WP18–27 Executive Summary

Total Page:16

File Type:pdf, Size:1020Kb

WP18–27 Executive Summary WP18–27 Executive Summary General Description Proposal WP18–27 requests the Federal Subsistence Board (Board) to recognize the customary and traditional uses of muskoxen on Nunivak Island by the residents of Nunivak Island. Submitted by: Yukon- Kuskokwim Delta Subsistence Regional Advisory Council. Customary and Traditional Use Determination—Muskoxen Proposed Regulation Unit 18—Nunivak Island Residents of Nunivak Island. Unit 18—Remainder No Federal subsistence priority. OSM Preliminary Conclusion Support Southeast Alaska Subsistence Regional Advisory Council Recommendation Southcentral Alaska Subsistence Regional Advisory Council Recommendation Kodiak/Aleutians Subsistence Regional Advisory Council Recommendation Bristol Bay Subsistence Regional Advisory Council Recommendation Yukon-Kuskokwim Delta Subsistence Regional Advisory Council Recommendation Western Interior Alaska Subsistence Regional Advisory Council WP18–27 Executive Summary Recommendation Seward Peninsula Subsistence Regional Advisory Council Recommendation Northwest Arctic Subsistence Regional Advisory Council Recommendation Eastern Interior Alaska Subsistence Regional Advisory Council Recommendation North Slope Subsistence Regional Advisory Council Recommendation Interagency Staff Committee Comments ADF&G Comments Written Public Comments None 2 DRAFT STAFF ANALYSIS WP18-27 ISSUES Proposal WP18-27, submitted by the Yukon-Kuskokwim Delta Subsistence Regional Advisory Council (Council), requests the Federal Subsistence Board (Board) to recognize the customary and traditional uses of muskoxen on Nunivak Island in Unit 18 by residents of Nunivak Island. DISCUSSION The proponent states that residents of Nunivak Island have interacted with muskoxen since they were reintroduced and have hunted them under State regulations. The proponent continues that Nunivak Island consists of predominantly Federal public lands within the Yukon Delta National Wildlife Refuge and residents of the rural community of Mekoryuk on Nunivak Island would like to be recognized by the Board for their customary and traditional uses of muskoxen. Only Nunivak Island residents’ customary and traditional uses of muskoxen on Nunivak Island are described below; when a proposal requests adding a community or residents of an area to an existing customary and traditional use determination, only the customary and traditional uses in the area indicated in the proposal by that community are analyzed. Existing Federal Regulation Customary and Traditional Use Determination —Muskoxen Unit 18 No Federal subsistence priority. Proposed Federal Regulation Customary and Traditional Use Determination—Muskoxen Unit 18—Nunivak Island Residents of Nunivak Island. Unit 18—Remainder No Federal subsistence priority. Extent of Federal Public Lands Federal public lands comprise approximately 90% of Nunivak Island in Unit 18 and consist of U.S. Fish and Wildlife Service managed lands. These Federal public lands are within the Yukon Delta National Wildlife Refuge (see Unit 18 Map). 3 Regulatory History At the beginning of the Federal Subsistence Management Program in Alaska in 1992, most existing State customary and traditional use determinations were adopted into permanent Federal regulations (72 Fed. Reg. 22961. [May 29, 1992]). The State did not recognize customary and traditional uses of muskoxen on Nunivak Island and the Board adopted a determination of “no subsistence priority.” In January 2014, the Alaska Board of Game (BOG) considered but did not adopt a customary and traditional use determination for muskoxen in Units 18 and 19 (Proposal 5). The proposal, submitted by the Association of Village Council Presidents, requested muskox “subsistence” hunts in Units 18 and 19. The Board of Game took no action (ADF&G 2014:1). The BOG determined that it will consider separate customary and traditional use determinations for each of three areas of Unit 18: Nunivak Island, Nelson Island, and the remainder of Unit 18. The BOG does not recognize customary and traditional uses of muskoxen in Unit 18. Therefore, only sport hunting regulations apply. Because of this, ADF&G can limit the number of registration permits as well as limit the number of drawing permits available to hunters for the harvest of muskoxen on Nunivak Island. For Nunivak Island muskoxen, the BOG has established registration hunts for cows only (RX060 and 061). Most registration permits are distributed in Mekoryuk, and in most years a few are distributed at Bethel. Before 2014, bull hunts were only by drawing permit (DX001 and 003). Beginning in 2010 and continuing through 2014, the population of muskoxen on Nunivak Island dropped below the level necessary to maintain healthy populations. Consequently, cows were conserved and the distribution of registration permits for the harvest of cows was severely limited compared to previous years. During this same period, the distribution of drawing permits for the harvest of bulls continued at previous levels. Since 2014 the BOG has allowed the distribution of registration permits for the harvest of bulls (RX062), in addition to registration permits for the harvest of cows, if less than 10 registration permits for the harvest of cows are available (Jones 2017, pers. comm.). Perry (2017, pers. comm.) reported that the State is in the process of updating the 1992 Nunivak Island Reindeer and Muskox Management Plan. He said the revised plan will guide the number of muskoxen and reindeer the island will be managed for, and when and where muskox registration permits will be distributed. The State is consulting with the U.S. Fish and Wildlife Service and Native Village of Mekoryuk on the revised plan. Community Characteristics Nunivak Island sits about 25 miles from the Alaskan mainland and is located between the mouths of the Yukon and Kuskokwim Rivers. Nunivak Island is situated within the boundaries of the Yukon Delta National Wildlife Refuge that encompasses more than one million acres (Lantis 1984). Yup’ik people self-recognize as belonging to a number of confederations of villages. People living on Nunivak Island are Nuniwarmiut (Drozda 2010). Russian explorer A.K. Etolin reported that there were 16 villages supported by a population totaling 400 on the island in 1821. Nuniwarmiut faced a number of epidemic outbreaks during the early-1900s, and a substantial portion of the island’s population was 4 affected. Population loss led to changes in settlement patterns, and people began concentrating in areas where trade, services, and employment opportunities were available. In 1940, island residents were concentrated in seven winter villages each with less than 20 people. By the 1950s, Mekoryuk was the only permanent village on the island. United States Census records indicate that the total island population in 1980 was 160. In 2010 the population of Mekoryuk was 191 people (ADCCED 2017). Nunivak Islanders rely primarily on marine resources, birds and eggs, and muskoxen for subsistence. Few species of land mammals are present on the island. Additionally, a herd of reindeer has been actively managed on the island since the early 1900s. The herd is locally owned and managed (Caldwell 2016). Nunivak Islanders have participated in local commercial herring and halibut fisheries (Drozda 2010, Pete 1984, Wolfe et al. 2012). Bull hunters on Nunivak Island usually hunt with guides or transporters (Jones 2015a:1-7). According to ADF&G, four Nunivak businesses are currently licensed to guide and/or transport hunters (ADF&G 2017a). Muskoxen were indigenous to Alaska until the 1860s (Lent 1995). In an effort to re-establish muskoxen in Alaska, the U.S. Biological Survey brought 31 muskoxen to Nunivak Island in 1935 and 1936 (Perry 2017, pers. comm.). Nuniwarmiut found muskoxen to be frightening and as such mainly avoided the animals until 1964 when Nunivak men were employed to catch young muskoxen for an experimental farm program at the University of Alaska Fairbanks. Women began knitting qiviut, fine soft wool from the undercoat of muskoxen, by 1973 (Lantis 1984). Outside hunting was not permitted until fall 1975 when ADF&G established fall and spring hunting seasons (Jones 2015a). In 1975 a few Nunivak Islanders started to commercially guide muskox hunts. Before 1972, they also guided people on walrus hunts. Guiding hunters has been a source of income and jobs to local residents (Perry 2017, pers. comm.). Eight Factors for Determining Customary and Traditional Use A community or area’s customary and traditional use is generally exemplified through the eight factors: (1) a long-term, consistent pattern of use, excluding interruptions beyond the control of the community or area; (2) a pattern of use recurring in specific seasons for many years; (3) a pattern of use consisting of methods and means of harvest which are characterized by efficiency and economy of effort and cost, conditioned by local characteristics; (4) the consistent harvest and use of fish or wildlife as related to past methods and means of taking: near, or reasonably accessible from the community or area; (5) a means of handling, preparing, preserving, and storing fish or wildlife which has been traditionally used by past generations, including consideration of alteration of past practices due to recent technological advances, where appropriate; (6) a pattern of use which includes the handing down of knowledge of fishing and hunting skills, values, and lore from generation to generation; (7) a pattern of use in which the harvest is shared or distributed within a definable
Recommended publications
  • Cervid TB DPP Testing August 2017
    Cervid TB DPP Testing August 2017 Elisabeth Patton, DVM, PhD, Diplomate ACVIM Veterinary Program Manager Wisconsin Department of Agriculture, Trade and Consumer Protection Division of Animal Health Why Use the Serologic Test? Employ newer, accurate diagnostic test technology Minimizes capture and handling events for animal safety Expected to promote additional cervid TB testing • Requested by USAHA and cervid industry Comparable sensitivity and specificity to skin tests 2 Historical Timeline 3 Stat-Pak licensed for elk and red deer, 2009 White-tailed and fallow deer, 2010-11 2010 - USAHA resolution - USDA evaluate Stat-Pak as official TB test 2011 – Project to evaluate TB serologic tests in cervids (Cervid Serology Project); USAHA resolution to approve Oct 2012 – USDA licenses the Dual-Path Platform (DPP) secondary test for elk, red deer, white-tailed deer, and fallow deer Improved specificity compared to Stat-Pak Oct 2012 – USDA approves the Stat-Pak (primary) and DPP (secondary) as official bovine TB tests in elk, red deer, white- tailed deer, fallow deer and reindeer Recent Actions Stat-Pak is no longer in production 9 CFR 77.20 has been amended to approve the DPP as official TB program test. An interim rule was published on 9 January 2013 USDA APHIS created a Guidance Document (6701.2) to provide instructions for using the tests https://www.aphis.usda.gov/animal_health/animal_ diseases/tuberculosis/downloads/vs_guidance_670 1.2_dpp_testing.pdf 4 Cervid Serology Project Objective 5 Evaluate TB detection tests for official bovine tuberculosis (TB) program use in captive and free- ranging cervids North American elk (Cervus canadensis) White-tailed deer (Odocoileus virginianus) Reindeer (Rangifer tarandus) Primary/screening test AND Secondary Test: Dual Path Platform (DPP) Rapid immunochromatographic lateral-flow serology test Detect antibodies to M.
    [Show full text]
  • Phylogenetic Analysis of Eight Sudanese Camel Contagious Ecthyma Viruses Based on B2L Gene Sequence Abdelmalik I
    Khalafalla et al. Virology Journal (2015) 12:124 DOI 10.1186/s12985-015-0348-7 RESEARCH Open Access Phylogenetic analysis of eight sudanese camel contagious ecthyma viruses based on B2L gene sequence Abdelmalik I. Khalafalla1,2* , Ibrahim M. El-Sabagh3,4, Khalid A. Al-Busada5, Abdullah I. Al-Mubarak6 and Yahia H. Ali7 Abstract Background: Camel contagious ecthyma (CCE) is an important viral disease of camelids caused by a poxvirus of the genus parapoxvirus (PPV) of the family Poxviridae. The disease has been reported in west and east of the Sudan causing economical losses. However, the PPVs that cause the disease in camels of the Sudan have not yet subjected to genetic characterization. At present, the PPV that cause CCE cannot be properly classified because only few isolates that have been genetically analyzed. Methods and results: PCR was used to amplify the B2L gene of the PPV directly from clinical specimens collected from dromedary camels affected with contagious ecthyma in the Sudan between 1993 and 2013. PCR products were sequenced and subjected to genetic analysis. The results provided evidence for close relationships and genetic variation of the camel PPV (CPPV) represented by the circulation of both Pseudocowpox virus (PCPV) and Orf virus (ORFV) strains among dromedary camels in the Sudan. Based on the B2L gene sequence the available CPPV isolates can be divided into two genetic clades or lineages; the Asian lineage represented by isolates from Saudi Arabia, Bahrain and India and the African lineage comprising isolates from the Sudan. Conclusion: The camel parapoxvirus is genetically diverse involving predominantly viruses close to PCPV in addition to ORFVs, and can be divided into two genetically distant lineages.
    [Show full text]
  • Alaska Peninsula and Aleutian Islands Management Area Herring Sac Roe and Food and Bait Fisheries Annual Management Report, 2002
    ALASKA PENINSULA AND ALEUTIAN ISLANDS MANAGEMENT AREA HERRING SAC ROE AND FOOD AND BAIT FISHERIES ANNUAL MANAGEMENT REPORT, 2002 By Matthew T. Ford Charles Burkey Jr. and Robert L. Murphy Regional Information Report1 No. 4K03-11 Alaska Department of Fish and Game Division of Commercial Fisheries 211 Mission Road Kodiak, Alaska 99615 March 2003 1 The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished division reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Division of Commercial Fisheries. AUTHORS Matthew T. Ford is the Alaska Peninsula and Aleutian Islands Management Area Assistant Herring Biologist and Alaska Peninsula-Southeastern District Salmon Assistant Management Biologist for Region IV, Alaska Department of Fish and Game, Division of Commercial Fisheries, 211 Mission Road, Kodiak, Alaska, 99615. Charles Burkey Jr. is the Alaska Peninsula and Aleutian Islands Management Areas Herring Biologist and Alaska Peninsula-Southeastern District Salmon Management Biologist for Region IV, Alaska Department of Fish and Game, Division of Commercial Fisheries, 211 Mission Road, Kodiak, Alaska, 99615. Robert L. Murphy is the North Alaska Peninsula Area Herring Biologist and North Alaska Peninsula Salmon Management Biologist for Region IV, Alaska Department of Fish and Game, Division of Commercial Fisheries, 211 Mission Road, Kodiak, Alaska, 99615.
    [Show full text]
  • Muskox Management Report Alaska Dept of Fish and Game Wildlife
    Muskox Management Report of survey-inventory activities 1 July 1998–30 June 2000 Mary V. Hicks, Editor Alaska Department of Fish and Game Division of Wildlife Conservation December 2001 ADF&G Please note that population and harvest data in this report are estimates and may be refined at a later date. If this report is used in its entirety, please reference as: Alaska Department of Fish and Game. 2001. Muskox management report of survey-inventory activities 1 July 1998–30 June 2000. M.V. Hicks, editor. Juneau, Alaska. If used in part, the reference would include the author’s name, unit number, and page numbers. Authors’ names can be found at the end of each unit section. Funded in part through Federal Aid in Wildlife Restoration, Proj. 16, Grants W-27-2 and W-27-3. LOCATION 2 GAME MANAGEMENT UNIT: 18 (41,159 mi ) GEOGRAPHIC DESCRIPTION: Yukon–Kuskokwim Delta BACKGROUND NUNIVAK ISLAND Muskoxen were once widely distributed in northern and western Alaska but were extirpated by the middle or late 1800s. In 1929, with the support of the Alaska Territorial Legislature, the US Congress initiated a program to reintroduce muskoxen in Alaska. Thirty-one muskoxen were introduced from Greenland to Nunivak Island in Unit 18 during 1935–1936, as a first step toward reintroducing this species to Alaska. The Nunivak Island population grew slowly until approximately 1958 and then began a period of rapid growth. The first hunting season was opened in 1975, and the population has since fluctuated between 400 and 750 animals, exhibiting considerable reproductive potential, even under heavy harvest regimes.
    [Show full text]
  • What Do Caribou and Wood Bison Have in Common? by Nate Olson
    Refuge Notebook • Vol. 17, No. 4 • January 23, 2015 What do caribou and wood bison have in common? by Nate Olson Residents from the village of Shageluk on the Innoko River assist ADFG and USFWS staff in constructing a holding pen as part of the wood bison reintroduction effort. 100 wood bison are scheduled to be released on the lower Innoko River in March 2015. Photo credit: Tom Seaton, ADFG. Last weekend on a drive back from Anchorage, Wood bison are native to Alaska and were plentiful whizzing by the Alaska Wildlife Conservation Center over a large portion of the state until their extirpation at 57 miles per hour my daughter pointed out a strange in the early 1900s. The reasons for their disappearance looking moose on the side of the Seward Highway. are not clearly known but probably related to overhar- “That isn’t a moose,” I explained, “that is a woodbi- vest and habitat loss. son.” Wildlife transplants are nothing new in Alaska. And why are wood bison living in pens next to The reasons for transplanting animals generally fall the Seward Highway? They are part of a reintroduc- into two categories. The first is to provide human re- tion effort by the Alaska Department of Fish and Game lated benefits such as recreational hunting, economic (ADFG) and the Alaska Wildlife Conservation Center. gain, or an additional food supply. The second is re- The fate of these wood bison has been in the news lated to species recovery in their historic range. lately as the U.S. Fish and Wildlife Service (USFWS) Kodiak Island is a dramatic example of the first published a final rule in May 2014 that gives the green category.
    [Show full text]
  • THE SUBSISTENCE HARVEST and USE of STELLER SEA LIONS in ALASKA by Terry L Haynes and Craig Mishler Technical Paper No
    THE SUBSISTENCE HARVEST AND USE OF STELLER SEA LIONS IN ALASKA by Terry L Haynes and Craig Mishler Technical Paper No. 198 This research was partially supported by ANILCA Federal Aid funds administered through the U.S. Fish and Wildlife Service, Anchorage, Alaska, SG-1-9 Alaska Department of Fish and Game Division of Subsistence Juneau, Alaska July 1991 EEO STATEMENT The Alaska Department of Fish and Game operates all of its public programs and activities free from discrimination on the basis of race, igion, color, national origin, age, sex, or handicap Because the de partment receives federal funding, any person who believes he or she has been discriminated against should write to: O.E.O. U.S. Department of the Interior Washington, D.C. 20240 i ABSTRACT Subsequent to the classification of the Steller sea lion as a threatened species in 1990, a Sea Lion Recovery Team was created and charged with preparing a population recovery plan. This report examines the historical literature on subsistence uses, reviews Native oral traditions, and summarizes the limited amount of available information on contemporary harvests and uses of sea lions over a wide range of 25 coastal Alaskan communities. The report is designed to assist in creation of a recovery plan sensitive to subsistence uses. Further research and data needs are identified for consideration in the development of a long-range sea lion management plan. Various strategies of hunting sea lions are described, along with hunting technologies, methods of butchering sea lions, and traditional ways of cooking and serving them. Evidence gathered from prehistoric sites is summarized, and the pervasive symbolic role of Steller sea lions in Koniag and Aleut folktales, folk songs, and folk beliefs is examined in some detail.
    [Show full text]
  • The Preparation and Primary Structure of S-Peptides from Different Pancreatic Ribonucleases
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Volume 40, number 1 FEBS LETTERS March 1974 THE PREPARATION AND PRIMARY STRUCTURE OF S-PEPTIDES FROM DIFFERENT PANCREATIC RIBONUCLEASES G.W. WELLING, G. GROEN, D. GABEL+, W. GAASTRA, J.J. BEINTEMA Biochemisch Laboratorium, Rijksuniversiteit, Zernikelaan, Groningen, The Netherlands Received 14 December 1973 1. Introduction Miles-Seravac Ltd. (Maidenhead). All other ribonu- cleases used in this study (goat, giraffe, gnu, reindeer, In 1955, Richards [l] described the isolation of dromedary, kangaroo, lesser rorqual, pig, and horse) ‘an active intermediate produced during the digestion were isolated according to Wierenga et al. [7] and rat of ribonuclease by subtilisin’. The characterisation RNase, according to Beintema et al. [8]. Subtilopep- and separation of the non-covalently linked compo- tidase A (Subtilisin Carlsberg) was a gift from Novo nents was described 4 years later [2] . Ribonuclease Industri (Copenhagen). Sephadex G-50 (fine) was S* possesses full enzymatic activity and the same purchased from Pharmacia (Uppsala). All other rea- holds for the enzyme reconstituted from S-peptide gents were analytical grade products from Merck AG and S-protein. The involvement of S-peptide residues (Darmstadt). in the binding of S-peptide to S-protein and in the Amino acid analysis, high-voltage paper electro- enzymatic activity of the reconstituted RNase S’ has phoresis, dansylation, and dansyl-Edman degrada- been studied by using synthetic S-peptide analogs [3,4] tion were performed as described earlier [7, 93. the cleavage by subtilisin takes place in an external loop. Klee [5] and Gold [6] did not succeed in 2.1.
    [Show full text]
  • The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer Tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects
    animals Article The Comparative Analysis of the Ruminal Bacterial Population in Reindeer (Rangifer tarandus L.) from the Russian Arctic Zone: Regional and Seasonal Effects Larisa A. Ilina 1,*, Valentina A. Filippova 1 , Evgeni A. Brazhnik 1 , Andrey V. Dubrovin 1, Elena A. Yildirim 1 , Timur P. Dunyashev 1, Georgiy Y. Laptev 1, Natalia I. Novikova 1, Dmitriy V. Sobolev 1, Aleksandr A. Yuzhakov 2 and Kasim A. Laishev 2 1 BIOTROF + Ltd., 8 Malinovskaya St, Liter A, 7-N, Pushkin, 196602 St. Petersburg, Russia; fi[email protected] (V.A.F.); [email protected] (E.A.B.); [email protected] (A.V.D.); [email protected] (E.A.Y.); [email protected] (T.P.D.); [email protected] (G.Y.L.); [email protected] (N.I.N.); [email protected] (D.V.S.) 2 Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, 7, Sh. Podbel’skogo, Pushkin, 196608 St. Petersburg, Russia; [email protected] (A.A.Y.); [email protected] (K.A.L.) * Correspondence: [email protected] Simple Summary: The reindeer (Rangifer tarandus) is a unique ruminant that lives in arctic areas characterized by severe living conditions. Low temperatures and a scarce diet containing a high Citation: Ilina, L.A.; Filippova, V.A.; proportion of hard-to-digest components have contributed to the development of several adaptations Brazhnik, E.A.; Dubrovin, A.V.; that allow reindeer to have a successful existence in the Far North region. These adaptations include Yildirim, E.A.; Dunyashev, T.P.; Laptev, G.Y.; Novikova, N.I.; Sobolev, the microbiome of the rumen—a digestive organ in ruminants that is responsible for crude fiber D.V.; Yuzhakov, A.A.; et al.
    [Show full text]
  • Regional Subsistence Bibliography Volume V Western & Southwestern
    REGIONAL SUBSISTENCE BIBLIOGRAPHY Volume V Western & Southwestern Alaska Number I BY David B. Andersen and Jan H. Overturf Alaska Department of Fish and Game Division of Subsistence Technical Paper No. 111 Juneau. Alaska 1986 CONTENTS Acknowledgements ............................................ .v Introduction ............................................... ..vi i . Abbreviations .............................................. ..Xl x Bibliographic citations .................................... ..l Keyword Index ................................................ 169 Author Index ................................................ 199 ACKNOWLEDGEMENTS Many people have contributed time and reference material to help produce this publication. Reference collection work done in 1983 was was greatly assisted by Elizabeth Andrews, Steve Rehnke, John Wright, and Dr. Robert Wolfe who made their own collections of regional references available and offered useful suggestions regarding organiza- tion of the bibliography and additional sources. References collected in 1983 sat for over two years awaiting further work and funding, and. for a time it appeared that they would never make it into print. We have Jim Fall to thank for spearheading efforts to resurrect the project in 1986, offering suggestions for updating the collection with new material, reviewing citations and introductory text, and providing the funds for printing. Others contributing additional reference material to the updated collection include Elizaheth Andrews. Susan Georgette, Judy Morris. and Janet Schichnes. Thanks also to Dan Foster, who expertly prepared the maps appearing in the introduction. to Kathy Arndt, who painstakingly edited an early rough draft of the hihliography. and to Margie Yadlosky, who efficiently handled data entry and editing tasks on the data file. Cover artwork was the creation of Tim Sczawinski. Finally. special thanks go to Louis Brown for his programming wizardry which created the microcomputer version of the data base and the indexing routines.
    [Show full text]
  • Some Alaskan Notes
    270 GABRIELSON,SomeAlaskan Notes L[Auk April SOME ALASKAN NOTES BY IRA N. GABRIELSON (Concluded[romp. 150) CALn*ORNIAMumu•, Uria aalgecali[ornica (Bryant).--This was prob- ably the mostabundant species observed on the trip. We did not see California Murres until we reachedSeward (June 10) where there was a large colony associatedwith the still more numerousPacific Kittiwakes.The deepwater at the baseof the cliff allowedus to drift the boat closeand in the clear depthswe could see the birds literally flyingunder the water as expertlyas fishes. Often they came to the surface,saw the boat, and instantly dived again. The great coloniesof the Semidisand Kagamil Island were the largest,composed largely or entirely of this species. In the former island group, wheneverwe approachedthe precipitouscliffs dosely enough to see distinctly,we found every available shelf and nook crowdedwith tourres. At Kagamil Island we traveledin the 'Brown Bear' for at least two miles along cliffs similarly occupied,and the water was covered with birds. These were two of the most impressiveof the bird coloniesseen on the trip. On BogoslofIsland an almostequally large concentra- tion of tourrescontained both this speciesand the next. PALLAS'SMumu•, Uria lornvia arra (Pallas).--Thisnorthern species was first found on BogoslofIsland (June 24). At St. GeorgeIsland (July 8) and St. Paul Island (July 4-6) Pallas's Murre was common,while at Walrus Island (July 7) the enormous murre colony was comprisedlargely, if not entirely, of this species. I saw only one bird there that I thought was a California Murre and it movedaway before I couldbe sure. Pallas'sMurre wasabundant also at St.
    [Show full text]
  • Cervid Mixed-Species Table That Was Included in the 2014 Cervid RC
    Appendix III. Cervid Mixed Species Attempts (Successful) Species Birds Ungulates Small Mammals Alces alces Trumpeter Swans Moose Axis axis Saurus Crane, Stanley Crane, Turkey, Sandhill Crane Sambar, Nilgai, Mouflon, Indian Rhino, Przewalski Horse, Sable, Gemsbok, Addax, Fallow Deer, Waterbuck, Persian Spotted Deer Goitered Gazelle, Reeves Muntjac, Blackbuck, Whitetailed deer Axis calamianensis Pronghorn, Bighorned Sheep Calamian Deer Axis kuhili Kuhl’s or Bawean Deer Axis porcinus Saurus Crane Sika, Sambar, Pere David's Deer, Wisent, Waterbuffalo, Muntjac Hog Deer Capreolus capreolus Western Roe Deer Cervus albirostris Urial, Markhor, Fallow Deer, MacNeil's Deer, Barbary Deer, Bactrian Wapiti, Wisent, Banteng, Sambar, Pere White-lipped Deer David's Deer, Sika Cervus alfredi Philipine Spotted Deer Cervus duvauceli Saurus Crane Mouflon, Goitered Gazelle, Axis Deer, Indian Rhino, Indian Muntjac, Sika, Nilgai, Sambar Barasingha Cervus elaphus Turkey, Roadrunner Sand Gazelle, Fallow Deer, White-lipped Deer, Axis Deer, Sika, Scimitar-horned Oryx, Addra Gazelle, Ankole, Red Deer or Elk Dromedary Camel, Bison, Pronghorn, Giraffe, Grant's Zebra, Wildebeest, Addax, Blesbok, Bontebok Cervus eldii Urial, Markhor, Sambar, Sika, Wisent, Waterbuffalo Burmese Brow-antlered Deer Cervus nippon Saurus Crane, Pheasant Mouflon, Urial, Markhor, Hog Deer, Sambar, Barasingha, Nilgai, Wisent, Pere David's Deer Sika 52 Cervus unicolor Mouflon, Urial, Markhor, Barasingha, Nilgai, Rusa, Sika, Indian Rhino Sambar Dama dama Rhea Llama, Tapirs European Fallow Deer
    [Show full text]
  • Geographic Names
    GEOGRAPHIC NAMES CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES ? REVISED TO JANUARY, 1911 WASHINGTON GOVERNMENT PRINTING OFFICE 1911 PREPARED FOR USE IN THE GOVERNMENT PRINTING OFFICE BY THE UNITED STATES GEOGRAPHIC BOARD WASHINGTON, D. C, JANUARY, 1911 ) CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES. The following list of geographic names includes all decisions on spelling rendered by the United States Geographic Board to and including December 7, 1910. Adopted forms are shown by bold-face type, rejected forms by italic, and revisions of previous decisions by an asterisk (*). Aalplaus ; see Alplaus. Acoma; township, McLeod County, Minn. Abagadasset; point, Kennebec River, Saga- (Not Aconia.) dahoc County, Me. (Not Abagadusset. AQores ; see Azores. Abatan; river, southwest part of Bohol, Acquasco; see Aquaseo. discharging into Maribojoc Bay. (Not Acquia; see Aquia. Abalan nor Abalon.) Acworth; railroad station and town, Cobb Aberjona; river, IVIiddlesex County, Mass. County, Ga. (Not Ackworth.) (Not Abbajona.) Adam; island, Chesapeake Bay, Dorchester Abino; point, in Canada, near east end of County, Md. (Not Adam's nor Adams.) Lake Erie. (Not Abineau nor Albino.) Adams; creek, Chatham County, Ga. (Not Aboite; railroad station, Allen County, Adams's.) Ind. (Not Aboit.) Adams; township. Warren County, Ind. AJjoo-shehr ; see Bushire. (Not J. Q. Adams.) Abookeer; AhouJcir; see Abukir. Adam's Creek; see Cunningham. Ahou Hamad; see Abu Hamed. Adams Fall; ledge in New Haven Harbor, Fall.) Abram ; creek in Grant and Mineral Coun- Conn. (Not Adam's ties, W. Va. (Not Abraham.) Adel; see Somali. Abram; see Shimmo. Adelina; town, Calvert County, Md. (Not Abruad ; see Riad. Adalina.) Absaroka; range of mountains in and near Aderhold; ferry over Chattahoochee River, Yellowstone National Park.
    [Show full text]