Improving the Barrier Properties of Packaging Paper by Polyvinyl Alcohol Based Polymer Coating—Effect of the Base Paper and Nanoclay
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Moisture on the Biaxial Strength of Wood-Based Composites
EFFECTS OF MOISTURE ON THE BIAXIAL STRENGTH OF WOOD-BASEDCOMPOSITES J. C. Suhling* J.M. Considine ** K. C. Yeh* * Department of Mechanical Engineering Auburn University Auburn, AL36849-5341 ** U.S.D.A. Forest Products Laboratory One Gifford Pinchot Drive Madison,WI 53705-2398 ABSTRACT applications such as corrugated containers where it is subjected to complicated biaxial stress states, In the present work, the effects of moisture on including shear. At present, lack of accurate the biaxial strength of wood-based composite materials constitutive relations and reliable strength has been examined. Experiments have been performed on predictions under biaxial loading and variable paperboard to measure the uniaxial and biaxial input environments hampers analysis of such problems. parameters of the tensor polynomial criterion at Therefore, it has been common practice in the paper several levels of relative humidity. With these data, industry to use trial and error, and empirical the dependence of the zero shear biaxial failure approaches for optimizing the designs of paperboard envelope on humidity level has been predicted and products. The current lack of technology limits trends have been observed. creative design improvements which could curtail the excess use of materials and energy. Accurate predictions of material strength under 1. INTRODUCTION general biaxial normal loading plus shear are needed by the design engineer when considering typical Unlike laminated fiber-reinforced composite structural applications of paperboard. Examples of materials, paper (paperboard) is a multiphase important current applications where biaxial stress composite composed of moisture, fibers, voids, and states exist in paperboard include the quality control possibly chemical additives. The fibers in paperboard burst test (bulged plate), material handling are typically organic with cellulose fibers from wood operations during the papermaking process, and stacked being the chief material. -
Cardboard and Brown Paper Bags Office Paper, Newspaper, Junk Mail, Magazines, and Catalogs
Recycling Center 801 Diamond Valley Drive Open: Daily to the public during daylight hours This guide will help you properly prepare your recyclable materials for drop-off at the Town of Windsor Recycle Center. This is a drop-off facility. It does not have a buy-back option and is for use by residents and small businesses. Following this information will help maintain the facility and the recycling program for the benefit of the community. IMPORTANT… • Do not leave your recyclables in plastic bags. Plastic bags are NOT recyclable! • The plastic item must be a BOTTLE or JAR. with a #1 or #2 on the bottom. • 99 percent of these will have a screw-on plastic lid (which isn’t recyclable). • Plastic containers with a #3 - #7 on the bottom are NOT acceptable. • Tubs, buckets, deli plates, microwave/fast food trays, wrappers, Styrofoam, toys, patio furniture, etc. are NOT acceptable. • Plastic bottles larger than 2.5 gallons are NOT acceptable. • Syringes and other medical supplies are NOT acceptable. Cardboard and Brown Paper Bags Corrugated cardboard is easy to recognize. It is made of paper and has an arched layer called “fluting” between smooth sheets called “liners”. The drop-off site has two 40-yard hydraulic compactor units for collecting corrugated cardboard and brown paper bags. The compaction system is self-activated by depositing the prepared materials into a six-inch tall slot. Flatten boxes. Cut or tear large boxes into sections no larger than 4 feet by 4 feet to prevent jamming the machine. No wet, waxed-coated or food-contaminated boxes. -
The EMA Guide to Envelopes and Mailing
The EMA Guide to Envelopes & Mailing 1 Table of Contents I. History of the Envelope An Overview of Envelope Beginnings II. Introduction to the Envelope Envelope Construction and Types III. Standard Sizes and How They Originated The Beginning of Size Standardization IV. Envelope Construction, Seams and Flaps 1. Seam Construction 2. Glues and Flaps V. Selecting the Right Materials 1. Paper & Other Substrates 2. Window Film 3. Gums/Adhesives 4. Inks 5. Envelope Storage 6. Envelope Materials and the Environment 7. The Paper Industry and the Environment VI. Talking with an Envelope Manufacturer How to Get the Best Finished Product VII. Working with the Postal Service Finding the Information You Need VIII. Final Thoughts IX. Glossary of Terms 2 Forward – The EMA Guide to Envelopes & Mailing The envelope is only a folded piece of paper yet it is an important part of our national communications system. The power of the envelope is the power to touch someone else in a very personal way. The envelope has been used to convey important messages of national interest or just to say “hello.” It may contain a greeting card sent to a friend or relative, a bill or other important notice. The envelope never bothers you during the dinner hour nor does it shout at you in the middle of a television program. The envelope is a silent messenger – a very personal way to tell someone you care or get them interested in your product or service. Many people purchase envelopes over the counter and have never stopped to think about everything that goes into the production of an envelope. -
FAQ About Recycling Cartons
FREQUENTLY ASKED QUESTIONS ABOUT CARTONS WHAT IS A CARTON? » Cartons are a type of packaging for food and beverage products you can purchase at the store. They are easy to recognize and are available in two types—shelf-stable and refrigerated. Shelf-stable cartons (types of products) Refrigerated (types of products) » Juice » Milk » Milk » Juice » Soy Milk » Cream » Soup and broth » Egg substitutes » Wine You will find these You will find these products in the chilled products on the shelves sections of grocery stores. in grocery stores. WHAT ARE CARTONS MADE FROM? » Cartons are mainly made from paper in the form of paperboard, as well as thin layers of polyethylene (plastic) and/or aluminum. Shelf-stable cartons contain on average 74% paper, 22% polyethylene and 4% aluminum. Refrigerated cartons contain about 80% paper and 20% polyethylene. ARE CARTONS RECYCLABLE? » Yes! Cartons are recyclable. In fact, the paper fiber contained in cartons is extremely valuable and useful to make new products. WHERE CAN I RECYCLE CARTONS? » To learn if your community accepts cartons for recycling, please visit RecycleCartons.com or check with your local recycling program. HOW DO I RECYCLE CARTONS? » Simply place the cartons in your recycle bin. If your recycling program collects materials as “single- stream,” you may place your cartons in your bin with all the other recyclables. If your recycling program collects materials as “dual-stream” (paper items together and plastic, metal and glass together), please place cartons with your plastic, metal and glass containers. WAIT, YOU JUST SAID CARTONS ARE MADE MAINLY FROM PAPER. Don’t I WANT TO PUT THEM WITH OTHER PAPER RECYCLABLES? » Good question. -
What Notto Recycle Curbside
NEWSPAPERS • Newspaper Newspapers must be bundled and tied • Inserts that come w/newspapers, such with string or twine. Shredded paper as comics, glossy coupons, must be in clear or labeled plastic bags. TV/magazine sections & colored food/store ads GLASS BOTTLES, ALL PLASTIC BOTTLES • Glass bottles (all colors) #1 - #7 Examples: Water, soda, milk, & CONTAINERS (#1 - #7 ), STEEL, • Glass jars (all colors) juice, soap, detergent, bleach, BIMETAL & ALUMINUM CANS These • Steel cans shampoo and cleaning-agent bottles. items should be rinsed thoroughly and • Bimetal cans You may also include peanut butter, placed inside your recycling bucket. Only • Aluminum cans yogurt and diaper-wipe containers, margarine tubs, plastic trays and the items listed at right are acceptable. • All plastic bottles and clear plastic clamshell containers Crush all plastic bottles to save space. containers #1 - #7 from restaurant salad bars. Remove caps. NO STYROFOAM® OTHER PAPER/JUNK MAIL • Magazines • Catalogs Other paper should be placed in a brown • Writing/school paper • Phone books paper bag or cardboard box and placed • All envelopes • Store fliers w/mailing labels next to your blue bucket. • Copy paper • Office paper • Paperback books • Non-metallic gift wrap • Hardcover books • Greeting cards w/hard covers removed CORRUGATED CARDBOARD, • Corrugated cardboard • Tissue boxes CHIPBOARD & PIZZA BOXES • Pizza boxes (clean!) • Paper towel rolls Corrugated cardboard must be cut into • Brown bags 2 ft. x 2 ft. squares and tied with string or • Chipboard boxes including: twine. Please include pizza boxes & cereal, cookie, pasta, cake, cracker, chipboard with corrugated cardboard. detergent (remove plastic liners), Place tied bundle (pizza boxes, chipboard gift, shoe, shirt and any retail & cardboard) next to your recycling boxes. -
Articles of Paper Pulp, of Paper Or of Paperboard
Chapter 48 Paper and paperboard; articles of paper pulp, of paper or of paperboard Notes. 1.- For the purposes of this Chapter, except where the context otherwise requires, a reference to “paper” includes references to paperboard (irrespective of thickness or weight per m²). 2.- This Chapter does not cover : (a) Articles of Chapter 30; (b) Stamping foils of heading 32.12; (c) Perfumed papers or papers impregnated or coated with cosmetics (Chapter 33); (d) Paper or cellulose wadding impregnated, coated or covered with soap or detergent (heading 34.01), or with polishes, creams or similar preparations (heading 34.05); (e) Sensitised paper or paperboard of headings 37.01 to 37.04; (f) Paper impregnated with diagnostic or laboratory reagents (heading 38.22); (g) Paper-reinforced stratified sheeting of plastics, or one layer of paper or paperboard coated or covered with a layer of plastics, the latter constituting more than half the total thickness, or articles of such materials, other than wall coverings of heading 48.14 (Chapter 39); (h) Articles of heading 42.02 (for example, travel goods); (ij) Articles of Chapter 46 (manufactures of plaiting material); (k) Paper yarn or textile articles of paper yarn (Section XI); (l) Articles of Chapter 64 or Chapter 65; (m) Abrasive paper or paperboard (heading 68.05) or paper- or paperboard-backed mica (heading 68.14) (paper and paperboard coated with mica powder are, however, to be classified in this Chapter); (n) Metal foil backed with paper or paperboard (generally Section XIV or XV); (o) Articles of heading 92.09; (p) Articles of Chapter 95 (for example, toys, games, sports requisites); or (q) Articles of Chapter 96 (for example, buttons, sanitary towels (pads) and tampons, napkins (diapers) and napkin liners for babies). -
Paper and Board Packaging Recyclability Guidelines
FOR THE FU IGN TU ES R D E PAPER AND BOARD PACKAGING RECYCLABILITY GUIDELINES PAPER AND BOARD PACKAGING RECYCLABILITY GUIDELINES Helping retailers and brands specify and design packaging that can be reprocessed in paper mills 2 PAPER AND BOARD PACKAGING RECYCLABILITY GUIDELINES 3 CONTENTS PAPER AND BOARD PACKAGING RECYCLABILITY GUIDELINES Paper is a sustainable, renewable and ecologically sound choice for packaging DE because almost all paper and board is recyclable. In practice, the recyclability of 4 Plastic SIG packaging products will be determined by composition and design, and the way N they are collected and presented for reprocessing. The vast majority of paper- based products are easily recyclable. 8 Coatings FO R Paper recycling in the UK is a success story, with over 80% of paper and board 9 Peelable Solutions T packaging recovered for recycling. Paper for Recycling (PfR) is collected primarily H for use in manufacturing processes and is used as an alternative to virgin materials e.g. wood pulp. When presented it should therefore be of adequate quality and 10 Varnishes and Curable Varnishes E Recyclability of paper-based packaging economically viable to use. F As society evolves, different applications are found for paper and board which 11 Adhesives U sometimes require changes to its functionality. This is often achieved by combining 11 Alternative Barriers T the fibre substrate with another material to form a composite multi-layer laminate, U providing properties such as water resistance or a gas barrier to extend product life. These changes provide challenges for recycling, and in many instances can R 97% 12 Paper Products 3% increase the costs of reprocessing and of waste disposal. -
United States Patent (10) Patent No.: US 9.458,297 B2 Miller (45) Date of Patent: Oct
USOO9458297B2 (12) United States Patent (10) Patent No.: US 9.458,297 B2 Miller (45) Date of Patent: Oct. 4, 2016 (54) MODIFIED FIBER, METHODS, AND 4,898,642 A 2f1990 Moore SYSTEMS 4,900,324 A 2f1990 Chance 4,935,022 A 6, 1990 Lash (71) Applicant: WEYERHAEUSERNR COMPANY., 4,936,8651538 A S366, 1990 WelchWE Federal Way, WA (US) 5,049,235 A 9, 1991 Barcus 5,137,537 A 8, 1992 Herron (72) Inventor: Charles E. Miller, Federal Way, WA 5,5,160,789 183,707 A 11/19922f1993 BarcusHerron (US) 5, 190,563 A 3/1993 Herron 5,221,285 A 6/1993 Andrews (73) Assignee: WEYERHAEUSERNR COMPANY., 5,225,047 A 7, 1993 Graef Federal Way, WA (US) 5,247,072 A 9/1993 Ning et al. 5,366,591 A 11, 1994 Jewell (*) Notice: Subject to any disclaimer, the term of this 3.222 A 8.32 Shiki patent is extended or adjusted under 35 5,496.476 A 3/1996 Tang U.S.C. 154(b) by 0 days. 5,496.477 A 3/1996 Tang 5,536,369 A 7/1996 Norlander (21) Appl. No.: 14/320,279 5,549,791 A 8/1996 Herron 5,556,976 A 9, 1996 Jewell 1-1. 5,562,740 A 10, 1996 Cook (22) Filed: Jun. 30, 2014 5,698,074. A 12/1997 Barcus 5,705,475 A 1, 1998 T (65) Prior Publication Data 5,728,771 A 3, 1998 E. 5,843,061 A 12/1998 Chauvette US 2015/0376347 A1 Dec. -
Manufacturing of Paperboard and Corrugated Board Packages
Lecture 9: Manufacturing of paperboard and corrugated board packages Converting operations: printing, die-cutting, folding, gluing, deep-drawing After lecture 9 you should be able to • describe the most important converting operations in paper and paperboard package manufacturing • discuss important runnability considerations in paperboard package handling • relate factors affecting runnability to pppaperboard app earance and pyphysical performance quality parameters 1 Literature • Pulp and Paper Chemistry and Technology - Volume 4, Paper Products Physics and Technology, Chapter 10 • Paperboard Reference Manual, p. 157-225 • Fundamentals of packaging technology Chapters 4, 6, 15 and 18 Paperboard Packaging Design is the result of • Personal creativity plus – Knowledge and understanding of packaging materials, including: • Structural properties • Graphic capabilities • Converting processes and converting properties • Customer packaging systems • Marketing objectives • Distribution requirements • Retail outlet expectations • Needs and desires of end user • How end user will use the product • Many people may contribute to the design 2 Overall, the design must provide: • Containment of product • Protection of product • Ease in handling through distribution • Prevention of product spoilage • Tamper evidence • Consumer convenience • Brand identification • Communications for the consumer: – Instructions for product use – Coding for quality assurance, expiration dates – Dietary and nutritional information The design should consider: 1. Converting -
Improved Oil Resistance of Cellulose Packaging Paper By
1 Improved Oil Resistance of Cellulose Packaging Paper by 2 Coating with Natural Polymer Derived Materials 3 Feijie Wang1, Liqiang Wang1,*, Xinchang Zhang1, Shufeng Ma2 4 1 Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment 5 Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, 6 China 7 2 School of Food Engineering, Jiangnan University, Wuxi, 214122, China 8 *Email: [email protected] 9 10 Abstract: Paper is widely used as food packaging due to its good mechanical strength 11 and degradability. However, it has a relatively strong affinity for water and oil, which 12 limits its application scope. In this work, we prepare two types of coated paper to 13 investigate, the influence the air permeability and polarity on the oil resistance of the 14 coated paper. The results showed that reducing the air permeability improved the grease 15 resistance of the coated paper. High surface energy coatings also showed better oil 16 resistance because of their higher content of polar components that resulted in a higher 17 resistance to grease. The mechanical properties of the paper also improved after 18 applying the coating. These natural derived materials offer an alternative to the fluoride- 19 containing materials currently used in the market to improve the wettability of paper. 20 Keywords: coated paper · oil resistance · air permeability · polarity 21 Introduction 22 As the variety of foods containing grease is abundant, the types of oil-resistant 23 materials used in food packaging has diversified in recent years. Environmental 24 protection and safety issues continue to be important, and as a result, scholars have paid 25 increasing attention to paper packaging materials (Coltelli et al. -
4. Printing and Converting Performance
4. Printing and converting performance Paperboard converting 147 Clean edges and surfaces 155 Handling paperboard 158 Offset lithography 160 UV-offset 161 Waterless offset 162 Hybrid offset 162 Flexography 163 Screen printing 164 Digital printing 165 Gravure printing 166 Hot foil stamping 169 Embossing 171 Die-cutting & creasing 174 Lasercutting 178 Scoring 182 Creasabilty & foldability 186 Gluing 194 Binding in practice - the last link 199 Heat sealing 206 Packaging operation 203 Deep drawing 212 146 Reference Manual | IGGESUND PAPERBOARD Paperboard converting Paperboard converting Paperboard has the ability to achieve or exceed the same The increasing demands in the brand promotion process excellent image reproduction as for the best fine papers. for graphic design and the use of non-print surface enhance- Paperboard offers equal possibilities to achieve new, ment are creating innovative shapes and multi-sensory ex- challenging shapes as competing packaging materials. periences for the consumer or user who hand les the product. However, increasing demands on performance of the An understanding of the interaction between paper- material in various converting processes have become board properties and converting effi ciency is essential for evident when speeds in both printing processes and post- designers and converters, since the ultimate design of the press converting have increased. Additionally, the accept- product together with the choice of paperboard will impact ance level for impurities or slight deviations in quality in the on crucial conversion factors like printability, fl atness, and fi nal product has dropped noticeably as a result of both creasing/folding properties. Considering all the variables, end-user demands and the use of modern quality control it is probably true to say that consistency in the behaviour equipment in the various converting machines. -
Hybrid Composites: Combining Cellulose Fibers and Wollastonite Mineral Fibers Into a Nylon 6 Matrix
The Seventh International Conference on Woodfiber-Plastic Composites ~ Hybrid Composites: Combining Cellulose Fibers and Wollastonite Mineral Fibers into a Nylon 6 Matrix Rodney E. Jacobson and Daniel F. Caulfield Abstract The objective of this research was to develop a tion. Attempts to maximize the composite proper- high purity cellulose/wollastonite pellet that could ties were not the focus of this research. Stable, then be accurately metered and feed into a labora- controllable processing characteristics and re- tory scale twin-screw extruder and compounded peatability of the twin-screw extrusion trials was with a nylon 6 resin. The major focus was targeted the goal. It is the authors’ opinion that this goal on a 20 percent cellulose/20 percent wolla- was accomplished. Future research will focus on stonite/60 percent nylon 6 composite. Limited re- maximizing composite properties and determin- search with nylon 6,6 resins was also attempted ing if cellulose fibers alone or in combination with and will be discussed briefly. A process for devel- mineral fibers can be compounded on larger com- oping a cellulose/wollastonite pellet was success- mercial scale equipment. Extreme care and pre- ful and 100 Kg were produced for twin screw ex- cise processing knowledge is needed to develop a trusion processing with nylons. The 100 Kg of commercial scale process that works. If this can- pellets were then compounded via a “low temper- not be accomplished, then cellulose fibers as rein- ature compounding” technique as discussed in de- forcement in any of the high melting point engi- tail elsewhere (1). Further information can be ob- neering thermoplastics may remain as a lab- tained in U.S.