THE CSS POINT 1 Www
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The History of Measurements
Helicobacter pylori Some Historical Units of Measurement History of Measurement • Objects were initially measured for convenience, to aid commerce and prevent fraud. • The Egyptians among other civilizations were the first to begin recording measurements around 3200 BC. • Early measurement units were based on body parts or common objects. Historical Units of Length and their equivalence chart ➢ Digit: the breadth of a finger (Egyptian) ➢ Barleycorn: the length of a barleycorn seed ➢ Inch: the width of a man’s thumb or 3 barleycorns ➢ Foot: the length of a man’s foot ➢ Cubit: elbow to fingertip length (Egyptian) ➢ Yard: nose to fingertip length ➢ Mile: 5000 pedes (feet, Roman) ➢ League: 7500 pedes Historical Units of Mass/Volume and their equivalence chart ➢ Grain: the weight of a grain of wheat or barleycorn ➢ Pound (libra): ~5000 grains (Roman) or ~7000 grains (English) ➢ Talent: 100 libra ➢ Stone: 14 pounds (English/British) ➢ Troy Ounce: 1/12 of a pound ➢ Carat: weight of a carob seed The Cubit The cubit is the measure from your elbow to the tip of your middle finger when your arm is extended. The cubit was the measurement used by the Egyptians to build the pyramids. The Palm The palm is the width of your four fingers when they are placed together. The Fathom The fathom is the measure from fingertip to fingertip when your arms are stretched sideways as far as they will go. The fathom was used by sailors to measure the depth of water so that boats would not run aground. The Hand-span The hand-span is the measure from the tip of your pinky to the tip of your thumb when your hand is stretched out. -
The History of Measurements
Helicobacter pylori Some Historical Units of Measurement Historical Units of Length ➢ Digit: the breadth of a finger (Egyptian) ➢ Barleycorn: the length of a barleycorn seed ➢ Inch: the width of a man’s thumb or 3 barleycorns ➢ Foot: the length of a man’s foot ➢ Cubit: elbow to fingertip length (Egyptian) ➢ Yard: nose to fingertip ➢ Mile: 5000 pedes (feet, Roman) ➢ League: 7500 pedes Historical Units of Mass/Volume ➢ Grain: the weight of a grain of wheat or barleycorn ➢ Pound (libra): ~5000 grains (Roman) or ~7000 grains (English) ➢ Talent: 100 libra ➢ Stone: 14 pounds (English/British) ➢ Troy Ounce: 1/12 of a pound ➢ Carat: weight of a carob seed The Cubit The cubit is the measure from your elbow to the tip of your middle finger when your arm is extended. The cubit was the measurement used by the Egyptians to build the pyramids. The Palm The palm is the width of your four fingers when they are placed together. The Fathom The fathom is the measure from fingertip to fingertip when your arms are stretched sideways as far as they will go. The fathom was used by sailors to measure the depth of water so that boats would not run aground. The Hand-span The hand-span is the measure from the tip of your pinky to the tip of your thumb when your hand is stretched out. Hand-span was used to measure the height of horses. People still describe horses as being so many hands high. The Pace The pace is the measure of distance from one step to another. -
Metric Doodle Notes
METRICS Cornell Doodle Notes Sampler TEACHER NOTES These Cornell Doodle Notes combine two effective note-taking strategies and can be used to introduce or review the metric system. The notes are organized by an Essential Question at the top, Topic Questions along the left column, details/pictures in the right column, and a Sum It Up page at the end for students to practice their skills. They begin with a section that shows why the Imperial system is quite silly (especially for science!). Then, they present that 10 is the ‘magic number’ of the Metric system, and proceed to explain the S.I. Units of mass, length, fluid volume, and time, the prefixes, a mnemonic device to remember the prefixes, and then to explain how to convert between metric units. Cornell Notes are a note-taking strategy in which topic questions are written in a narrow left-hand column and definitions, explanations, and diagrams are filled in in the right-hand column. At the bottom of Cornell Notes, there is typically a section included for reflection on the lesson’s main points. See the example to the right. Doodle Notes (or Sketch Notes) are another note- taking strategy for which pictures and graphics activate the visual pathways of the brain, which helps with retention of information when compared to standard note-taking. Your visual learners will really benefit from seeing and coloring in the pictures aside the main points of the notes! My architect husband drew the graphics for these notes. We hope your students like them! Doodle Notes is a registered trademark used with permission. -
English Customary Weights and Measures
English Customary Weights and Measures Distance In all traditional measuring systems, short distance units are based on the dimensions of the human body. The inch represents the width of a thumb; in fact, in many languages, the word for "inch" is also the word for "thumb." The foot (12 inches) was originally the length of a human foot, although it has evolved to be longer than most people's feet. The yard (3 feet) seems to have gotten its start in England as the name of a 3-foot measuring stick, but it is also understood to be the distance from the tip of the nose to the end of the middle finger of the outstretched hand. Finally, if you stretch your arms out to the sides as far as possible, your total "arm span," from one fingertip to the other, is a fathom (6 feet). Historically, there are many other "natural units" of the same kind, including the digit (the width of a finger, 0.75 inch), the nail (length of the last two joints of the middle finger, 3 digits or 2.25 inches), the palm (width of the palm, 3 inches), the hand (4 inches), the shaftment (width of the hand and outstretched thumb, 2 palms or 6 inches), the span (width of the outstretched hand, from the tip of the thumb to the tip of the little finger, 3 palms or 9 inches), and the cubit (length of the forearm, 18 inches). In Anglo-Saxon England (before the Norman conquest of 1066), short distances seem to have been measured in several ways. -
The System of Measurement
THE SYSTEM OF MEASUREMENT CONTENTS 1 General 2 International System of Units (SI) 3 Length 4 Area 5 Volume 6 Capacity 7 Weight 8 Time 9 Temperature 10 Angular and Circular 11 Miscellaneous 12 Cross Conversion Table 13 Calculation Formulae 14 Abbreviation 1. G E N E R A L ========================================================================= 1.1 NUMBER SYSTEM ------------------------------------- System Base of Radix ------------------------------------- Binary Two Ternary Three Quaternary Four Quinary Five Senary Six Septenary Seven Octonary (or Octal) Eight Novenary Nine Decimal Ten Undecimal Eleven Duodecimal Twelve Terdenary Thirteen Quaterdenary Fourteen Quindenary Fifteen Sextodecimal Sixteen Septendecimal Seventeen Octodenary Eighteen Novendenary Nineteen Vicenary Twenty Tricenary Thirty Quadragenary Forty Quinquagenary Fifty Sexagenary Sixty Septuagenary Seventy Octogenary Eighty Nonagenary Ninety Centenary Hundred ------------------------------------- 1.2 STANDARD SYSTEM OF SCIENTIFIC NOTATION (DECIMAL SYSTEM OR PREFIXES SYSTEM) ------------------------------------------------------------------------- ----- Prefix Symbol Value Submultiples and Multiples ------------------------------------------------------------------------- ----- atto (at' to) a .000 000 000 000 000 001 1x10- 18 femto (fem' to) f .000 000 000 000 001 1x10- 15 pico (pe' ko) p .000 000 000 001 one-millionth millionth 1x10- 12 nano (nan' o) n .000 000 001 1000 of a millionth 1x10-9 micro (mi' kro) u* .000 001 one-millionth 1x10-6 milli (mil' i) m* .001 one-thousandth 1x10-3 centi (sen' ti) c* .01 one-hundredth 1x10-2 deci (des' i) d .1 one-tenth 1x10-1 deca (dek' a) da 10 ten 1x101 hecto (hek' to) h 100 one hundred 1x102 kilo (kil' o) k* 1 000 one thousand 1x103 mega (meg' a) M* 1 000 000 one million 1x106 giga (ji' ga) G 1 000 000 000 one thousand million 1x109 tera (ter' a) T 1 000 000 000 000 one-million million 1x1012 ------------------------------------------------------------------------- * Most commonly used. -
The History of Measurements
Helicobacter pylori Measurement Measurement • the assignment of numbers to objects or events • a type of quantitative observation made with a measuring instrument • includes both a number and a unit • units of measurement are essentially arbitrary: people make them up and then agree to use them Measuring is an important part of everyday life! What can we measure? And how? • Length ✓ Ruler • Distance on land ✓ Measuring Chain/Tape • Depth of water ✓ Sonar (echo sounder) • Mass ✓ Weighing scale • Temperature ✓ Thermometer • Time ✓ Clock, timer • Light ✓ Photometer • Electric current ✓ Ammeter • Color ✓ Spectrometer How good is the measurement? • Accuracy is how close a measured value is to the actual (true) value. • Precision is how close the measured values are to each other (repeatability and reproducibility). ? ? ? ? • Bias is a built-in (systematic) error which makes all measurements wrong by a certain amount. History of Measurement • Objects were initially measured for convenience, to aid commerce and prevent fraud. • The Egyptians among other civilizations were the first to begin recording measurements around 3200 BC. • Early measurements were based on body parts or common objects. Problems with Early Measurement Units 1. People have different sized body parts, as well as there is a variety among common objects like grains... Grain, India Wheat Barleycorn 2. …so measurements are not accurate, especially when dealing with fractions and multiples… SOLUTION: Standard Measurement Systems! What is a System of Measurement? A system of measurement is a collection of units of measurement and rules relating them to each other. • Must have base units defined for all major quantities that need to be measured (example: a foot). -
Friday, October 6, 2017 1 Writing Methods to Do Unit Conversions
INTRODUCTION TO COMPUTER SCIENCE I LAB 5: CONVERTING UNITS Friday, October 6, 2017 1 Writing methods to do unit conversions 1.1 The units The core of this lab assignment will be unit conversions—translating a measurement in one unit into some other unit. In particular, we will use a few different measurements of length, and a few of time. Here are the units we will use: • Measurements of length: Unit name Conversion meter (m) The canonical unit foot (ft) 0:3048 m 1 inch (in) 12 ft yard (yd) 3 ft smoot 1:7018 m 1 barleycorn 3 in • Measurements of time: Unit name Conversion second (s) The canonical unit minute (m) 60 s 1 jiffy 60 s 10 helek 3 s 1.2 Getting started Now that you have some units with which to work, it is time to start a new program for yourself. Specifically: 1. Create a directory for this project, change into it, and grab source code: $ mkdir lab5 $ cd lab5 $ wget -nv --trust-server-names https://goo.gl/MbFqMC 1 2. Open the new source code file in Emacs: $ emacs Converter.java & You will see, in this source code file, the beginnings of a program named Converter. It con- tains, for starters, two complete methods named convertInchToFoot and convertFootToInch. Given the conversion factor from one to the other, you should, as these methods show, easily be able also to use these to perform the inverse conversions. Your first task: For each of the conversions listed above, write a method to perform that conver- sion and its inverse (e.g., inches to feet and feet to inches). -
Discounting Gold: Money and Banking in Gold Rush California
Case Study #22 April 2021 Discounting gold: Money and banking in Gold Rush California Introduction Two momentous events early in 1848 completely and abruptly transformed California. On 24 January, James Marshall found gold in a millrace he was building for John Sutter at Coloma, on the South Fork of the American River. Nine days later, on 2 February, the United States and Mexico concluded the Treaty of Guadalupe Hidalgo, ending nearly two years of hostilities. Under the Treaty, Mexico ceded much of the present south-western United States to the US for monetary consideration. An American occupation government had ruled most of California since mid-1846, but neither the American military governor nor the earlier Mexican governors had held firm political control over the remote, sparsely populated territory.1 Now, the problem was fully in the hands of the Americans. The discovery of gold and the change in sovereignty presented both opportunity and risk. Many in California abandoned other occupations to try their luck in the new ‘diggings’2 in the foothills of Sierra Nevada. The risk was that California might fall prey to the ‘resource curse’ – that the discovery of mineral riches might divert labour and attract outside exploitation and corruption, thus impoverishing the Figure 1. San Francisco in July 1849 from present site of S.F. Stock Exchange. region. [No Date Recorded on Shelflist Card] Photograph. https://www.loc.gov/ item/2003674847/. Much recent scholarship on the resource curse draws on a 1995 paper by Jeffrey Sachs and Andrew Warner.3 Although they did not use the term ‘resource curse’, they described, and they and their successors have sought to explain, an empirical pattern which suggests that countries rich in natural resources seem prone to sub-par economic growth. -
The History and Mathematics of Conversions
THE HISTORY AND MATHEMATICS OF CONVERSIONS BY JAMES D. NICKEL THE METRIC SYSTEM I f you live in the United States of America, you have to work with two systems of measure. These two sys- tems are called (1) British Imperial system of measure and (2) Metric system of measure. In the British sys- Item, with its long and storied history, there are many sub-systems where different bases are used. The pint- gallon system is base 8, the inches-foot system is base 12, the yard-foot system is base 3, the week-day system is base 7, the month-year system is base 12, the yard-mile system is base 1760, and the foot-mile system is base 5280. In contrast, the Metric system of measurement is, like most national currencies, decimalized (base 10). As we have already noted, it was developed in France in the late 18th century.1 Since the 1960s the International System of Units (SI) (Système International d'Unités in French, hence “SI”) has been the internationally recognized standard metric system. Metric units are widely used around the world for personal, commercial and scientific purposes. Of all the nations of the world (Date: early 21st century), only Liberia, Myanmar and the United States have not yet officially adopt- ed the Metric system. Metric units consist of a standard set of prefixes in multiples of 10 that may be used to derive larger and smaller units. Work- ing with these units is as easy as multiply- ing or dividing by 10 (or powers of 10). -
Math 10 Lesson 6–1 Measurement – Imperial Units
Math 10 Lesson 6–1 Measurement – Imperial units I. Lesson Objectives: 1) To learn about the imperial measures of length. II. Imperial measurement – a little historical tour In 1976, when I was in grade 11, Canada officially adopted the metric or SI system of measures – i.e. basic unit of length is the meter (m), basic unit of mass is a gram (g), basic unit of temperature is a degree centigrade (oC), etc. Before that time Canada used the Imperial system of measurements which we will learn more about shortly. Canadians decided to change because the rest of the world had steadily shifted to metric since 1960. In 1976 the United States of America was also debating whether to change to metric as well. However, for reasons that I still do not understand, the United States stayed with their own set of units which is a combination of imperial and home grown units. Since the United States is a major economic trading partner, we kept using Imperial units along with metric units. The purpose of this lesson is to introduce you to the imperial units for measuring length. The imperial units for measuring length (inches, feet, yards, and miles) have their origins in the lengths of everyday objects. The inch, for example, was originally the width of a thumb. This is useful since you always have your thumb with you. The name comes from uncia which is Latin for ‘twelfth part'. While an inch is considered to be the width of a thumb and is one twelfth of a foot, there is a great deal of variation in the widths of people’s thumbs. -
Weighing Academy
USER’S RESOURCES BOOK WEIGHING ACADEMY Weighing History Version 1.01 September 2004 Kadlec, spol. s r.o. Veleslavínova 19 746 01 Opava This project has been funded with the support of the European Community. The content of this project does not necessarily reflect the position of the European Community or the National Agency, nor does it involve any responsibility on their part. (c) 2004 All rights reserved Weighing Academy Weighing History Content Content........................................................................................................................... 2 1 History of the measurement and comparing of the weight from Antique till today.......... 3 1.1 Origin of the need of measurement and comparing of the weight............................ 3 1.2 Types of scales in a history .................................................................................. 3 1.3 Weight unit......................................................................................................... 5 1.4 Mass units .......................................................................................................... 5 1.4.1 Old mass units ................................................................................... 5 1.4.2 Contemporary mass units ................................................................... 6 1.5 Conversion tabs of weight quantity....................................................................... 8 1.6 Other types of scales in history: ..........................................................................11 -
Appendix B – Units and Systems of Measurement
Handbook 44 – 2012 Appendix B – Units and Systems of Measurement Table of Contents Appendix B. Units and Systems of Measurement Their Origin, Development, and Present Status ...................................................................................................B-3 1. Introduction .................................................................................................................................................. B-3 2. Units and Systems of Measurement ............................................................................................................ B-3 2.1. Origin and Early History of Units and Standards. .............................................................................. B-3 2.1.1. General Survey of Early History of Measurement Systems. ................................................ B-3 2.1.2. Origin and Development of Some Common Customary Units. ........................................... B-4 2.2. The Metric System. ............................................................................................................................. B-5 2.2.1. Definition, Origin, and Development. .................................................................................. B-5 2.2.2. International System of Units. .............................................................................................. B-6 2.2.3. Units and Standards of the Metric System. .......................................................................... B-6 2.2.4. International Bureau of Weights and Measures. ..................................................................