Rocks and Minerals

Total Page:16

File Type:pdf, Size:1020Kb

Rocks and Minerals POCKET NATURE ROCKS AND MINERALS POCKET NATURE ROCKS AND MINERALS MONICA PRICE KEVIN WALSH DORLING KINDERSLEY LONDON, NEW YORK, MUNICH, MELBOURNE, AND DELHI DK LONDON Senior Art Editor Ina Stradins Senior Editor Angeles Gavira Editors Georgina Garner, Bella Pringle DTP Designer John Goldsmid Production Controller Melanie Dowland Managing Art Editor Phil Ormerod Publishing Manager Liz Wheeler Art Director Bryn Walls Publishing Director Jonathan Metcalf DK DELHI Designers Romi Chakraborty, Malavika Talukdar DTP Designers Balwant Singh, Sunil Sharma, Pankaj Sharma Editors Glenda Fernandes, Rohan Sinha Managing Art Editor Aparna Sharma First published in Great Britain in 2005 by Dorling Kindersley Limited 80 Strand, London WC2R 0RL A Penguin Company Copyright © 2005 Dorling Kindersley Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owners. A CIP catalogue record for this book is available from the British Library ISBN 1-4053-0594-0 Reproduced by Colourscan, Singapore Printed and bound by South China Printing Co. Ltd, China see our complete catalogue at www.dk.com CONTENTS How This Book Works 6 What are Minerals? 8 What are Rocks? 9 Rock Identification 10 Mineral Identification 14 Sedimentary Rocks 20 Igneous Rocks 43 Metamorphic Rocks 68 Ore Minerals 86 Rock-Forming Minerals 142 Glossary 217 Index 219 Acknowledgments 224 6 INTRODUCTION How this book works This guide covers over 320 of the most important rocks and minerals found all over CHAPTER HEADING the world. The book begins with a short introduction, which focuses on the process of ROCK OR identifying different rocks and minerals. The MINERAL NAME following pages divide rocks into three groups: CHEMICAL sedimentary, igneous, and metamorphic; FORMULA OF and minerals into two groups: ore minerals and THE MINERAL rock-forming minerals. Introductions to each of these sections define the groups and explain how 208 ROCK- entries are organized within them. Stauro (Fe,Mg,Zn)3-4 Staurolite is red STAUROLITE is often LOCALITIES AND associated with kyanite, black. It norma ASSOCIATIONS as in this muscovite schist hexagonal or d M M from St Gotthard, surfaces. Cross- GROUP Shows important rock or Switzerland. mineral localities, or shows the INTRODUCTIONS pseudo- Each chapter opens with an rock or mineral in a typical orthorhombic crystals introductory page describing the association. parameters of the group, as well as any further sub-groups. CAPTION Describes the featured area or Rock-forming Minerals association in which the rock or The bulk of minerals that constitute rocks are not ores, mineral may be found. although some have important uses in industry. This chapter features minerals that are found in a wide range of rock types (pp.143–67), and those found mainly or exclusively in sedimentary rocks (pp.168–75), igneous rocks (pp.176–96), and metamorphic rocks (pp.197–216). Talc, for example, is PHOTOGRAPHS found exclusively in metamorphic rocks, such as the cliffs of Kynance Cove, England (below). Hydrothermal minerals that The main images illustrate are neither ores nor their secondary minerals are also included in this chapter. typical examples of the rock or mineral. Secondary pictures show named varieties. oss Kyanit ROCK- FORMING MINERALS 215 Al2SiO5 Lazurite Blue, white, an (Na,Ca)8Al6Si6O24[(SO4),S,Cl,(OH)]2 Since ancient times, lazurite has been highly prized for its THE HIGH mountains and these are g exquisite blue coloration as the principal mineral in the of Badakhshan in rock known as lapis lazuli. Lazurite is a member of the Afghanistan have been feldspathoid group. It is always deep or vibrant blue, and a rich source of lapis THE FIRST descriptions of crystal. The elo it was once the source of the artist’s pigment ultramarine. lazuli for thousands of years. Most lazurite is massive or in disseminated grains, and kyanite were of crystals hardness is ma distinct crystals – which are usually dodecahedral – are much sought after. Lapis lazuli forms by contact from the schists of Zillertal polished its length. Kyan metamorphism of limestones. At its finest, this rock surface consists of lazurite in the Austrian Alps. speckled with golden of its polymorp pyrite, but white calcite and other feldspathoids mica schists, gn are normally present too. ULTRAMARINE LAPIS LAZULI CABOCHONS veins and pegm dodecahedral crystals with MUSCOVITEBERYL GYPSUM SERPENTINE dull lustre white triclinic calcite prismatic crystals e in the USA, Chile, and Russia. PICTURES Photographs of representative shades of blue specimens show the diversity within the group. bladed crystals SECTION SHOWN rich blue colour golden pyrite grains POLISHED LAPIS LAZULI ROUGH LAPIS LAZULI M NOTE COMPOSITION Silicate. The best lazurite crystals come from CRYSTAL SYSTEM Cubic. Badakhshan Province in Afghanistan, which is CLEAVAGE/FRACTURE Imperfect/Uneven. FULL-PAGE also the source of the many lapis lazuli LUSTRE/STREAK Vitreous to dull/Bright blue. specimens in old collections said to be from HARDNESS/DENSITY 5–5.5 / 2.38–2.45. Persia (now Iran). The stone was traded, but KEY PROPERTIES Bright blue streak; does not mined, in Persia. Other deposits of lapis not fizz in dilute HCl like azurite (p.113). ENTRIES lazuli ar Should not be confused with lazulite (p.149). Rocks or minerals that exhibit a more varied or complex NOTES range, are of special interest, Describe unique features, or or are particularly important, provide interesting historical or are all given full-page entries. contextual background. HOW THIS BOOK WORKS 7 48 IGNEOUS ROCKS OTHER KEY Felsite INFORMATION – ROCKS Felsite is a general term for medium- to fine-grained, COLUMNAR jointing in These panels provide consistent a thick sill of felsite is light-coloured, pink, beige, or grey igneous rocks from shown here on the small intrusions, such as sills and dykes. Blocky jointing is northern coast of the common, and occurs perpendicular and parallel to the information on the following points: Isle of Eigg, Scotland. walls of the intrusion. Felsite may be slightly porphyritic, M light beige with small phenocrysts, often GRAIN SIZE: the typical size or M M matrix of quartz, or it may ROCK AND contain spherical structures. size range of the rock grains. MINERAL ENTRIES darker ESSENTIAL COMPONENTS: weathered The typical page features surface lists the essential mineral constituents. quartz two entries. Each has a phenocryst ADDITIONAL GRAIN SIZE Less than 2mm. COMPONENTS: lists minerals main image, which is ESSENTIAL COMPONENTS Quartz, feldspars. ADDITIONAL COMPONENTS None. that may appear in the rock, but supported by one or ORIGIN Crystallization of an acid or intermediate magma in a minor intrusion. SIMILAR ROCKS Rhyolite (p.56), dacite that are not essential. more secondary pictures. (p.59), and porphyry (p.60). Annotations, scale artworks, ORIGIN: describes the process by Diorite which the rock type is formed. and a data box add key An intermediate, coarse-grained igneous rock, diorite SIMILAR ROCKS: lists rocks that consists of white plagioclase and dark hornblende in information for each entry. BOTH diorite and roughly equal proportions, but other dark minerals may granodiorite occur in include biotite and augite. With the addition of small look similar to the one featured, and large intrusions, amounts of quartz and alkali feldspar it such as here in the Austrian Alps. becomes a granodiorite; with larger often provides distinguishing features amounts, a granite. These three rock types often occur together in large intrusions. to help tell them apart. SECTION SHOWN minerals in equal proportion FORMING MINERALS plagioclase hornblende olite MICROGRAPH MICROGRAPHS GRAIN SIZE 2–5mm. Shows a section through the rock, (Al,Fe) (Si,Al) O H ESSENTIAL COMPONENTS Plagioclase, 18 8 48 2-4 hornblende. ADDITIONAL COMPONENTS None. seen through a microscope, to show ORIGIN Crystallization of an intermediate ddish brown, yellowish brown, or nearly magma in a major intrusion. SIMILAR ROCKS Syenite (top right), which has more alkali feldspar. the constituent minerals. ally occurs as prismatic crystals, which are diamond-shaped in section, often with rough -shaped penetration twins are common. It forms by regional metamorphism of argillaceous (or clay) rocks, DESCRIPTION and is found in medium- Conveys the main features and the distinguishing grade schists and gneisses. characteristics of the rock or mineral. muscovite schist cross- DETAIL PICTURES shaped twin These tinted boxes show different aspects of the rock or mineral, including gem cuts, different habits, and colour variations. ANNOTATION COMPOSITION Silicate. CRYSTAL SYSTEM Monoclinic, pseudo- Characteristic features of the rock or mineral are picked out orthorhombic. in the annotation. CLEAVAGE/FRACTURE Distinct/Nearly conchoidal. LUSTRE/STREAK Vitreous to dull/Pale grey. HARDNESS/DENSITY 7–7.5 / 3.74–3.83. COLOUR BANDS KEY PROPERTIES Brown; cr Bands are colour-coded, with a different colour for each of ss-shaped twins. the five chapters. te SCALE MEASUREMENTS nd green are the usual colours of kyanite, Two small scale drawings are placed next to each other in every generally mixed or zoned within a single entry, as a rough indication of the size of the featured specimen. ongate, flat, bladed crystals are often bent; The hand represents an rkedly greater across a crystal than along average adult hand of nite forms at temperatures between those 18cm height. phs andalusite and sillimanite. It occurs in neisses, and associated hydrothermal quartz matites. OTHER KEY INFORMATION – MINERALS These panels provide consistent information on the following points: COMPOSITION: the mineral class to which the entry belongs. Some silicate minerals also inlude an additional group classification. vitreous CRYSTAL SYSTEM: the crystal system to which it belongs. lustre CLEAVAGE: the grading, from poor to perfect, of the way in which the mineral splits along flat planes. FRACTURE: the description of the typical appearance of a surface COMPOSITION Silicate where a specimen has broken.
Recommended publications
  • Prehistoric Exploitation of Limnosilicites in Northern Hungary: Problems and Perspectives Zsolt Mester and Norbert Faragó
    Archaeologia Polona, vol. 54: 2016, 1 – 5 PL ISSN 0066 - 5924 Editorial The first scientific investigations of the sources of flint in Poland were undertaken by archaeologist Stefan Krukowski and geologist Jan Samsonowicz in the early 20th century. Krukowski used archaeological materials to identify the macroscopic char- acteristics of ‘chocolate’ flints, described their differences, and showed the potential location of the deposits (Krukowski 1920: 189–195; Budziszewski 2008: 33). In the search for deposits of flint, their outcrops, and prehistoric mines, Krukowski was accompanied by young geologist Jan Samsonowicz. The result of their cooperation was the discovery in 1921 of in situ deposits and surface accumulations of limestones containing fragments of flint and, in 1922, the identification of a prehistoric mine at Krzemionki Opatowskie (Krukowski 1923; Samsonowicz 1923; Bąbel 2014). This long tradition of studying siliceous rocks has continued at the Institute of Archaeology and Ethnology, Polish Academy of Science. In 1965 Zygmunt Krzak published the first characterization of gray white-spotted (świeciechów) flint (Krzak 1965) and five years later he described Turonian flint from Ożarów (Krzak 1970). In 1971 Romuald Schild devised a classification of ‘chocolate’ flint from the north-east margin of the Holy Cross (Świątokrzyskie) Mountains (Schild 1971, 1976) and Bogdan Balcer investigated a flint mine in Świeciechów, Kraśnik district, and the use of gray white-spotted (świeciechów) flint during the Neolithic (Balcer 1975, 1976). In 1980 Jacek Lech discussed the geology of Jurassic-Cracow flint and showed its relevance to archaeology (Lech 1980). Since that time Polish archeologists have carried out many investigations on different types of flint (e.g., Budziszewski and Michniak 1983/1989; Pawlikowski 1989; Budziszewski and Michinak eds 1995; Schild and Sulgostowska eds 1997; Matraszek and Sałaciński eds 2002; Gutowski 2004; Borkowski et al., 2008; Migaszewski et al., 2006, Krajcarz et al., 2014).
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Tigers Eye Free
    FREE TIGERS EYE PDF Karen Robards | 400 pages | 11 May 2010 | HarperCollins Publishers Inc | 9780380755554 | English | New York, United States Tigers Eye Stone Meaning & Uses: Aids Harmonious Balanced Action Tiger's eye also called tiger eye is a Tigers Eye gemstone that is usually a metamorphic rock with a golden to red-brown colour and a silky lustre. As members of the quartz group, tiger's eye and the related blue-coloured mineral hawk's eye gain their silky, lustrous appearance from the parallel intergrowth of quartz crystals and altered amphibole fibres that have mostly turned into limonite. Tiger iron is an altered rock composed chiefly of tiger's eye, red jasper and black hematite. The undulating, contrasting bands of colour and lustre make for an attractive motif and it is Tigers Eye used for Tigers Eye and ornamentation. Tiger iron is a popular ornamental material Tigers Eye in a variety of applications, from beads to knife hilts. Tiger iron is mined primarily in South Africa and Western Australia. Tiger's eye is composed chiefly of silicon dioxide SiO 2 and is coloured mainly by Tigers Eye oxide. The specific gravity ranges from 2. Serpentine deposits in which are occasionally found chatoyant bands of chrysotile fibres have been found in the US states of Arizona and California. These have been cut and sold as "Arizona tiger-eye" and "California tiger's eye" gemstones. In some parts of the world, the stone is believed to ward off the evil eye. Gems are usually given a cabochon cut to best display their chatoyance.
    [Show full text]
  • Alteration - Porphyries
    ALTERATION - PORPHYRIES Occurs with minor mineralization in the deeper Potassic parts of some porphyry systems, and is a host to mineralization in porphyry deposits associated with alkaline intrusions © Copyright Spectral International Inc. Sodic, sodic-calcic Propylitic Potassic alteration shows Actinolite, biotite, phlogopite, epidote, iron- chlorite, Mg-chlorite, muscovite, quartz, anhydrite, magnetite. Albite, actinolite, diopside, quartz, Fe-chlorite, Mg-chlorite, epidote, actinolite, magnetite, titanite, chlorite, epidote, calcite, illite, montmorillonite, albite, pyrite. scapolite Intermediate argillic alteration generally This is an intense alteration phase, often in the Copyright Spectral International Inc.© forms a structurally controlled to upper part of porphyry systems. It can also form envelopes around pyrite-rich veins that Phyllic alteration commonly forms a widespread overprint on other types of cross cut other alteration types. peripheral halo around the core of alteration in many porphyry systems porphyry deposits. It may overprint earlier potassic alteration and may host substantial mineralization ADVANCED ARGILLIC Phyllic INTERMEDIATE ARGILLIC The minerals associated with this type The detectable minerals include are higher temperature and include illite, muscovite, dickite, kaolinite, pyrophyllite, quartz, andalusite, Fe-chlorite, Mg-chlorite, epidote, diaspore, corundum, alunite, topaz, montmorillonite, calcite, and pyrite tourmaline, dumortierite, pyrite, and hematite EXOTIC COPPER www.e-sga.org/ CU PHOSPHATES Cu Cu CARBONATES CHLORIDES Azurite, malachite, aurichalcite, rosasite Atacamite, connellite, and cumengite © Copyright Spectral International Inc. Cu-ARSENATES EXOTIC COPPER Cu-SILICATES Cu-SULFATES bayldonite, antlerite, chenevixite chrysocolla dioptase brochantite, conichalcite chalcanthite clinoclase papagoite shattuckite cyanotrichite olivenite kroehnite, spangolite © Copyright Spectral International Inc. © Copyright Spectral International Inc. LEACH CAP MINERALS .
    [Show full text]
  • Journal of the Russell Society, Vol 4 No 2
    JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR: George Ryba.:k. 42 Bell Road. Sitlingbourn.:. Kent ME 10 4EB. L.K. JOURNAL MANAGER: Rex Cook. '13 Halifax Road . Nelson, Lancashire BB9 OEQ , U.K. EDITORrAL BOARD: F.B. Atkins. Oxford, U. K. R.J. King, Tewkesbury. U.K. R.E. Bevins. Cardiff, U. K. A. Livingstone, Edinburgh, U.K. R.S.W. Brai thwaite. Manchester. U.K. I.R. Plimer, Parkvill.:. Australia T.F. Bridges. Ovington. U.K. R.E. Starkey, Brom,grove, U.K S.c. Chamberlain. Syracuse. U. S.A. R.F. Symes. London, U.K. N.J. Forley. Keyworth. U.K. P.A. Williams. Kingswood. Australia R.A. Howie. Matlock. U.K. B. Young. Newcastle, U.K. Aims and Scope: The lournal publishes articles and reviews by both amateur and profe,sional mineralogists dealing with all a,pecI, of mineralogy. Contributions concerning the topographical mineralogy of the British Isles arc particularly welcome. Not~s for contributors can be found at the back of the Journal. Subscription rates: The Journal is free to members of the Russell Society. Subsc ription rates for two issues tiS. Enquiries should be made to the Journal Manager at the above address. Back copies of the Journal may also be ordered through the Journal Ma nager. Advertising: Details of advertising rates may be obtained from the Journal Manager. Published by The Russell Society. Registered charity No. 803308. Copyright The Russell Society 1993 . ISSN 0263 7839 FRONT COVER: Strontianite, Strontian mines, Highland Region, Scotland. 100 mm x 55 mm.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 77, pages II16-1 121, 1992 NEW MINERAL NAMES* JonN L. J,lrvrnon CANMET, 555 Booth Street,Ottawa, Ontario KlA 0G1, Canada Jacrr Pvztnwtcz Institute of Geological Sciences,University of Wroclaw, Cybulskiego30, 50-205 Wroclaw, Poland Camerolaite* wt0/0, corresponding to Na, ,u(ZnoroMnOo,o)ro ro - .4.03HrO, H. Sarp, P. Perroud (1991) (Ti38sNb0 07Fe' 04),3 e6Si8 08Or8 ideally Nau- Camerolaite,CuoAlr- . [HSbO.,SO4](OH),0(CO3). 2HrO, a new mineral from ZnTioSirO,, 4H,O. The mineral contains0.18-0.22 wto/o Cap Garonne mine, Var, France.Neues Jahrb. Mineral. F. Occurs as fan-shaped intergrowths of long prismatic Mon.,481-486. crystals,elongate [001], flattened [100], up to 7 mm long and 0.1 mm thick. Transparent, white to colorless,some Electron microprobe (ave. of eight) and CHN analyses grains with a silver tint; vitreous luster, elastic, crushes (for CO, and HrO) gaveCuO 40.56,AlrO3 14.54,SbrO5 into thin fibers along the elongation; uneven, splintery 13.55,SO3 4.75, CO2 6.26,F{2O 20.00, sum 99.66wto/o, fracture, white streak, yellow-green luminescencein the correspondingto Cu.,6,4,1, jeSo Co O,n ide- eesb' ol eeHrs 5, oo, electronmicroprobe beam, hardness 517-571 (ave.544) ally CuoAlr[HSbO4,SO4XOH),0(CO3).2HrO.Occurs as kglmm2 with a 20-g load (Mohs 5.5-6), no cleavage,{010} tufts and radiating aggregates(0.5-2 mm) of transparent, parting. D-"u" : 2.90, D"ut": 2.95 g/cm3 with Z : 2. blue-greenacicular crystalsup to 0.5 mm long and show- Colorlessin transmitted light, nonpleochroic, straight ex- ing {100} and {001}, flattenedon {100}, elongate[010].
    [Show full text]
  • Agaat Free Download
    AGAAT FREE DOWNLOAD Marlene Van Niekerk,Professor and Chair of the Department of English Michiel Heyns | 581 pages | 27 Apr 2010 | Tin House Books | 9780982503096 | English | United Kingdom Truth and Reconciliation Other forms of agate include Holley blue agate also spelled "Holly blue agate"a rare dark blue ribbon agate only found near Holley, Oregon ; Lake Superior Agaat ; Carnelian Agaat has reddish hues ; Botswana agate; plume agate; condor agate ; tube agate containing visible flow channels or pinhole-sized "tubes"; fortification agate with contrasting concentric banding reminiscent of defensive ditches and walls around ancient forts; Binghamitea variety found Agaat on the Cuyuna iron range near Agaat in Crow Wing County, Minnesota; fire agate showing an iridescent, internal flash or "fire", Agaat result of a layer of clear agate over a layer of hydrothermally deposited hematite; Patuxent River stonea red and yellow form of agate only found in Maryland ; enhydro Agaat contains tiny inclusions of water, sometimes with air Agaat. Nothing Agaat black and white in this novel, though everything is about blacks and whites in South Africa and their tortured relationships. Download as PDF Printable version. Fiorite Geyserite. You know the saying: There's no time like the present Incidentally, Femina magazine only appeared in South Africa much later than the 60's. I Agaat why the book won awards, apart from the industry's permanent waxing. And stuck it together. It has also been used for centuries for leather burnishing tools. Namespaces Article Talk. They're all good, we think, but over time their value seems more even so that good or very good seems to level out.
    [Show full text]
  • Glossary of Obsolete Mineral Names
    L.120 = clay, Robertson 22 (1954). laavenite = låvenite, Dana 6th, 375 (1892). labite = palygorskite, AM 22, 811 (1937). laboentsowiet = labuntsovite-Mn, Council for Geoscience 765 (1996). laboita = vesuvianite, de Fourestier 191 (1999). laboundsovite = labuntsovite-Mn, Kipfer 181 (1974). labountsovite = labuntsovite-Mn, MM 35, 1141 (1966). Labrador (Frankenheim) = meionite, Egleston 118 (1892). labrador (Rose) = Na-rich anorthite, MM 20, 354 (1925). Labrador-Bytownit = Na-rich anorthite, Hintze II, 1513 (1896). labradore-stone = Na-rich anorthite, Kipfer 181 (1974). Labrador feldspar = Na-rich anorthite, Dana 6th, 334 (1892). Labrador-Feldspat = Na-rich anorthite, Kipfer 107 (1974). Labrador-Feldspath = Na-rich anorthite, Clark 383 (1993). labrador-felspar = Na-rich anorthite, Clark 383 (1993). Labrador hornblende = Fe-rich enstatite or Mg-rich ferrosilite, AM 63, 1051 (1978). labradorische Hornblende = Fe-rich enstatite or Mg-rich ferrosilite, Dana 6th, 348 (1892). Labradoriserende Feltspat = Na-rich anorthite, Zirlin 71 (1981). labradorite (intermediate) = Na-rich anorthite, Dana 6th, 334 (1892). labradorite-felsite = Na-rich anorthite, Dana 6th, 334 (1892). labradorite-moonstone = gem Na-rich anorthite, Schumann 164 (1977). Labradorit-Mondstein = gem Na-rich anorthite, Chudoba EIV, 48 (1974). labradorkő = Na-rich anorthite, László 155 (1995). labrador moonstone = gem Na-rich anorthite, Read 131 (1988). Labrador oder schillerenden rauten förmigen Feldspath = chrysotile ± lizardite or talc or anthophyllite, Clark 620 (1993). labrador schiller spar = Fe-rich enstatite or Mg-rich ferrosilite, Egleston 162 (1892). labrador spar = gem Na-rich anorthite, Read 131 (1988). Labradorstein = Na-rich anorthite, Dana 6th, 334 (1892). labrador stone = Na-rich anorthite, Chester 149 (1896). labradownite = Na-rich anorthite, Kipfer 181 (1974). labratownite = Na-rich anorthite, AM 11, 138 (1926).
    [Show full text]
  • 珠宝词汇(A-E) English Chinese Abadia Dos Dourados Diamond 阿巴
    珠宝词汇(A-E) English Chinese Abadia dos Dourados Diamond 阿巴迪亚.道斯.都拉道斯钻石 Abaete Diamond 阿贝蒂钻石 abalone 鲍贝 abend-smaragd 西方祖母绿 abrad 低硬度宝石 accarbar 黑珊湖 accidental pearl 天然珍珠 acentela 水晶 achate 玛瑙 achirite 透视石 achroite 无色碧玺(又称电气石) acicular crystal 金红石发晶 aconteta 优质水晶 actinolite 阳起石 actinozoa 珊瑚类 adamant 硬石(金刚石或刚玉) adamantine luster(lustre) 金刚光泽 adamantine spar 黑褐色的刚玉 adamas 阿达摩斯,金刚石,钻石 adamas of Araia 阿拉伯钻石 同钻石 adamite 人造刚玉粉 Adelaide ruby 阿德莱德红宝石 adularescence 游彩蛋白光,冰长石晕彩 adularia 冰长石 adularia moonston 冰长月光石 aeroides 淡天蓝色海蓝宝石 Afghanistan lapis 阿富汗青金石 Afghanistan ruby 阿富汗红宝石 African emerald 非洲祖母绿 African jade 非洲绿玉 African pearl 非洲珍珠 African tourmaline 非洲碧玺 africita 阿非利西达碧玺 agalmatolite 蜡石 agaphite 波斯绿松石:甸子 agate 玛瑙 agate arborisee 苔玛瑙 agate jasper 玛瑙碧石 agate mousseuse 苔纹玛瑙 agate opal 玛瑙蛋白石 agatised wood 玛瑙硅化木 agrite 褐色斑花石灰岩 1 ahkan (缅甸红宝石和蓝宝石) ahlamah 胸甲第九石 Ahmedabad 阿默达巴德钻石 ajour setting 镂花底座 akabar 黑珊瑚 Akbar Shah 阿克巴尔.沙赫钻石 alabandicus 贵榴石 alabandine ruby 贵榴石红宝石 alabaster 雪花石膏 alabatre oriental 缟状大理石 alajites 着色石 alalite 绿透辉石 alaqueca 血石 Alaska diamond 阿拉斯加钻石 Alaskan black diamond 阿拉斯加黑钻石 albandine 铁铝榴石(贵榴石) albite 钠长石 albite moonstone 钠长月光石 Alencon diamond 阿朗松 石 Aleppo stone 阿勒颇石 Alexandrian turquoise 亚历山大绿松石 Alexandria shell 亚历山大贝 alexandrine 合成蓝宝石变石 alexandrite 变石 alexandrite cat's eye 变石猫眼 Algerian coral 阿尔及利亚珊瑚 Algerian onyx 阿尔及利亚缟状大理石 allanite 褐石 allochroite 普通石榴石,粒榴石,钙铁榴石 allochromatic color 他色,假色 alluvial deposit 冲积砂矿 alluvial diamond 金刚石砂矿 almandine 贵榴石,铁铝榴石 almandine sapphire 贵榴石蓝宝石 almandite 贵榴石 almashite(almaschite) 绿琥珀,黑琥珀 almond
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Abadia Dos Dourados Diamond 阿巴迪亞.道斯.都拉道斯鑽石abaete
    Abadia dos Dourados Diamond 阿巴迪亞.道斯.都拉道 adularia moonston 冰長月光石 斯鑽石 aeroides 淡天藍色海藍寶石 Abaete Diamond 阿貝蒂鑽石 Afghanistan lapis 阿富汗青金石 abalone 鮑貝 Afghanistan ruby 阿富汗紅寶石 abend-smaragd 西方祖母綠 African emerald 非洲祖母綠 abrad 低硬度寶石 African jade 非洲綠玉 accarbar 黑珊湖 African pearl 非洲珍珠 accidental pearl 天然珍珠 African tourmaline 非洲碧璽 acentela 水晶 africita 阿非利西達碧璽 achate 瑪瑙 agalmatolite 蠟石 achirite 透視石 agaphite 波斯綠松石:甸子 achroite 無色碧璽(又稱電氣石) agate 瑪瑙 acicular crystal 金紅石發晶 agate arborisee 苔瑪瑙 aconteta 優質水晶 agate jasper 瑪瑙碧石 actinolite 陽起石 agate mousseuse 苔紋瑪瑙 actinozoa 珊瑚類 agate opal 瑪瑙蛋白石 adamant 硬石(金剛石或剛玉) agatised wood 瑪瑙硅化木 adamantine luster(lustre)金剛光澤 agrite 褐色斑花石灰岩 adamantine spar 黑褐色的剛玉 ahkan(緬甸紅寶石和藍寶石) adamas 阿達摩斯,金剛石,鑽石 ahlamah 胸甲第九石 adamas of Araia 阿拉伯鑽石 同鑽石 Ahmedabad 阿默達巴德鑽石 adamite 人造剛玉粉 ajour setting 鏤花底座 Adelaide ruby 阿德萊德紅寶石 akabar 黑珊瑚 adularescence 游彩蛋白光,冰長石暈彩 Akbar Shah 阿克巴爾.沙赫鑽石 adularia 冰長石 alabandicus 貴榴石 Page 1 of 77 alabandine ruby 貴榴石紅寶石 almandine 貴榴石,鐵鋁榴石 alabaster 雪花石膏 almandine sapphire 貴榴石藍寶石 alabatre oriental 縞狀大理石 almandite 貴榴石 alajites 著色石 almashite(almaschite)綠琥珀,黑琥珀 alalite 綠透輝石 almond stone 杏仁石 alaqueca 血石 alomite 藍方鈉石 Alaska diamond 阿拉斯加鑽石 aloxite 人造剛玉,鋁砂 Alaskan black diamond 阿拉斯加黑鑽石 alphabet of stone 寶石字母表 albandine 鐵鋁榴石(貴榴石) Alpine diamond 阿爾卑斯鑽石 albite 鈉長石 altered stone(Altered gem)著色寶石,染色寶石 albite moonstone 鈉長月光石 alumina 氧化鋁 Alencon diamond 阿朗松欑石 alundum 合成氧化鋁 Aleppo stone 阿勒頗石 amaryl 弧挺花石 Alexandrian turquoise 亞歷山大綠松石 amatista 紫晶 Alexandria shell 亞歷山大貝 amatista mosqu 含針鐵礦紫晶 alexandrine 合成藍寶石變石 amatrice 綠磷鋁石 alexandrite
    [Show full text]
  • Geyserite in Hot-Spring Siliceous Sinter: Window on Earth’S Hottest Terrestrial (Paleo)Environment and Its Extreme Life Kathleen A
    Geyserite in Hot-Spring Siliceous Sinter: Window on Earth's Hottest Terrestrial (Paleo)environment and its Extreme Life Kathleen A. Campbell, Diego Guido, Pascale Gautret, Fr´ed´ericFoucher, Claire Ramboz, Frances Westall To cite this version: Kathleen A. Campbell, Diego Guido, Pascale Gautret, Fr´ed´ericFoucher, Claire Ramboz, et al.. Geyserite in Hot-Spring Siliceous Sinter: Window on Earth's Hottest Terrestrial (Pa- leo)environment and its Extreme Life. Earth-Science Reviews, Elsevier, 2015, 148, pp.44-64. <10.1016/j.earscirev.2015.05.009>. <insu-01163128> HAL Id: insu-01163128 https://hal-insu.archives-ouvertes.fr/insu-01163128 Submitted on 12 Jun 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. ÔØ ÅÒÙ×Ö ÔØ Geyserite in Hot-Spring Siliceous Sinter: Window on Earth’s Hottest Terres- trial (Paleo)environment and its Extreme Life Kathleen A. Campbell, Diego M. Guido, Pascale Gautret, Fr´ed´eric Foucher, Claire Ramboz, Frances Westall PII: S0012-8252(15)00092-6 DOI: doi: 10.1016/j.earscirev.2015.05.009 Reference: EARTH 2121 To appear in: Earth Science Reviews Received date: 24 October 2014 Accepted date: 11 May 2015 Please cite this article as: Campbell, Kathleen A., Guido, Diego M., Gautret, Pascale, Foucher, Fr´ed´eric, Ramboz, Claire, Westall, Frances, Geyserite in Hot-Spring Siliceous Sinter: Window on Earth’s Hottest Terrestrial (Paleo)environment and its Extreme Life, Earth Science Reviews (2015), doi: 10.1016/j.earscirev.2015.05.009 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]