<<

CHAPTER 1

Hartree-Fock Hamiltonians for the chiral 2DEGs in and bilayer graphene

1.1 Basic notions

Lattice structure: honeycomb lattice of C (triangular lattice with 2 C per unit cell: A and B) •

The of graphene.

Primitive vectors: •

1 √3 a1 =    (1.1) Ã2 − 2 !

a2 =  (1 0)  (1.2)

with  = √3 where  =142 Å is the spacing between carbons atoms. 2 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

Nearest-neighbors: • 1 1 δ1 =    (1.3) 2 2√3 µ ¶ 1 1 δ2 =    (1.4) −2 2√3 µ ¶ 1 δ3 =  0  (1.5) −√3 µ ¶

sp2 hybridization,  and  bonds •

Reciprocal lattice: • y

b2 x

b1

Reciprocal lattice of graphene. §1.1 Basic notions 3

Valleys: •

2 2 K =  0  (1.6) 0 3  µ ¶ 2 2 K =  0  (1.7) −3  µ ¶

y K’ K

K K’ x

K’ K First Brillouin zone of graphene.

Band structure: eith 2 C’s per unit cell, we have 8 bandes: 6  bands and 2  bands: •

Fermi level: valence of C is 4: 3  and 1  bands are occupied in undoped graphene. • 4 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

1.2 Tight-binding hamiltonian for the  bands

Hamiltonian for the  bands: •  =  † +   (1.8) −   hXi ³ ´ with  28 eV and 0 01 eV, 00 007 eV. ≈ ≈ ≈ to k and k operators: • 1 k R  =  ·   (1.9)  √ k  k X 1 k R  =  ·   (1.10)  √ k  k X with k† = k† = kk  (1.11) k0 k0 0 Hamiltonian: n o n o • 0 Λ (k) k  = k† k†  (1.12) Λ∗ (k)0 k k µ ¶µ ¶ X ¡ ¢ where k  Λ (k)=   ·  (1.13) −  X The TB Hamiltonian is diagonalized to give:

 =  (k) † kk +  (k) † kk (1.14) k k X X Band structure: •    √3  (k)=+Λ (k) Λ (k)=+ 1+4cos2  +4cos   cos    (1.15)  ∗ v 2 2 2  u µ ¶ µ ¶ Ã ! p u t √ 2   3  (k)= Λ (k) Λ (k)=  1+4cos +4cos  cos   (1.16) − ∗ − v 2 2 2 u µ ¶ µ ¶ Ã ! p u t §1.3 Continuum approximation 5

1.3 Continuum approximation

We consider that the doping is small so that the Fermi level is near energy  =0and we can use the band structure around the valley points   Expandingtolinearorderin we get the linear dispersion: ±

 (p)= } p  (1.17) ± | | where the Fermi velocity is 3 6  = 1 10 m/s (1.18) 2} ' × For the Hamiltonians (basis  )

 0 −  (p)=  =  σ p (1.19) −  0 − · µ ¶ 0  0 (p)=+  =+ σ∗ p (1.20) − 0 · µ ¶ where:  tan  =   (1.21) 

The eigenspinors give the on site  and  For the  and 0 valleys and the conduction (C) and valence (B) bands:

1  (p)2 1  (p)2  (p)= −  (p)= −  (1.22)  √2 (p)2  √2 (p)2 µ − ¶ µ ¶ (p)2 (p)2 0 1  0 1   (p)= (p)2  (p)= (p)2  (1.23) √2 − √2 − µ ¶ µ − ¶

If we use the basis ( ) for  and () for 0 then: ( =+1for  and  = 1 for 0) −  0 −  (p)=  =  σ p (1.24) −  0 − · µ ¶ andwehaveforthesublattice spinors

1  (p)2  (p)= − (1.25)  √2 (p)2 µ − ¶ 1  (p)2  (p)= −  (1.26)  √2 (p)2 µ ¶

1.4 Helicity

A general spin 12 spinor is given by

 2  +2 + =cos − + +sin   (1.27) | iu 2 | i 2 |−i ³ ´ 2 ³´ +2 =sin − + cos   (1.28) |−iu 2 | i − 2 |−i ³ ´ ³ ´ For  = 2:

1 2 +2 + = − + +   (1.29) | iu √2 | i |−i h i 1 2 +2 = − +   (1.30) |−iu √2 | i − |−i h i 6 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

With the correspondence  +  (1.31) | i → | i   (1.32) | i → |−i we have  (p) =   (p) = +  (1.33)  |−iu  | iu ¯ E ¯ E ¯0 (p) = +  ¯0 (p) =  (1.34) ¯  | iu ¯  |−iu ¯ E ¯ E where ¯ ¯ ¯ u =p¯ (1.35)

The sublattice spinor is in (or opposite) the direction of the electronic momentum. For 0 : b

The helicity is defined as the projection of the pseudospin onto the direction of propagation p  = σ  (1.36) · p | | In graphene  (p)=  σ p =  p  (1.37) − · − | | and so  (p)  = = 1 (c.b.) and +1(v.b.) (1.38)  p − − | |  (p)  = 0 =+1(c.b.) and 1 (v.b.) (1.39) 0  p − | | (in this picture,  and 0 are inverted w.r.t. my definitions) §1.4 Helicity 7

The chirality is equivalent to the helicity only for masless particle. •

The eigenstates of the Dirac Hamiltonian are also eigenstates of the chirality operator and so chirality • is a good quantum number. It is conserved. Chirality is a quantum number that is conserved in elastic scattering processes induced by impurity potentials  =  (r)  ( is the unit matrix) that vary smoothly on the lattice scale. This type of potential does not permit inter-valley scattering and so  is fixed and  =  is conserved. This effect gives rise to the absence of backscattering in graphene and is at the origin of the Klein tunneling (perfect transmission through a high potential barrier at normal incidence).

Note that chirality is a good number only in the vicinity of the Dirac points. If we include higher-order • corrections, it is no longer conserved.

The rotation operator by an angle  about an axis u for a spin 12 particle is given by •

  u   u ()=− 2 · =cos σ u sin  (1.40) 2 − · 2 ³ ´ ³ ´

We see that a rotation in the spin space by  =2 gives a phase factor of  This means, in our case, that if the particule circles around the Dirac cone, the vector  turns by 2 and so does the sublattice pseudospin. The eigenstate thus acquires a 1 sign. −

The chiral nature of low-energy in graphene places an additional constraint on their scatter- • ing properties. If a given potential doesn’t break the A-B symmetry, then it is unable to influence the pseudospin degree of freedom which must, therefore, be conserved upon scattering. Considering only the pseudospin part of the chiral wave function  , the probability to scatter in a direction  =0, ± 2 where  =0is the forwards direction, is proportional to  ()=  ()  (0) .Formonolayer graphene,  ()=cos2 (2). This is anisotropic, and displays an absence± of| backscattering±  ()=0]: ¯­ ®¯ scattering into a state with opposite momentum is prohibited because¯ it requires¯ a reversal of the pseudospin. Such conservation of pseudospin is at the heart of anisotropic scattering at potential bar- riers in graphene monolayers, known as Klein tunneling. 8 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene §1.5 Family of chiral 2DEGs 9

(From P.E. Allain and J. N. Fuchs: Klein tunneling in graphene, Eur. Phys. J. B. 83, 201 (2011)). (Note :  is the band index in this text.)

1.5 Family of chiral 2DEGs

In graphene (monolayer)  (p) can be written as •  ()    =  }  [cos ()  +sin() ]  (1.41)  −  µ  ¶ with  =1where  is the chirality index.  ()  ∼

In Bernal-stacked bilayer graphene, a low-energy Hamiltonian (1) can be constructed where • (2) 2 21 are the low-energy sites. The minimal Hamiltonian is given by  i.e.  =2and  ()    ∼

1 1 1 ⎛ ⎞ (1.42) 2 → 2 µ ¶ ⎜ 2 ⎟ ⎜ ⎟ ⎝ ⎠ 10 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

In ABC-stacked trilayer graphene, the effective two-band model involves the low-energy sites 13 • and  =3i.e.  () 3 ∼ 1 1 ⎛  ⎞  2 1 (1.43) ⎜ 2 ⎟ → 3 ⎜ ⎟ µ ¶ ⎜ 3 ⎟ ⎜ ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎝ ⎠ §1.6 Example of the importance of the spinor structure 11

1.6 Example of the importance of the spinor structure

In second-quantization, we define the field operators as

(p)2 1 p r − Ψ (r)=  ·   (1.44)  √ (p)2 p 2  p X X µ − ¶ The spinor structure modifies properties of the C2DEG wrt to the ordinary 2DEG. For example:

Non-chiral 2DEG: retarded density response function is given by •

 1  (k q)  (k)  (q)=2 − −  (1.45)    +  ( (k)  (k q))  } k } X − − − Chiral 2DEG: •  1  (q)= (1 + 0 cos ((k k q))) (1.46)  − − }  k X0 X  (k q)  ( k) − − 0  × +  ( (k)  (k q)) } − 0 − − where  = 1 for the conduction and valence bands. This affects the dielectric function ± 22  (q)=1  (q)  (1.47) −  

Similar form factors appear in the conductivity response functions (and so in the calculation of the • optical properties).

1.7 C2DEGs in a magnetic field

Peierls substitution p P = p + A} (1.48) → 12 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

where A = B =z with   0.Weget ∇ ×

b 0    =  − (1.49) −  +  0 µ ¶ with the commutation relation }2  =   (1.50) − 2 where  2 = } (1.51)  is the magnetic length.

1.8 Landau levels and

Ladder operators

  = ( )  (1.52) √2} −  † = ( + )  (1.53) √2} obeying the commutation relation

 † =1 (1.54)

The Hamiltonian is now: £ ¤ √2} 0   =  (1.55) −  † 0 µ ¶ Landau gauge A = y Solutions are

√2  b () = () }   (1.56)   | | p with §1.8 Landau levels and eigenfunctions 13

() 0 0 (r)= (1.57) 0 (r) µ ¶ and () 1  ()   1 (r)  (r)= | |−  (1.58) √2   (r) µ | | ¶ The functions 1  0 (r)= − 0 ()  (1.59)  and p1    (r)= † | | 0 (r) (1.60) | |  ! | | ¡ ¢ 2 are the usual Landau gauge wave functions for anp ordinary 2DEG with  ()=    the wave functions of the harmonic oscillator in 1D. − ¡ ¢ For the 0 valley (0) √2}  = ()  (1.61)  | | For  =0 p (0)  (r)  (r)= 0 (1.62) 0 0 µ ¶ and (0) 1   (r)  (r)= | |  (1.63) √2  ()   1 (r) µ − | |− ¶ For  =0 valley and sublattice indices are equivalent. For graphene (monolayer) • √2} 0   =  (1.64) −  † 0 µ ¶ Note that there is a Landau level  =0with energy  =0: √2  0  0 0 }  =0 (1.65) −  † 0 0 (r) 0 (r) µ ¶µ ¶ µ ¶  (r)  =0has degeneracy 2(spin) X 2 (valleys) X  =4 .Thespinorfor is 0  valley and   0 0 sublattice indices are equivalent. µ ¶ 14 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

For AB-bilayer graphene • 2 2 0 0   2  (1.66) ∼   0 1 µ † ¶ ¡ ¢ For the  =0Landau level:

0 2 0 0 2 0 2 =0; 2 =0 (1.67)  0 0 (r)  0 1 (r) µ † ¶µ ¶ µ † ¶µ ¶ ¡ ¢ ¡ ¢ The two "orbitals" 0 and 1 are degenerate with  =0 The degeneracy is now 2 (spin) X 2 (valleys)  (r)  (r) X2(orbitals) =8  For   the spinors are 1  2 and so valley and layer   0 0 0 indices are equivalent. µ ¶ µ ¶

For ABC-trilayer graphene • 3 3 0 0   = 3  (1.68)  2  0 1 µ † ¶ ¡ ¢ The  =0spinors are for 

0 0 0 ; ; (1.69) 0 (r) 1 (r) 2 (r) µ ¶ µ ¶ µ ¶

and the reversed for 0 so that valley and layer are equivalent. The three "orbitals" 0, 1 and 2 are degenerate with  =0 The degeneracy is now 2 (spin) X 2 (valleys) X 3 (orbitals)  =12

etc. for ABCA, ABCBA,.. • §1.9 Quantum Hall effects 15

1.9 Quantum Hall effects

1.10 Energies

In-plane hopping between nearest-neighbors: •  = 0 =28 eV, (1.70)

Magnetic length: • 256  =  (1.71) (Tesla) Gap between  =1and  =0: p • 2 1 =3 294 7 10− √ eV (1.72) × = 382 33√ K

Coulomb energy: • 2 2  5 624 9 10− √ = × eV (1.73)   652 74 = √ K  Zeeman energy: • 4   =1 157 7 10−  eV (1.74)  × 13434 K 16 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

1.11 Field operators

Here we use the same basis ( ) for the two valleys:

K r Ψ (r)= − · r ;    (1.75) h | i  X 1 K r  0 = − · − 2 0  0     µ − ¶ X 2 p 1 K r  ¡  (¢)   1   + − · − | |− 2−  2     =0 µ | | − ¡ ¢ ¶ X6 p ¡ ¢ and

K0 r Ψ (r)= − · r 0;     (1.76) 0 h | i 0  X 2 1 K0 r  0   = − · − −  0  0 0   µ ¡ ¢ ¶ X 2 p 1 K0 r      + − · − | | − 2 0 2  ()   1   =0 µ − ¡| |− ¢− ¶ X6 p ¡ ¢

1.12 Spinor structure and selection rules

The spinor structure plays again an important role in the calculation of the optical conductivity. For example

Non-chiral 2DEG: • 1  1  − 2  2   1  1 ←→  ()= ←→1  ⎡ µ − ¶ µ ¶ ⎤  (1.77)  ( + ) − 2 ( + ) ( + )+1− ( + ) 1 ⎢ − ⎥ ⎢ ⎥ ⎣ ⎦ Absorption is at  only.

Chiral 2DEG: • 222  (0)  (0)  ()=  Λ() Λ()  −  (1.78) 2 ( + )    +  (  )  }  ­ ® ­  }® X − − with

() Λ =   ()   1   ()   1   (1.79) | |− | | − | |− | | () Λ = £ ()   1  +  ()   1   ¤ (1.80) | |− | | | |− | | Selection rule is given by:  1=  (1.81) | |± | | For ex.: transitions 2 3 2 1 2 1 2 3 2 3 2 1 → → − →− − →− − → − → §1.13 Second-quantized Hamiltonian 17

1.13 Second-quantized Hamiltonian

If we put this expression in the first-quantized hamiltonian, we get the second quantized form

 = rΨ† (r) Ψ† (r) (1.82)  X Z √2} 0  † † = r r ;   r ; 00 00 +  ­ 0 −  h | i † 0 h | i    X X0 0 ∙Z µ ¶ ¸ () =  †   X For the Coulomb interaction 1  = r r0Ψ† (r) Ψ† (r0)  (r r0) Ψ (r0) Ψ (r)  (1.83) 2 1 2 − 3 4    1X··· 4 X Z Z

(K K0) r Terms that do not conserve the valley index involves rapidly oscillating integrands  − ·  These terms are very small and usually neglected. Thus:

1  = r r0Ψ† (r) Ψ† (r0)  (r r0) Ψ (r0) Ψ (r)  (1.84) 2 1 2 − 2 1    X1 2 X Z Z 18 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

Now, write 1 22 q (r r0)  (r r )=  · −  (1.85) 0   − q X so that with 22  (q)= (1.86)  we have 1 q (r r0)  =  (q) r r0Ψ† (r) Ψ† (r0)  · − Ψ (r0) Ψ (r)  (1.87) 2 1 2 2 1 q   X X1 2 Z Z which gives:

1  =  (q) (1.88) 2 q       X 1X 4 1X 4 X1 2 q r r  ; 11 r  · r  ; 44 × h 1 | i h | 1 i Z q r0 r0  ; 22 r − · r  ; 33 × h 2 | i h | 2 i Z † †       × 111 222 2 3 3 1 4 4 The Coulomb interaction will depend on the matrix elements:

 2 q r 2 (+0) r ;   r  · r ; 00  Ξ (q)    (1.89) h | i h | i ≡ 0 0− Z

1.14 Hartree-Fock approximation (monolayer graphene)

We approximate the Coulomb interaction by the Hartree-Fock pairings:

Ψ† (r) Ψ† (r0) Ψ (r0) Ψ (r) 2 Ψ† (r) Ψ (r) Ψ† (r0) Ψ (r0) (1.90) 1 2 2 1 → 1 1 2 2 D E 2 Ψ† (r) Ψ (r0) Ψ† (r0) Ψ (r)  − 1 2 2 1 D E After some algebra ... ( = 22 is the Landau level degeneracy) and if we ignore Landau level mixing, we get for the electrons in Landau level  :

;  =   (q =0) (1.91)  X 2  ; 0;0 +  (q)  (q)  ( q)    −   q µ ¶ X X0 X 2 ­ ®  ;0 0;   (q)  (q)  ( q)  −    −   q µ ¶ X X0 X D E where ; 1   + 2 0 2 ( 0) †  (q) − 0+ 00  (1.92) ≡   X0 The average values of these operators are the order parameters for the different broken-symmetry phases of the C2DEG.   (q) = populations (1.93) h = i  6 (q) = coherences (1.94) ­ ® §1.14 Hartree-Fock approximation (monolayer graphene) 19

Exemples of coherence •

0  = valley coherence, (1.95) D  E ↑ ↓ = spin coherence, (1.96) =0=1  ­ ® = orbital coherence (bilayer and trilayer) (1.97) The number of possible­ broken-symmetry® states is large (uniform states, CDW states, SDW, PSDW, crystals, etc.)

TheHartreandFockinteractionsaredefined by 1  (q)= Ξ (q) Ξ ( q)   − µ ¶ and  1 2  (q)=  (p) Ξ (p) Ξ ( p) p q (1.98)  2    × p − µ ¶ X with 2 2 2 2 1 22     22 − 4 0 0 − 4 Ξ (q)= Θ (  )    +   1 + 0 (1.99) 2 | | | | 2 | |− 2 ∙ µ ¶ µ ¶¸ The Hartree-Fock energy of the C2DEG in a magnetic field is:  1 =   (1.100)      X 2 1  ; 0;0 +  (q)  (q)  ( q) 2    − µ ¶  0 q X X X ­ ® D E 1 2 2  (q) ;0 (q)  2    − q µ ¶  0 ¯D E¯ X X X ¯ ¯ ¯ ¯ Interactions  ()  () for  =1 2 3 4 (blue: normal 2DEG, violet C2DEG) −

 and  in  =0are identical to the normal 2DEG interactions • The Fock and Hartree interactions are indepenent of spin and valley indices • In this form, we can study uniform and well as non-uniform states of the C2DEG. • For a uniform state, • ; (q = 0) =0 (1.101)  6 and ­ ®  (0)=0 (1.102) (infinite terms are cancelled by the positive background). Also

2 ;0  (0) =  (1.103)  0 ¯D E¯ X X ¯ ¯ Thus ¯ ¯  1 1 2 =   (0)  (1.104)   − 2   X µ ¶ The Fock term is constant. It follows that the ground states for  =1 3 are spin polarized while the ground states for  =2 4 are spin unpolarized. 20 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

FIGURE 1.1.

For the spin polarized state, the energy is independent of how the electrons are distributed in the • two valleys. If we define a valley pseudospin, then at  =1:  =    1 2 + Υ (q)  ( q)  (q) (1.105) 4      q h − ih i µ ¶ X 1 2 +  (q)[ S ( q) S (q) ]        q h − i·h i µ ¶ X with  (q)=  (q)  (1.106) − and Υ (q)=2 (q)  (q)  (1.107) − For the liquid state

2 2  1   2 =   (0) +  (0) S (0) (1.108)  − 4   |h i| µ ¶ µ ¶

and so, because  (0)  0, the minimal energy is obtained when S (0) is maximized in any direc- tion. The ground state is pseudo-ferromagnetic. WethenexpectaGoldstonemodewithaquadratic| | dispersion relation. (From R. Côté, J. -F. Jobidon, and H. A. Fertig, PRB 78, 085309 (2008).): • §1.14 Hartree-Fock approximation (monolayer graphene) 21

FIGURE 1.2. 22 1. Hartree-Fock Hamiltonians for the chiral 2DEGs in graphene and bilayer graphene

FIGURE 1.3.