, high-voltage paper electro- enzymatic activity of the reconstituted RNase S’ has phoresis, dansylation, and dansyl-Edman degrada- been studied by using synthetic S-peptide analogs [3,4] tion were performed as described earlier [7, 93. the cleavage by subtilisin takes place in an external loop. Klee [5] and Gold [6] did not succeed in 2.1.
    [Show full text]
  • The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer Tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects
    animals Article The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects Larisa A. Ilina 1,*, Valentina A. Filippova 1 , Evgeni A. Brazhnik 1 , Andrey V. Dubrovin 1, Elena A. Yildirim 1 , Timur P. Dunyashev 1, Georgiy Y. Laptev 1, Natalia I. Novikova 1, Dmitriy V. Sobolev 1, Aleksandr A. Yuzhakov 2 and Kasim A. Laishev 2 1 BIOTROF + Ltd., 8 Malinovskaya St, Liter A, 7-N, Pushkin, 196602 St. Petersburg, Russia; fi[email protected] (V.A.F.); [email protected] (E.A.B.); [email protected] (A.V.D.); [email protected] (E.A.Y.); [email protected] (T.P.D.); [email protected] (G.Y.L.); [email protected] (N.I.N.); [email protected] (D.V.S.) 2 Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, 7, Sh. Podbel’skogo, Pushkin, 196608 St. Petersburg, Russia; [email protected] (A.A.Y.); [email protected] (K.A.L.) * Correspondence: [email protected] Simple Summary: The reindeer (Rangifer tarandus) is a unique ruminant that lives in arctic areas characterized by severe living conditions. Low temperatures and a scarce diet containing a high Citation: Ilina, L.A.; Filippova, V.A.; proportion of hard-to-digest components have contributed to the development of several adaptations Brazhnik, E.A.; Dubrovin, A.V.; that allow reindeer to have a successful existence in the Far North region. These adaptations include Yildirim, E.A.; Dunyashev, T.P.; Laptev, G.Y.; Novikova, N.I.; Sobolev, the microbiome of the rumen—a digestive organ in ruminants that is responsible for crude fiber D.V.; Yuzhakov, A.A.; et al.
    [Show full text]
  • Section E, Hoofed Animals
    Hoofed Animals Hoofed Section E Caribou Muskox Section E-1 Section E-2 Moose Section E-3 Section E Diseases and Parasites of Hoofed Animals Nose and throat bots Hoofed Animals Hoofed Head Photo Credit: NWT Wildlife Division Caribou Section E-1.1 Lumpy jaw Contagious ecthyma Photo Credit: NWT Wildlife Division Caribou Section E-1.2 Photo Credit: GNWT Muskox Section E-2.1 Muskox Section E-2.2 Hoofed Animals Hoofed Section E Diseases and Parasites of Hoofed Animals Besnoitiosis Wildlife Division NWT Photo credit: Head Photo Credit: Susan Kutz Caribou Section E-1.11 Muskox Section E-2.6 Ticks Skin Moose Section E-3.1 Section E Diseases and Parasites of Hoofed Animals Warts Hoofed Animals Hoofed Skin Photo Credit: D. Campbell Caribou Section E-1.3 Moose Section E-3.2 Warbles Contagious ecthyma Photo credit: Dr. G. Wobeser Photo credit: Dr. Photo Credit: GNWT Caribou Section E-1.4 Muskox Section E-2.2 Hoofed Animals Hoofed Section E Diseases and Parasites of Hoofed Animals Besnoitiosis Wildlife Division NWT Photo credit: Photo Credit: Susan Kutz Caribou Section E-1.11 Muskox Section E-2.6 Skin Brucellosis Photo credit: Dr. G. Wobeser G. Photo credit: Dr. Caribou Section E-1.10 Muskox Section E-2.5 Moose Section E-3.6 Section E Diseases and Parasites of Hoofed Animals Liver tapeworm cyst Hoofed Animals Hoofed Photo credit: Dr. G. Wobeser Photo credit: Dr. Caribou Section E-1.5 Organs Moose Section E-3.3 Tapeworm cysts in the Lungs (Hydatid disease) Brucellosis Photo credit: Dr.
    [Show full text]
  • A Historical and Legal Study of Sovereignty in the Canadian North : Terrestrial Sovereignty, 1870–1939
    University of Calgary PRISM: University of Calgary's Digital Repository University of Calgary Press University of Calgary Press Open Access Books 2014 A historical and legal study of sovereignty in the Canadian north : terrestrial sovereignty, 1870–1939 Smith, Gordon W. University of Calgary Press "A historical and legal study of sovereignty in the Canadian north : terrestrial sovereignty, 1870–1939", Gordon W. Smith; edited by P. Whitney Lackenbauer. University of Calgary Press, Calgary, Alberta, 2014 http://hdl.handle.net/1880/50251 book http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution Non-Commercial No Derivatives 4.0 International Downloaded from PRISM: https://prism.ucalgary.ca A HISTORICAL AND LEGAL STUDY OF SOVEREIGNTY IN THE CANADIAN NORTH: TERRESTRIAL SOVEREIGNTY, 1870–1939 By Gordon W. Smith, Edited by P. Whitney Lackenbauer ISBN 978-1-55238-774-0 THIS BOOK IS AN OPEN ACCESS E-BOOK. It is an electronic version of a book that can be purchased in physical form through any bookseller or on-line retailer, or from our distributors. Please support this open access publication by requesting that your university purchase a print copy of this book, or by purchasing a copy yourself. If you have any questions, please contact us at ucpress@ ucalgary.ca Cover Art: The artwork on the cover of this book is not open access and falls under traditional copyright provisions; it cannot be reproduced in any way without written permission of the artists and their agents. The cover can be displayed as a complete cover image for the purposes of publicizing this work, but the artwork cannot be extracted from the context of the cover of this specificwork without breaching the artist’s copyright.
    [Show full text]
  • Alaska Muskox Herd Continues to Increase
    SERVICE FISH ANDWILDLIFE SERVICE For Release to PM's AUGUST14, 195b ALASKANMUSKOX HERD CONTIBUES TO INCREASE Wild muskox on the Nunivak Island National Wildlife Refuge in Alaska are show- ing a continuing increase in their numbers, according to the Fish and Wildlife Service, Department of the Interior reports. This yearts aerial survey, made from June 22 to July 4, indicates that the herd now contains between 94 and 100 animals, The 1953 total was 90. he herd was observed to contain 25 adult bulls and 21 calves. The bodies of four dead animals, all bulls, were recovered. Thousands of muskox once occupied the arctic region between the tree line to the south and the permanent icecap to the north, and their meat and robes became an important item of commerce in the far north. By the end of the 19th centruy, whale hunters had exterminated the oxen from much of its former range. The last muskox in Alaska was killed prior to 1865. Refuges were established in Canada to safeguard that country's residual herds and to foster repopulation of former ranges. In 192'7 resident Alaskans appealed to Congress for funds to purchase a small herd of muskox. Three years later, when the funds were approved, the former Bureau of Biological Survey was assigned the job of attempting to reestablish the herd-in Alaska. After a two-month trip from Green- land of approximately 14,000 miles, 31 animals were released in a 4,000-acre enclo- sure at the College Experimental Farm near Fairbanks, Alaska. During the next four years feeding experiments and studies were carried on to see if domestic herds of these animals could be developed, Because the muskox proved both difficult and dangerous to handle, the entire herd was moved in 1935 and 1936 to tho million-acre Nunivak refuge whore amp10 range of good quality was available, Although the size of the herd has moro than tripled sines 1930, the breeding potential of the animal is low.
    [Show full text]
  • Cervid Mixed-Species Table That Was Included in the 2014 Cervid RC
    Appendix III. Cervid Mixed Species Attempts (Successful) Species Birds Ungulates Small Mammals Alces alces Trumpeter Swans Moose Axis axis Saurus Crane, Stanley Crane, Turkey, Sandhill Crane Sambar, Nilgai, Mouflon, Indian Rhino, Przewalski Horse, Sable, Gemsbok, Addax, Fallow Deer, Waterbuck, Persian Spotted Deer Goitered Gazelle, Reeves Muntjac, Blackbuck, Whitetailed deer Axis calamianensis Pronghorn, Bighorned Sheep Calamian Deer Axis kuhili Kuhl’s or Bawean Deer Axis porcinus Saurus Crane Sika, Sambar, Pere David's Deer, Wisent, Waterbuffalo, Muntjac Hog Deer Capreolus capreolus Western Roe Deer Cervus albirostris Urial, Markhor, Fallow Deer, MacNeil's Deer, Barbary Deer, Bactrian Wapiti, Wisent, Banteng, Sambar, Pere White-lipped Deer David's Deer, Sika Cervus alfredi Philipine Spotted Deer Cervus duvauceli Saurus Crane Mouflon, Goitered Gazelle, Axis Deer, Indian Rhino, Indian Muntjac, Sika, Nilgai, Sambar Barasingha Cervus elaphus Turkey, Roadrunner Sand Gazelle, Fallow Deer, White-lipped Deer, Axis Deer, Sika, Scimitar-horned Oryx, Addra Gazelle, Ankole, Red Deer or Elk Dromedary Camel, Bison, Pronghorn, Giraffe, Grant's Zebra, Wildebeest, Addax, Blesbok, Bontebok Cervus eldii Urial, Markhor, Sambar, Sika, Wisent, Waterbuffalo Burmese Brow-antlered Deer Cervus nippon Saurus Crane, Pheasant Mouflon, Urial, Markhor, Hog Deer, Sambar, Barasingha, Nilgai, Wisent, Pere David's Deer Sika 52 Cervus unicolor Mouflon, Urial, Markhor, Barasingha, Nilgai, Rusa, Sika, Indian Rhino Sambar Dama dama Rhea Llama, Tapirs European Fallow Deer
    [Show full text]
  • 02/02/2018 1 Marco Apollonio and Roberta Chirichella
    02/02/2018 Marco Apollonio and Roberta Chirichella Department of Veterinary Medicine University of Sassari, Italy First Annual General Meeting of ENETWILD Parma 16-18 January 2018 1 02/02/2018 2005 - 2015 DATA FROM EUROPEAN COUNTRIES: Walter Arnold and Friedrich Reimoser (Austria); Jim Casaer (Belgium); Luděk Bartoš(Czeck R.); Krešimir Krapinec (Croatia); Reidar Andersen (Denmark); Tiit Randveer (Estonia); Vesa Ruusila (Finland); Christine Saint-Andrieux (France); Marco Heurich (Germany); Haritakis Papaioannou (Greece); Csányi Sándor (Hungary); Rory Putman and Peter Watson (Ireland and UK); Francesco Riga (Italy); Jānis Ozoliņš (Latvia); Linas Balčiauskas (Lituania); Dime Melovski (Macedonia); Geert W. T. A. Groot Bruinderink (Netherlands); Atle Mysterud (Norway); Tomasz Borowik (Poland); Carlos Fonseca (Portugal); Istvan Szabo (Romania); Milan Paunović (Serbia); Slavomír Find'o (Slovakia); Boštján Pokorny (Slovenia); Juan Carranza (Spain); Göran Ericsson (Sweden); Reinhard Schnidrig-Petrig (Swizerland). Wild boar distribution in Europe and Near East 2 02/02/2018 WILD BOAR EXTICTION IN EUROPE • SWITZERLAND • BALTIC COUNTRIES • SWEDEN • NORWAY • DENMARK • NETHERLANDS • GREAT BRITAIN • SLOVENIA (ALMOST) Italy (Ghigi A., 1917, 1950) 3 02/02/2018 Italy (Apollonio. et al., 1988) Reintroduction restocking Natural immigration Reintroduction Restocking Natural immigration Autoctonous restocking Restocking Autoctonous Restocking Autoctonous Sus scrofa meridionalis Restocking (with Sus scrofa of Reintroduction different regions) Italy (Apollonio
    [Show full text]