Narceus Americanus

Total Page:16

File Type:pdf, Size:1020Kb

Narceus Americanus orientation movements of Narceus americanus when presented a strawberry stimulus Michael Donkor, Jamar Hurtt, Gissel Cuestas, Rachael Adeoye Regional Math/Science Center, Frostburg State University, Frostburg, MD 21532 Methods Introduction • A 11" x 17" box was used and the grid was separated into a 5 x 7 matrix Discussion with marker. Millipedes are Arthropods, which are the largest phylum of Our data supported our null hypothesis. Since the p-values for • A decaying strawberry was placed on number 1 of the gridded box the animal kingdom. They are scientifically known as the class the decaying strawberry (0.015821) and the fresh strawberry (see figure 2). Diplopods. Millipedes are worm-like animals made up of multiple (0.000699) are less than the alpha value of 0.05, there is a body segments. They have two pairs of legs attached to each • One millipede was lightly poked at so it could be awoken for the significantly higher number of non-directed movements made by segment and most millipedes have usually have 50-375 experiment and was then placed on the numbers 18 and 19 and covered millipedes in the presence of both decaying and fresh strawberries. legs. The millipedes we are studying are the North American with a small container until the timer started. Non-directed movements are considered to be a kinesis, so the millipede (Narceus americanus). The North American millipede • Grid paper was used to replicate the box grid so we could record the millipedes used kinesis behavior towards the decaying and fresh can be found in the United States in all states east of the orientation movements of the millipede for five minutes. The orientation strawberry. There is no difference in the orientation behaviors Mississippi river and nine states to the west (Millican, 2013). movements were based on each sharp turn that the millipede made. between the strawberry types; there our null hypothesis can be They are mainly black and have a range of colors on the edges • Two different colors were used to differentiate between directed accepted. of their body segments. North American millipedes average a movement and non-directed movement of the millipedes on the grid paper. Our results were supported by information sources, in an article mass of 2.5 g and a length of 10.2 cm. Most North American • The procedure was repeated 19 times with a decaying strawberry and we read, it stated that at the base of a millipede's antennae there are millipedes are found in forests and agricultural areas, in spaces 20 times with a fresh strawberry; each trial was repeated with a different Tömösváry organs, which can measure a multitude of things. These like dead trees, and piles of moist dead leaves. They are millipede. organs also act as chemoreceptors, which allows them to sense confided to habitats of high moisture because they become • A t-test with 95% confidence intervals was performed to compare their environment's, taste food, smell odors, feel, measure dehydrated quickly. North American millipedes feed on decaying the difference between kinesis and taxis movements in the presence temperature, find water, and sense pheromones (Millican, matter, such decaying leaves, wood, roots and plants. They also of fresh or decaying matter. 2013) since their antennae are not infinitely long, they can only eat their own feces, which helps them digest nutrients that may sense their close surroundings; therefore, having to roam around or not have been digested the first time. All millipedes breathe make kinesis movements until they get to a food stimulus. through spiracles, which are connected to their tracheal If I were to repeat this experiment I would make the boxes respiratory system (Millican, 2013). When threatened, millipedes replicate the kind of habitat that millipedes prefer so that we could produce a chemical that deter potential threats. see how their orientation movements change when they are in a familiar or comfortable environment. This might make the Orientation behaviors are coordinated movements that occur experiment we already have more convincing, because then we in response to an external stimulus. They are seen as innate know that the cold box that they are not familiar with and the behaviors because they are developmentally and genetically shadows it cast would not be an extra variable that would cause fixed. Taxis and kinesis are orientation behaviors. Kinesis is a them to perform more taxis or kinesis movements towards or away change in the speed movements that occur in response to an Figure 2. A decaying or fresh strawberry was from an additional stimulus. Figure 1. Narceus americanus (North Sources of error that occurred in our experiment were that they external stimulus. Taxis is a movement directly toward (positive) American millipede) placed in box number 1 or away from (negative) a stimulus. (Meyer, 2009). For example, kept on trying to crawl out of box, and that we did not have consistency, because some trials we used saran warp to cover the if there is a flashlight pointed at a millipede and it directly moves 6 away from it that would be a negative taxis. Since we can box and other trials we didn’t. Something I would like to study in the observe this behavior by watching the millipede, it would also be 5 future is what temperature millipedes are most comfortable in. I could test that by putting them in different temperatures and seeing if considered overt behavior. 4 there is a change in the way they behave. 3 2 1 AVERAGE #OF MOVEMENTS AVERAGE 0 References Decaying Fresh Meyer, J.R .(2009). Elements of Behavior. General Entomology. Objectives TYPE OF STRAWBERRY Retrieved from https://genent.cals.ncsu.edu/bug- Direct Non-Direct • Purpose: To see how the type of orientation behaviors of bytes/elements-of-behavior/ Narceus americanus compare when in the presence of fresh Figure 3. Comparing directed or non-directed movements or decaying matter. toward decaying or fresh strawberry, 95% confidence Millican, K .(2013). Narceus americanus. AnimalDiversity. Retrieved • Importance: While gaining background information on intervals are shown with the error bars from http://animaldiversity.org/accounts/Narceus Narceus americanus, we found that decaying matter _america nus/ containing bacteria and fungi increases the availability of nutrients for a millipede. We already know that this affects Results Averages of movements of Narceus americanus in the presence of a decaying strawberry: their food preference so we wanted to find if it would affect • their orientation behaviors as well. • Directed movements = 1.85 • Null Hypothesis: There is no difference in the type of • Non directed movements = 4.3 • Averages of movements of Narceus americanus in the presence of a fresh strawberry: Acknowledgements orientation behavior made by Narceus americanus in the We would like to give a special thanks to Frostburg State Directed movements = 1.25 presence of a decaying or fresh strawberry. • University for letting us use their facility to conduct our research. • Alternative Hypothesis: There is no difference in the type of • Non directed movements = 4.15 We would also like to thank the administrative staff Rita Hegman, orientation behavior made by Narceus americanus in the • P values from T-test used with 95% confidence intervals: Angie Ferguson, and Kayla Precourt, and our tutor counselors, presence of a decaying or fresh strawberry. • Taxis vs kinesis for decaying - 0.015821 Sydney Greer, Molly McEvoy, Daniel Jones, and Brady Barnhart • Taxis vs kinesis for fresh - 0.000699 Comparison of Direct and Non-Direct Movements of N. americanus By a Decaying and Fresh Strawberry Regional Math/Science Center, Frostburg State University, Frostburg, MD 21532 Introduction Methods Discussion Narceus americanus are crustacean-like invertebrate • A 11" by 17" cardboard box was built with a 5 x 7 matrix of We are able to accept the null hypothesis, organisms classified as arthropods, which is the biggest phylum in the boxes. The squares of the matrix were labeled with numbers 1- because there was no difference in the type of behavior shown by the animal kingdom (Benson, 1999). Members of the phylum, such as 35. millipedes in the presence of either stimuli. After doing the statistical t- millipedes, are segmented organisms that have jointed limbs and an • A decaying strawberry was placed on square 1. A millipede was test, we were able to compare the alpha value of 0.05, with a p-value of exoskeleton made of chitin. One of the most important characteristic of placed on square 18, after being woken up, and the timer was .015821 for the decaying strawberry data and another p-value of the millipede is their exoskeleton (Benson et al, 1999). Millipedes prefer started for five minutes. 0.000699 for the fresh data set. Since both p-values were smaller than moist, dark environments, such as mulchy, soiled areas. There are • The movement of the millipede was traced on a separate sheet 0.05, we were able to say that kinesis was the majority movement for spiracles under their exoskeleton which are next to their joints, to help of grid paper, which was a replica of the box's matrix. both data sets; so, between each set there was no difference in the the millipedes breathe; also, these holes connect to their tracheal • The directed movements (towards the stimulus) and the non- movement type. Due to this conclusion, we were unable to accept the respiratory system. With living in such moist, dark conditions, the directed movements (away from the stimulus) of the alternative hypothesis, which was: "There is a difference in the type of millipede prefers to eat decaying organic matter. Millipedes are millipede were highlighted in two different colors and counted. A orientation behavior made by Narceus americanus in the presence of a decomposers, which means everything they eat is returned to the soil for similar procedure was followed with a fresh strawberry.
Recommended publications
  • Great Lakes Entomologist
    Vol. 28, No.3 &4 Fall/Winter 1995 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN ENTOMOLOGICAL SOCIETY THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 28 No.3 & 4 ISSN 0090-0222 TABLE OF CONTENTS Temperature effects on development of three cereal aphid porasitoids {Hymenoptera: Aphidiidael N. C. Elliott,J. D. Burd, S. D. Kindler, and J. H. Lee........................... .............. 199 Parasitism of P/athypena scabra (Lepidoptera: Noctuidael by Sinophorus !eratis (Hymenoptera: Ichneumonidae) David M. Pavuk, Charles E. Williams, and Douglas H. Taylor ............. ........ 205 An allometric study of the boxelder bug, Boiseo Irivillata (Heteroptera: Rhopolidoe) Scott M. Bouldrey and Karin A. Grimnes ....................................... ..... 207 S/aferobius insignis (Heleroptera: Lygaeidael: association with granite ledges and outcrops in Minnesota A. G. Wheeler, Jr. .. ...................... ....................... ............. ....... 213 A note on the sympotric collection of Chymomyza (Dipiero: Drosophilidael in Virginio's Allegheny Mountains Henretta Trent Bond ................ .. ............................ .... ............ ... ... 217 Economics of cell partitions and closures produced by Passa/oecus cuspidafus (Hymenoptera: Sphecidael John M. Fricke.... .. .. .. .. .. .. .. .. .. .. .. .. 221 Distribution of the milliped Narceus american us annularis (Spirabolida: Spirobolidae) in Wisconsin Dreux J. Watermolen. ................................................................... 225
    [Show full text]
  • Decapod Crustacean Grooming: Functional Morphology, Adaptive Value, and Phylogenetic Significance
    Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance N RAYMOND T.BAUER Center for Crustacean Research, University of Southwestern Louisiana, USA ABSTRACT Grooming behavior is well developed in many decapod crustaceans. Antennular grooming by the third maxillipedes is found throughout the Decapoda. Gill cleaning mechanisms are qaite variable: chelipede brushes, setiferous epipods, epipod-setobranch systems. However, microstructure of gill cleaning setae, which are equipped with digitate scale setules, is quite conservative. General body grooming, performed by serrate setal brushes on chelipedes and/or posterior pereiopods, is best developed in decapods at a natant grade of body morphology. Brachyuran crabs exhibit less body grooming and virtually no specialized body grooming structures. It is hypothesized that the fouling pressures for body grooming are more severe in natant than in replant decapods. Epizoic fouling, particularly microbial fouling, and sediment fouling have been shown r I m ans of amputation experiments to produce severe effects on olfactory hairs, gills, and i.icubated embryos within short lime periods. Grooming has been strongly suggested as an important factor in the coevolution of a rhizocephalan parasite and its anomuran host. The behavioral organization of grooming is poorly studied; the nature of stimuli promoting grooming is not understood. Grooming characters may contribute to an understanding of certain aspects of decapod phylogeny. The occurrence of specialized antennal grooming brushes in the Stenopodidea, Caridea, and Dendrobranchiata is probably not due to convergence; alternative hypotheses are proposed to explain the distribution of this grooming character. Gill cleaning and general body grooming characters support a thalassinidean origin of the Anomura; the hypothesis of brachyuran monophyly is supported by the conservative and unique gill-cleaning method of the group.
    [Show full text]
  • Diversity of Millipedes Along the Northern Western Ghats
    Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1.
    [Show full text]
  • Horseshoe Crab Limulus Polyphemus
    Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Atlantic Horseshoe Crab Limulus polyphemus Contributor (2005): Elizabeth Wenner (SCDNR) Reviewed and Edited (2013): Larry Delancey and Peter Kingsley-Smith [SCDNR] DESCRITPION Taxonomy and Basic Description Despite their name, horseshoe crabs are not true crabs. The Atlantic horseshoe crab, Limulus polyphemus, is the only member of the Arthropoda subclass Xiphosura found in the Atlantic. Unlike true crabs, which have 2 pairs of antennae, a pair of jaws and 5pairs of legs, horseshoe crabs lack antennae and jaws and have 7 pairs of legs, including a pair of chelicerae. Chelicerae are appendages similar to those used by spiders and scorpions for grasping and crushing. In addition, horseshoe crabs have book lungs, similar to spiders and different from crabs, which have gills. Thus, horseshoe crabs are more closely related to spiders and scorpions than they are to other crabs. Their carapace is divided into three sections: the anterior portion is the prosoma; the middle section is the opithosoma; and the “tail” is called the telson. Horseshoe crabs have two pairs of eyes located on the prosoma, one anterior set of simple eyes, and one set of lateral compound eyes similar to those of insects. In addition, they possess a series of photoreceptors on the opithosoma and telson (Shuster 1982). Horseshoe crabs are long-lived animals. After attaining sexual maturity at 9 to 12 years of age, they may live for another 10 years or more. Like other arthropods, horseshoe crabs must molt in order to grow. As the horseshoe crab ages, more and more time passes between molts, with 16 to 19 molts occurring before a crab becomes mature, stops growing, and switches energy expenditure to reproduction.
    [Show full text]
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • First Report of a Deep Sea Spider Crab, Encephaloides Armstrongi Wood- Mason and Alcock, 1891 from Gujarat Waters of India
    Indian Journal of Geo Marine Sciences Vol. 46 (05), May 2017, pp. 982-985 First report of a deep sea spider crab, Encephaloides armstrongi Wood- Mason and Alcock, 1891 from Gujarat waters of India Gyanaranjan Dash*, Mohammed Koya K. & Nayan P. Makwana Veraval Regional Centre of CMFRI, Matsya Bhavan, Bhidia, Veraval: 362 269, Gujarat, India *[E-mail: [email protected]/[email protected]] Received 17 September 2014 ; revised 14 January 2015 A single specimen of the male crab (3.0 cm carapace length and 3.8 g body weight) was collected from the incidental catch sample of a multiday trawler operating at a depth range of 107-132 m off Gujarat coast of India. The detailed morphometric measurements and diagnostic features with updated systematics have been presented in this paper. The crab has well devolved branchial region and thrive in the oxygen minimum zone of the sea. [Keywords: Deep sea spider crab, Encephaloides armstrongi, Veraval, Gujarat] Introduction Materials and Methods Crabs are one of the benthic crustacean faunas The present crab specimen was collected from and are exploited by fishing vessels mostly as a multiday trawler operating in a depth range of incidental catch targeting valuable shrimp stocks 30-135 m off Veraval coast of Gujarat, India. The of the coast. The species described here is Veraval Regional Centre of Central Marine identified as Encephaloides armstrongi and Fisheries Research Institute (CMFRI) is belongs to the family ‘Inachidae’. Earlier known continuously collecting information about the distribution of the crab is shown in Figure 1. The spatial and temporal distribution of fishery crab was reported for the first time from Bay of resources with the help of commercial fishing Bengal in the north-east Indian Ocean1.
    [Show full text]
  • Crustacean Critters Summary Objectives Materials Making Connections Teacher Prep for Activity Sandy Shores
    Partnerships for Reform through Investigative Science and Math Crustacean Critters Sandy Shores Summary Students will have the opportunity to work with live hermit crabs in Concepts their classroom. They will learn what it takes to keep a hermit crab, There are many as well as, all other animals happy and healthy in their habitat. different types of crustaceans. Crabs, Objectives lobsters, shrimp, • Students will discover the four basic things that all animals prawns, and barnacle are need to survive. some types of • Students will be able to identify the abiotic and biotic crustaceans. components of a hermit crabs sandy shore habitat. Crustaceans share many • Students will be able to describe how hermit crabs are of the same physical adapted to live on the sandy shore habitat. characteristics, but some have unique features of Materials their own. All animals Activity 1: Habitat Huddle including crustaceans 1 large piece of chart paper or board in front of classroom have special needs that Activity 2: Crustacean Drawing ensure their survival. 5-10 pictures or specimens (can be bought at the market or just use toy models) of different types of crustaceans such as crabs, lobsters, HCPS III Benchmarks hermit crabs, and shrimp. SC 2.1.1 2 pieces of chart paper SC 2.3.1 drawing paper for each student SC 2.5.1 1 pair of plastic gloves per student HE.K-2.5.1 LA.2.6.1 Making Connections Students may recall seeing different types of crustaceans during visits Duration to the sandy shore. Learning about the different kinds of crustaceans 1 hour and how they are similar or different will help students identify the various adaptations and characteristics that make the sandy shore a Source Material suitable habitat for some and not for others.
    [Show full text]
  • Millipedes and Centipedes
    MILLIPEDES AND CENTIPEDES Integrated Pest Management In and Around the Home sprouting seeds, seedlings, or straw- berries and other ripening fruits in contact with the ground. Sometimes individual millipedes wander from their moist living places into homes, but they usually die quickly because of the dry conditions and lack of food. Occasionally, large (size varies) (size varies) numbers of millipedes migrate, often uphill, as their food supply dwindles or their living places become either Figure 1. Millipede (left); Centipede (right). too wet or too dry. They may fall into swimming pools and drown. Millipedes and centipedes (Fig. 1) are pedes curl up. The three species When disturbed they do not bite, but often seen in and around gardens and found in California are the common some species exude a defensive liquid may be found wandering into homes. millipede, the bulb millipede, and the that can irritate skin or burn the eyes. Unlike insects, which have three greenhouse millipede. clearly defined body sections and Life Cycle three pairs of legs, they have numer- Millipedes may be confused with Adult millipedes overwinter in the ous body segments and numerous wireworms because of their similar soil. Eggs are laid in clutches beneath legs. Like insects, they belong to the shapes. Wireworms, however, are the soil surface. The young grow largest group in the animal kingdom, click beetle larvae, have only three gradually in size, adding segments the arthropods, which have jointed pairs of legs, and stay underneath the and legs as they mature. They mature bodies and legs and no backbone. soil surface.
    [Show full text]
  • Are You One of Us? Insects | Grades 5 & 6
    ARE YOU ONE OF US? INSECTS | GRADES 5 & 6 Skills Subjects Sorting, classifying, comparing Science National Science Standard Time Content Standard C: Life Science Preparation: 10 minutes Students should develop an understanding of the characteristics of Teaching: 60 minutes living organisms. Evaluation: 10 minutes Content Standard G: History and Nature of Science Vocabulary Students should develop an understanding of science as a human Definitions on Page 4 of Lesson endeavour. systematics mammal Objectives exoskeleton • Students will learn that scientists classify living things according to vertebrae similarities and differences. arthropod • Students will be able to list the characteristics of arthropods. thorax • Students will be able to list the characteristics of insects. abdomen • Students will able to name the five classes of arthropods and give an antennae example of an arthropod in each of the classes. millipede Assessment centipede Given pictures or models of arthropods, students will be able to sort crustacean them into the classes. arachnid Materials • “Invertebrate Photographs” template • Chart paper or whiteboard • Plastic arthropod models (optional) Background One of the most important jobs of being a scientist is to sort and classify. The science of classification is called systematics. Systematics gives scientists the tools to communicate clearly about the natural world. Living organisms are grouped according to how closely related they are (their evolutionary history). These groups start out very large and become increasingly specific until finally scientists name individual species. Each species has a scientific name that is recognized anywhere in the world no matter what language is spoken. Most people think that mammals are the most important and numerous group of animals on the earth.
    [Show full text]
  • Millipedes and Centipedes? Millipedes and Centipedes Are Both Arthropods in the Subphylum Myriapoda Meaning Many Legs
    A Teacher’s Resource Guide to Millipedes & Centipedes Compiled by Eric Gordon What are millipedes and centipedes? Millipedes and centipedes are both arthropods in the subphylum Myriapoda meaning many legs. Although related to insects or “bugs”, they are not actually insects, which generally have six legs. How can you tell the difference between millipedes and centipedes? Millipedes have two legs per body segment and are typically have a body shaped like a cylinder or rod. Centipedes have one leg per body segment and their bodies are often flat. Do millipedes really have a thousand legs? No. Millipedes do not have a thousand legs nor do all centipedes have a hundred legs despite their names. Most millipedes have from 40-400 legs with the maximum number of legs reaching 750. No centipede has exactly 100 legs (50 pairs) since centipedes always have an odd number of pairs of legs. Most centipedes have from 30- 50 legs with one order of centipedes (Geophilomorpha) always having much more legs reaching up to 350 legs. Why do millipedes and centipedes have so many legs? Millipedes and centipedes are metameric animals, meaning that their body is divided into segments most of which are completely identical. Metamerization is an important phenomenon in evolution and even humans have a remnant of former metamerization in the repeating spinal discs of our backbone. Insects are thought to have evolved from metameric animals after specializing body segments for specific functions such as the head for sensation and the thorax for locomotion. Millipedes and centipedes may be evolutionary relatives to the ancestor of insects and crustaceans.
    [Show full text]
  • Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis
    Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Monica A. Farfan, B.S. Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2010 Thesis Committee: Hans Klompen, Advisor John W. Wenzel Andrew Michel Copyright by Monica A. Farfan 2010 Abstract The focus of this thesis is the ecology of invasive millipedes (Diplopoda) in the family Julidae. This particular group of millipedes are thought to be introduced into North America from Europe and are now widely found in many urban, anthropogenic habitats in the U.S. Why are these animals such effective colonizers and why do they seem to be mostly present in anthropogenic habitats? In a review of the literature addressing the role of millipedes in nutrient cycling, the interactions of millipedes and communities of fungi and bacteria are discussed. The presence of millipedes stimulates fungal growth while fungal hyphae and bacteria positively effect feeding intensity and nutrient assimilation efficiency in millipedes. Millipedes may also utilize enzymes from these organisms. In a continuation of the study of the ecology of the family Julidae, a comparative study was completed on mites associated with millipedes in the family Julidae in eastern North America and the United Kingdom. The goals of this study were: 1. To establish what mites are present on these millipedes in North America 2. To see if this fauna is the same as in Europe 3. To examine host association patterns looking specifically for host or habitat specificity.
    [Show full text]
  • On Type Material and the Identity of Several Iulus Species Described By
    On type material and the identity of several Iulus species described by Paul Gervais, in the collection of the Muséum national d’Histoire naturelle in Paris (Diplopoda, Spirostreptida, Spirobolida) Jean-Paul MAURIÈS Laboratoire de Zoologie (Arthropodes), Muséum national d’Histoire naturelle, 61 rue Buffon, F-75231 Paris cedex 05 (France) [email protected] Sergei I. GOLOVATCH Institute for Problems of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr. 33, Moscow 117071 (V-71) (Russia) [email protected] Richard L. HOFFMAN Virginia Museum of Natural History, 1001 Douglas Avenue, Martinsville, Virginia 24112 (USA) [email protected] Mauriès J.-P., Golovatch S. I. & Hoffman R. L. 2001. — On type material and the identity of several Iulus species described by Paul Gervais, in the collection of the Muséum national d’Histoire naturelle in Paris (Diplopoda, Spirostreptida, Spirobolida). Zoosystema 23 (3) : 579-589. ABSTRACT Type material of 20 species described in the genus Iulus by Paul Gervais (1837 & 1847) is still preserved in the collections of the Laboratoire de Zoologie-Arthropodes (Muséum national d’Histoire naturelle, Paris, France). This material, examined here, is related, except a single case, to the tropical millipede orders Spirostreptida and Spirobolida. For eight taxa represented only by females or immatures, it is impossible to class them below the level of family or even order: thus Iulus botta can be placed in Iulida; I. lagurus and I. leucopus to Spirostreptida; I. madagascariensis, I. philippensis, I. roseus and I. sumatrensis in Spirobolida. I. vermiformis is a mixing of Polydesmida and Spirostreptida. Five other taxa were reviewed in the recent past; thus Iulus bipulvillatus Gervais, 1847 is a junior synonym of Remulopygus javanicus (Brandt, 1841) (Harpagophoridae); I.
    [Show full text]