Origin of the Arthropod Mandible

Total Page:16

File Type:pdf, Size:1020Kb

Origin of the Arthropod Mandible Origin of the arthropod mandible SIR - Arthropods, vast in number and for investigating the structure of the with enormous variation in body forms, mandibles (whole limb versus limb base are a fascinating group. We have found only). In the millipede Oxidus gracilis (a in that myriapods (millipedes, centipedes the figure), Dll is expressed in the distal and allies) have different mandibular ori­ part of the mandibles, as predicted in ref. gins from insects and crustaceans, which is 4, indicating their whole-limb structure. of consequence for resolving phylogenetic In light of the recent discovery of the relationships among major groups of Cambrian fossil whose head and trunk arthropods. appendages were long and Ieg-like8, the For more than a century, the phylo­ whole-limb mandibles of today's myriapods genetic relationships among the main probably represent an ancestral arthropod arthropod lineages have been a topic of state. Thus, we have a testable hypothesis: lively discussion. Almost every imaginable if myriapods and insects are indeed sister combination has been proposed, but at taxa, then Dll should also be expressed in present only two hypotheses are seriously insect mandibles. But Panganiban et al. 9 considered: the 'TCC' view, which sepa­ have shown that Dll is not expressed in rates trilobites, crustaceans and cheliccr­ mandibles of modem insects. To examine ates from the rest of the arthropods1, and whether the absence of Dll is characteristic the 'mandibulate' theory, which groups of the whole insect lineage, we included in together crustaceans, insects and myri­ our analysis the primitively wingless insect apods2. One feature is common to both: Thennobia domestica, and found that Dll is the close relationship between myriapods not expressed in the mandibles of this and insects. These two arthropod groups species (b in the figure); this further sug­ were traditionally united into Atelo­ gests that insect mandibles are formed cerata3, because they share five adult from the limb base and may be similar to characteristics: a tracheal system, mal­ the mandibles of adult crustaceans. pighian tubules, absence of appendages Both 0. gracilis and T. domestica under­ corresponding to the second antennae of go direct development, where immature crustaceans, unbranched legs, and a stages differ from the adults mainly in the mandible (jaw) composed of a whole limb. development of the gonads and genitalia. The existence of the Atelocerata has This allows us to correlate directly embry­ recently been questioned by two indepen­ onic changes in Dll expression with struc­ dent studies reporting molecular data to tural changes in adult mandibles. In con­ infer arthropod phylogeny4•5• Friedrich and trast, only crustaceans that undergo larval Tautz4 suggested that crustaceans, and not development have been studied so far6• Expression pattern of DI/ in the mandibular seg­ myriapods, are the sister group of insects, Consequently, the finding that Dll is ments of the mi llipede Oxidus gracilis (a), the arguing that the first three characteristics expressed throughout the mandibles of primitively wingless insect Thermobia domestica common to both myriapods and insects are crustacean nauplius larvae (c in the figure) (b). the crustacean nauplius larva Artemia francis­ convergent adaptations to terrestrial life is not informative because the larval cells cana (c) and the terrestrial isopod Armadillidium vu/gare (d) . An, antenna! segment; Mn, man­ and thus do not reflect a common ancestry. expressing Dll do not contribute to the dibular segment; Mx, maxillary segment. Amm­ Panganiban et al. 6 have shown also that adult structures (as noted in ref. 6). To infer heads indicate the mandibular appendages. differences between branched and the origins of the mandibles in adult crus­ unbranched legs can be caused by a simple taceans, it is necessary to study species that it directly supports the hypothesis that developmental switch. In the light of these undergo direct development. We therefore crustaceans, not myriapods, are the arguments, it is essential to evaluate criti­ included the terrestrial isopod Annadillidi­ sister group of insects4. The overall simi­ cally the fifth feature shared by myriapods um vulgare, a direct developer, in our larity of nervous and visual systems in and insects, namely, a similarity in the analysis. We found that crustacean both insects and crustaceans provides structure of their mandibles. mandibles are indeed composed of a limb independent support for this hypothesis 10. Traditionally, crustacean mandibles are base only, as is evident by the lack of Dll These findings lessen the case for uniting regarded as being formed from a limb expression in ectoderm (din the figure). insects and myriapods into Atelocerata. base, and ateloceratean mandibles as In summary, our data are consistent Aleksandar Popadlc, Douglas Rusch being composed of a whole limb 7, but this with earlier predictions2·4·6 that the arthro­ Michael Peterson, Bryan T. Rogers view has been challenged recently2. One pod mandible was originally composed of Thomas C. Kaufman way to resolve this dispute is to investigate a whole limb and was similar to the pre­ Howard Hughes Medical Institute, the structure of arthropod mandibles at sent-day mandibles of the myriapods. Department of Biology, the molecular level, as suggested by Further, our data suggest that during Indiana University, Friedrich and Tautz4 • arthropod evolution, the mandible struc­ Bloomington, Indiana 4 7405, USA We studied the pattern of expression of ture changed from a whole limb (a in the 1. Cisne, J. L. Science 186, 13-18 (1974). the homeobox gene Distal-less (Dll) in the figure) to a limb base only, the latter type 2. Kukalova-Peck, J. Can. J. Z oo/. 70, 236-255 (1992). 3. Te~ord, M. J. & Thomas, R. H. Nature 376, 123-124 (1995). mandibles of the millipede, and compared being a shared feature between insects 4. Friedrich, M. & Tautz. D. Nature 376, 165-167 ( 1995). it with results from insects and crus­ and crustaceans (b , d). This finding has 5. Boore, J. L. et al. Nature 376, 163-165 (1995). 6. Panganiban, G. et al. Science 270, 1363- 1366 (1995). taceans (Dll antibody was kindly provided two important implications. First, it 7. Manton, S. M. TheArthropoda: Habits, Functional by G. Panganiban). This gene specifies the argues against the traditional view that Morphology and Evolution (Clarendon, Oxford, 1977). 8. Robi son, R. A. Nature 343, 163- 164 (1990). distal part of appendages, and therefore insect and crustacean mandibles are fun­ 9. Panganiban, G. et al. Curr. Biol. 4, 671- 675 (1994). can be used as a molecular marker damentally different7; and second, 10. Osorio, D. et al. Trends Ecol. Evol. 10, 449- 454 (1995). NATURE · VOL 380 · 4 APRIL 1996 395 © 1996 Nature Publishing Group.
Recommended publications
  • Decapod Crustacean Grooming: Functional Morphology, Adaptive Value, and Phylogenetic Significance
    Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance N RAYMOND T.BAUER Center for Crustacean Research, University of Southwestern Louisiana, USA ABSTRACT Grooming behavior is well developed in many decapod crustaceans. Antennular grooming by the third maxillipedes is found throughout the Decapoda. Gill cleaning mechanisms are qaite variable: chelipede brushes, setiferous epipods, epipod-setobranch systems. However, microstructure of gill cleaning setae, which are equipped with digitate scale setules, is quite conservative. General body grooming, performed by serrate setal brushes on chelipedes and/or posterior pereiopods, is best developed in decapods at a natant grade of body morphology. Brachyuran crabs exhibit less body grooming and virtually no specialized body grooming structures. It is hypothesized that the fouling pressures for body grooming are more severe in natant than in replant decapods. Epizoic fouling, particularly microbial fouling, and sediment fouling have been shown r I m ans of amputation experiments to produce severe effects on olfactory hairs, gills, and i.icubated embryos within short lime periods. Grooming has been strongly suggested as an important factor in the coevolution of a rhizocephalan parasite and its anomuran host. The behavioral organization of grooming is poorly studied; the nature of stimuli promoting grooming is not understood. Grooming characters may contribute to an understanding of certain aspects of decapod phylogeny. The occurrence of specialized antennal grooming brushes in the Stenopodidea, Caridea, and Dendrobranchiata is probably not due to convergence; alternative hypotheses are proposed to explain the distribution of this grooming character. Gill cleaning and general body grooming characters support a thalassinidean origin of the Anomura; the hypothesis of brachyuran monophyly is supported by the conservative and unique gill-cleaning method of the group.
    [Show full text]
  • Horseshoe Crab Limulus Polyphemus
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Atlantic Horseshoe Crab Limulus polyphemus Contributor (2005): Elizabeth Wenner (SCDNR) Reviewed and Edited (2013): Larry Delancey and Peter Kingsley-Smith [SCDNR] DESCRITPION Taxonomy and Basic Description Despite their name, horseshoe crabs are not true crabs. The Atlantic horseshoe crab, Limulus polyphemus, is the only member of the Arthropoda subclass Xiphosura found in the Atlantic. Unlike true crabs, which have 2 pairs of antennae, a pair of jaws and 5pairs of legs, horseshoe crabs lack antennae and jaws and have 7 pairs of legs, including a pair of chelicerae. Chelicerae are appendages similar to those used by spiders and scorpions for grasping and crushing. In addition, horseshoe crabs have book lungs, similar to spiders and different from crabs, which have gills. Thus, horseshoe crabs are more closely related to spiders and scorpions than they are to other crabs. Their carapace is divided into three sections: the anterior portion is the prosoma; the middle section is the opithosoma; and the “tail” is called the telson. Horseshoe crabs have two pairs of eyes located on the prosoma, one anterior set of simple eyes, and one set of lateral compound eyes similar to those of insects. In addition, they possess a series of photoreceptors on the opithosoma and telson (Shuster 1982). Horseshoe crabs are long-lived animals. After attaining sexual maturity at 9 to 12 years of age, they may live for another 10 years or more. Like other arthropods, horseshoe crabs must molt in order to grow. As the horseshoe crab ages, more and more time passes between molts, with 16 to 19 molts occurring before a crab becomes mature, stops growing, and switches energy expenditure to reproduction.
    [Show full text]
  • Observations on the Springtail Leaping Organ and Jumping Mechanism Worked by a Spring
    Observations on the Springtail Leaping Organ and Jumping Mechanism Worked by a Spring Seiichi Sudo a*, Masahiro Shiono a, Toshiya Kainuma a, Atsushi Shirai b, and Toshiyuki Hayase b a Faculty of Systems Science and Technology, Akita Prefectural University, Japan b Institute of Fluid Science, Tohoku University, Japan Abstract— This paper is concerned with a small In this paper, the springtail leaping organ was jumping mechanism. Microscopic observations of observed with confocal laser scanning microscopy. A springtail leaping organs were conducted using a jumping mechanism using a spring and small confocal leaser scanning microscope. A simple electromagnet was produced based on the observations springtail mechanism using a spring and small of leaping organ and the jumping analysis of the electromagnet was produced based on the observations springtail. of leaping organ and the jumping analysis of the globular springtail. Jumping characteristics of the mechanism were examined with high-speed video II. EXPERIMENTAL METHOD camera system. A. Microscopic Observations Index Terms—Jumping Mechanism, Leaping Organ, Globular springtails are small insects that reach Springtail, Morphology, Jumping Characteristics around 1 mm in size. They have the jumping organ (furcula), which can be folded under the abdomen. Muscular action releasing the furcula can throw the I. INTRODUCTION insect well out of the way of predators. Jumping in insect movement is an effective way to In this paper, microscopic observations of the furcula escape predators, find food, and change locations. were conducted using the confocal laser scanning Grasshoppers, fleas, bush crickets, katydids, and locusts microscope. Confocal laser scanning microscopy is are particularly well known for jumping mechanisms to fluorescence – imaging technique that produces move around.
    [Show full text]
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • First Report of a Deep Sea Spider Crab, Encephaloides Armstrongi Wood- Mason and Alcock, 1891 from Gujarat Waters of India
    Indian Journal of Geo Marine Sciences Vol. 46 (05), May 2017, pp. 982-985 First report of a deep sea spider crab, Encephaloides armstrongi Wood- Mason and Alcock, 1891 from Gujarat waters of India Gyanaranjan Dash*, Mohammed Koya K. & Nayan P. Makwana Veraval Regional Centre of CMFRI, Matsya Bhavan, Bhidia, Veraval: 362 269, Gujarat, India *[E-mail: [email protected]/[email protected]] Received 17 September 2014 ; revised 14 January 2015 A single specimen of the male crab (3.0 cm carapace length and 3.8 g body weight) was collected from the incidental catch sample of a multiday trawler operating at a depth range of 107-132 m off Gujarat coast of India. The detailed morphometric measurements and diagnostic features with updated systematics have been presented in this paper. The crab has well devolved branchial region and thrive in the oxygen minimum zone of the sea. [Keywords: Deep sea spider crab, Encephaloides armstrongi, Veraval, Gujarat] Introduction Materials and Methods Crabs are one of the benthic crustacean faunas The present crab specimen was collected from and are exploited by fishing vessels mostly as a multiday trawler operating in a depth range of incidental catch targeting valuable shrimp stocks 30-135 m off Veraval coast of Gujarat, India. The of the coast. The species described here is Veraval Regional Centre of Central Marine identified as Encephaloides armstrongi and Fisheries Research Institute (CMFRI) is belongs to the family ‘Inachidae’. Earlier known continuously collecting information about the distribution of the crab is shown in Figure 1. The spatial and temporal distribution of fishery crab was reported for the first time from Bay of resources with the help of commercial fishing Bengal in the north-east Indian Ocean1.
    [Show full text]
  • Crustacean Critters Summary Objectives Materials Making Connections Teacher Prep for Activity Sandy Shores
    Partnerships for Reform through Investigative Science and Math Crustacean Critters Sandy Shores Summary Students will have the opportunity to work with live hermit crabs in Concepts their classroom. They will learn what it takes to keep a hermit crab, There are many as well as, all other animals happy and healthy in their habitat. different types of crustaceans. Crabs, Objectives lobsters, shrimp, • Students will discover the four basic things that all animals prawns, and barnacle are need to survive. some types of • Students will be able to identify the abiotic and biotic crustaceans. components of a hermit crabs sandy shore habitat. Crustaceans share many • Students will be able to describe how hermit crabs are of the same physical adapted to live on the sandy shore habitat. characteristics, but some have unique features of Materials their own. All animals Activity 1: Habitat Huddle including crustaceans 1 large piece of chart paper or board in front of classroom have special needs that Activity 2: Crustacean Drawing ensure their survival. 5-10 pictures or specimens (can be bought at the market or just use toy models) of different types of crustaceans such as crabs, lobsters, HCPS III Benchmarks hermit crabs, and shrimp. SC 2.1.1 2 pieces of chart paper SC 2.3.1 drawing paper for each student SC 2.5.1 1 pair of plastic gloves per student HE.K-2.5.1 LA.2.6.1 Making Connections Students may recall seeing different types of crustaceans during visits Duration to the sandy shore. Learning about the different kinds of crustaceans 1 hour and how they are similar or different will help students identify the various adaptations and characteristics that make the sandy shore a Source Material suitable habitat for some and not for others.
    [Show full text]
  • Are You One of Us? Insects | Grades 5 & 6
    ARE YOU ONE OF US? INSECTS | GRADES 5 & 6 Skills Subjects Sorting, classifying, comparing Science National Science Standard Time Content Standard C: Life Science Preparation: 10 minutes Students should develop an understanding of the characteristics of Teaching: 60 minutes living organisms. Evaluation: 10 minutes Content Standard G: History and Nature of Science Vocabulary Students should develop an understanding of science as a human Definitions on Page 4 of Lesson endeavour. systematics mammal Objectives exoskeleton • Students will learn that scientists classify living things according to vertebrae similarities and differences. arthropod • Students will be able to list the characteristics of arthropods. thorax • Students will be able to list the characteristics of insects. abdomen • Students will able to name the five classes of arthropods and give an antennae example of an arthropod in each of the classes. millipede Assessment centipede Given pictures or models of arthropods, students will be able to sort crustacean them into the classes. arachnid Materials • “Invertebrate Photographs” template • Chart paper or whiteboard • Plastic arthropod models (optional) Background One of the most important jobs of being a scientist is to sort and classify. The science of classification is called systematics. Systematics gives scientists the tools to communicate clearly about the natural world. Living organisms are grouped according to how closely related they are (their evolutionary history). These groups start out very large and become increasingly specific until finally scientists name individual species. Each species has a scientific name that is recognized anywhere in the world no matter what language is spoken. Most people think that mammals are the most important and numerous group of animals on the earth.
    [Show full text]
  • Visions & Reflections on the Origin of Smell: Odorant Receptors in Insects
    Cell. Mol. Life Sci. 63 (2006) 1579–1585 1420-682X/06/141579-7 DOI 10.1007/s00018-006-6130-7 Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2006 Visions & Reflections On the ORigin of smell: odorant receptors in insects R. Benton Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, New York 10021 (USA), Fax: +1 212 327 7238, e-mail: [email protected] Received 23 March 2006; accepted 28 April 2006 Online First 19 June 2006 Abstract. Olfaction, the sense of smell, depends on large, suggested that odours are perceived by a conserved mecha- divergent families of odorant receptors that detect odour nism. Here I review recent revelations of significant struc- stimuli in the nose and transform them into patterns of neu- tural and functional differences between the Drosophila ronal activity that are recognised in the brain. The olfactory and mammalian odorant receptor proteins and discuss the circuits in mammals and insects display striking similarities implications for our understanding of the evolutionary and in their sensory physiology and neuroanatomy, which has molecular biology of the insect odorant receptors. Keywords. Olfaction, odorant receptor, signal transduction, GPCR, neuron, insect, mammal, evolution. Olfaction: the basics characterised by the presence of seven membrane-span- ning segments with an extracellular N terminus. OR pro- Olfaction is used by most animals to extract vital infor- teins are exposed to odours on the ciliated endings of olf- mation from volatile chemicals in the environment, such actory sensory neuron (OSN) dendrites in the olfactory as the presence of food or predators.
    [Show full text]
  • Giants at Our Feet,New York's Horseshoe Crabs
    More Than GIANTS at our feet —New York's horseshoe crabs By Lee Roscoe and Eileen Stegemann hey bumble up from the muck of the subtidal zone, year-round in Long Island Sound, the Atlantic Ocean, and T swimming on their backs. Using their hinged body in other areas along the coast. During the spawning season and long, spear-like tail, they flip over and float or walk (May and June), thousands can be seen along the shorelines to the high tide line. They are somewhat ungainly in their of the bays of Long Island, with peak numbers occurring at movements and look like cobblestones, polished smooth and night around the times of the new and full moons. shiny with salt water. They are horseshoe crabs: secretive Milling around the spawning creatures are biologists and bottom-dwelling creatures that have been around for more volunteers, marking out transects to conduct a census of the than 240 million years. population. Working in teams of two to three, they mark It’s June and they’re here to mate. The universal scent down the time, place, weather, approximate wave height, of algae and salt, of bubbling rumpled ocean mixing with cloud cover and temperature, and then count the crabs. sand, abounds. The smaller males find the females both They note the genders, how many are mating, and how by scenting their pheromones and by sighting them with many are solitary. For some individuals, the width of the one or more of their ten eyes. Females deposit their eggs carapace (top of the shell) may be measured.
    [Show full text]
  • Unit 6 in Entomology [1] Unit Six. Reception and Integration: the Insect Nervous System. [2] in This Unit, You'll Need to Desc
    Unit 6 in Entomology [1] Unit six. Reception and Integration: The Insect Nervous System. [2] In this unit, you'll need to describe the origin of the insect nervous system, identify the major structures of the insect nervous system and describe their function, compare and contrast the physical structure and functions of compound eyes and simple eyes, differentiate between the two types of simple eyes and describe the four types of mechanical receptors insects possess. [3] Have you ever thought about how insects receive information from their environment? We use all of our five senses, but what about insects? Think about this. Do they have eyes? Yeah, mostly. Do they have a nose? The answer may seem obvious to you: insects don't have noses, but have you ever thought about how they smell or do they even smell? Well, yes, they do. They have receptors on their antenna and other parts of their body to pick up scents. In order to understand how an insect picks up a scent, let's first look at how humans do it. [4] Someone is baking luscious bread in the kitchen. As you walk by the kitchen, chemical molecules mixed with the steam waft up from the cooking food and enter your nose. The molecules then bind to tiny hairs in the nasal cavity. These hairs are extensions of olfactory nerve cells. Nerve cells are also called neurons. The binding of the chemical causes your olfactory nerves to fire and send a message to your brain. There, the brain interprets the message and fires another nerve cell in response that stimulates your salivary glands.
    [Show full text]
  • (Includes Insects) Myriapods Pycnogonids Limulids Arachnids
    N. Dean Pentcheff Insect Friends and Relations Regina Wetzer What do we know How do we know that? about arthropod relationships? Examples of lines of evidence: Onychophorans Genetics and Genomics Genomic approaches The figures at left show the can look at patterns protein structure of opsins Common of occurrence of (visual pigments). Yellow iden- tifies areas of the protein that Ancestor of whole genes across Crustaceans (includes Insects) have important evolutionary Panarthropoda taxa to identify pat- terns of common and functional differences. This ancestry. provides information about how the opsin gene family has Cook, C. E., Smith, M. L., evolved across different taxa. Telford, M. J., Bastianello, Myriapods A., Akam, M. 2001. Hox Porter, M. L., Cronin, T. W., McClellan, Panarthropoda genes and the phylogeny D. A., Crandall, K. A. 2007. Molecular of the arthropods. Cur- characterization of crustacean visual rent Biology 11: 759-763. pigments and the evolution of pan- crustacean opsins. Molecular Biology This phylogenetic tree of the Arthropoda and Evolution 24(1): 253-268. Arthropoda Pycnogonids outlines our best current knowledge about relationships in the group. Dunn, C.W. et al. 2008. Broad phylogenetic sampling improves resolution of the animal tree of life. Nature Morphology 452: 745-749. Limulids Comparing similarities and differences among arthropod appendages is a fertile source of infor- Chelicerata mation about patterns of ancestry. Morphological Arachnids evidence can be espec- ially valuable because it is available for both living Unraveling arthropod phylogeny and fossil taxa. There are about 1,100,000 described arthropods – 85% of multicellular animals! Segmentation, jointed appendages, and the devel- opment of pattern-forming genes profoundly affected arthropod evolution and created the most morphologically diverse taxon on [Left:] Cotton, T.
    [Show full text]
  • Arthropods Insects, Arachnids, and Crustaceans
    Arthropods Insects, Arachnids, and Crustaceans Reading and Discussion Arthropods are animals that are a part of the Phylum Arthropoda, which means “jointed feet”. They are known by their jointed limbs and cuticles. An arthropod's body consists of segments, and each segment has a pair of appendages. Arthropods are invertebrates, which means that they do not have a backbone or spinal column. There are over one million species of arthropods. The arthropod phylum includes: 1. insects 2. arachnids 3. crustaceans Insects are one of the most diverse groups of animals. They have segmented bodies that are supported by an exoskeleton. An exoskeleton is an external skeleton that protects and supports an animal's body. An insect's hard exoskeleton is primarily made up of something called chitin. The body of an insect is made up of three segments: a head a thorax an abdomen The head supports an insect's antennae. The thorax is the segment that includes the insect's six legs. Not all insects have wings, but, if they do have wings, these wings are also located on the thorax. The abdomen section has most of the digestive, respiratory, excretory, and reproductive systems. Insects do not use lungs to breathe. Instead, they have a system of internal sacs and tubes that help to deliver oxygen directly to their body tissues. Arachnids are mainly land animals, but they can also be found in freshwater environments. Most arachnids have eight legs. Their legs come in pairs. The first pair is known as the chelicerae and is used primarily for feeding and defense.
    [Show full text]