Difficulties with Open Structures J

Total Page:16

File Type:pdf, Size:1020Kb

Difficulties with Open Structures J DIFFICULTIES WITH OPEN STRUCTURES J. Ziman To cite this version: J. Ziman. DIFFICULTIES WITH OPEN STRUCTURES. Journal de Physique Colloques, 1972, 33 (C3), pp.C3-209-C3-212. 10.1051/jphyscol:1972331. jpa-00215065 HAL Id: jpa-00215065 https://hal.archives-ouvertes.fr/jpa-00215065 Submitted on 1 Jan 1972 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C3, suppl6ment au no 5-6, Tome 33, Mai-Juin 1972, page C3-209 DIFFICULTIES WITH OPEN STRUCTURES J. M. ZIMAN H. H. Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol BS8 ITL R6sum6. - L'approximation << muffin-tin u est suffisamment bonne pour les structures relati- vement compactes typiques des mktaux. Cependant, dans les structures a liaisons directives ou chaque atome peut ne pas avoir plus de quatre premiers voisins, les <( vallks >) et (( collines D du potentiel interstitiel jouent un rBle fondamental dans la structure electronique. Une partie de notre travail rkcent a Bristol concerne cette difFicultk. Dans la plupart des <( methodes >> de structure de bandes, les deviations par rapport au potentiel <( muffin-tin )) peuvent &re reprksentkes par les composantes de Fourier du potentiel interstitiel ajoutees aux contributions dues a la non-sphericit6 du potentiel sur la sphkre limite. Mais l'8tude du cas extrgme qu'est le polyethylbne montre que ce proc6d6 ne convient pas quand la rkgion interstitielle contient des barribres que les klectrons de valence ne pknktrent presque pas. Dans le rkseau du diamant, on pourra tenir compte de ces effets par la methode cellulaire en utilisant une cellule tktraedrique. Un moyen plus pratique est de remplir la plus grande part du vide interstitiel par une << anti-barribre >> spherique qui se comporte comeun autre type d'atome dans un calcul KKR ou APW. Mais dans les structures en couches ou en chdnes, telles que le graphite ou le poly8thylbne, il semble essentiel d'introduire de nouvelles fonctions de base avec des conditions aux limites approprikes sur les barribres de potentiel planes ou cylindriques. La signification de ces id& pour les theories de la liaison chimique est kvident. Abstract. - The (< muffi-tin >> approximation works well enough for the relatively close-packed structures typical of metals. In ((bonded >) structures, however, where each atom may have no more than four neighbours, the << valleys )) and << hills )) of the interstitial potential play a fundamental part in the electronic structure. Some of our recent work at Bristol has been concerned with this difficulty. In most of the band structure <( methods >>, deviations from the simple muffin-tin potential can be represented by the Fourier components of the interstitial potential, together with contributions from non-sphericity of the muffin-tin wells. But a study of the extreme case of polyethylene shows that this procedure fails when the interstitial region contains barriers through which the valence electrons can scarcely penetrate. In the diamond lattice, these effects could be taken care of by the cellular method, using a tetra- hedral cell. A more practical procedure is to fill the major part of the interstitial void with a sphe- rical << anti-well )>, which behaves like another type of atom in a KKR or APW calculation. But in layer or chain structures, such a graphite or polyethylene, it seems essential to introduce new basis functions with appropriate boundary conditions on plane or cylindrical potential barriers. The significance of these ideas for theories of chemical bonding is obvious. Band structure calculations rely heavily upon the expand our Bloch functions in plane waves in this approximate spherical symmetry of the one-electron region, with relatively simple rules for matching at potential within the core of each atom of the crystal. the boundaries of the atomic spheres. The whole For most physical systems in the condensed state it is success of the APW and KKR methods is often sup- quite a good approximation to draw about each posed to depend upon this simplification. nucleus an (( atomic sphere >>, inside which the Bloch Nevertheless, band structure calculations must not functions can be represented in terms of eigenfunctions be restricted to close packed structures such as simple of the angular momentum. Without this simplification, metals. As we move towards covalent and molecular our computations would be almost impossible. crystals, we encounter lattices where the coordination By definition, the atomic spheres on neighbouring number is much smaller than 8 or 12. In an open sites of a lattice may not overlap. But they often come structure such as the diamond lattice, the muffin-tin very close to touching and hence may occupy a large approximation is certainly not valid. Even if we make fraction of the total volume of the crystal. What about our atomic spheres touch one another, they only the remaining volume - the interstitial region. In a occupy about 33 % of the whole volume. The variation close packed lattice it is a good approximation to of the potential into the centre of an <t interstitial assume that we have a strictly mufin-tin potential, in cage )) is then by no means negligible, being compa- which the interstitial potential is quite flat. This has, rable with, say, the width of the valence band of the of course, the great advantage of allowing us to material. In other words, the interstitial potential Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1972331 C3-210 J. M. ZIMAN becomes a significant feature of the crystal potential These are added to the usual matrix elements repre- capable of channelling electrons along particular senting the effects of the atomic spheres, to make up directions, with effects as important as the direct the full amplitude of the elements r'. in the secular interaction between states centred on the atoms them- determinant. selves. Any serious study of covalent bonding, in This is obviously correct in principle. If there were crystals or molecules, must take account of such effects. no potential wells within the atomic spheres, then we With the present interest in amorphous semiconduc- should simply be carryng out a nearly free electron tors and other disordered systems, it is particularly band structure calculation for the interstitial potential important to have a clear understanding of the role of alone. The general proof is quite straightforward : in the interstitial potential in crystalline materials, so as effect, we match solutions within the atomic spheres not to lose these effects by over-simplified models. In to combinations of plane waves in the interstitial a series of investigations at Bristol over the past few region, allowing now for the mixing produced by the years, we have tried to assess the magnitude of the Fourier components of W,(r). contribution of the interstitial potential to the band This method in fact, is almost exactly equivalent to structure, and to invent new theoretical devices by the use of overlapping atomic potentials, as in the which it may be taken into account with sufficient OPW method. Suppose that V,,(r) had actually been accuracy. This lecture is not meant to be a thorough constructed by superposing the parts of the neigh- review of the problem, but it is intended merely to bouring atomic potentials outside the corresponding provoke discussion. The references, for example, are atomic spheres. The matrix elements of this function not complete. can be written in the form of a structure factor multi- The traditional approach is not to use a muffin-tin plied by the Fourier transform of this outer potential potential at all. The one-electron potential in the crystal for a single atom. At the same time, the APW or is represented as a sum of overlapping atomic or ionic KKRZ matrix elements can be represented as Fourier potentials, each, of course, spherically symmetrical. components of a model potential within the atomic The core region of each atom is then transformed sphere. Combining these two terms, atom by atom we into a weak pseudopotential or model potential, wa(r), find that we have simply calculated the Fourier trans- so that the total crystal (pseudo) potential may be form of a complete atomic pseudopotential, with a written as a sum of contributions from the atomic model potential for the interior of the atom and the sites R,, i. e. outer part intact. This is almost identical with the result obtained by the OPW method, where only the W (r) = wa(r - Rl) . 1 inner part of the atomic potential is really affected by the pseudopotential transformation. The only diffe- This function (or operator) is Fourier transformed - rence is that the overlap from neighbouring atoms may and also screened, exchanged, etc. - to give matrix be sufficient to be noticeable inside the next atomic elements sphere thus modifying the depth or sphericity of the muffin-tin well. This small effect could be dealt with = S(k - k') wa(k - kt) 7 rkk, 0) as a perturbation, or, more elaborately, by the use of where S(k - kf) is a structure factor and w,(k - kf) warped muffin-tin wells [2]. is an atomic form factor. The OPW method, of course, In practice, of course, exponents of the OPW and is equivalent to this procedure, using a special type APWIKKRZ techniques use different schemes of of analytical pseudopotential.
Recommended publications
  • Effective Hamiltonians Derived from Equation-Of-Motion Coupled-Cluster
    Effective Hamiltonians derived from equation-of-motion coupled-cluster wave-functions: Theory and application to the Hubbard and Heisenberg Hamiltonians Pavel Pokhilkoa and Anna I. Krylova a Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 Effective Hamiltonians, which are commonly used for fitting experimental observ- ables, provide a coarse-grained representation of exact many-electron states obtained in quantum chemistry calculations; however, the mapping between the two is not triv- ial. In this contribution, we apply Bloch's formalism to equation-of-motion coupled- cluster (EOM-CC) wave functions to rigorously derive effective Hamiltonians in the Bloch's and des Cloizeaux's forms. We report the key equations and illustrate the theory by examples of systems with electronic states of covalent and ionic characters. We show that the Hubbard and Heisenberg Hamiltonians are extracted directly from the so-obtained effective Hamiltonians. By making quantitative connections between many-body states and simple models, the approach also facilitates the analysis of the correlated wave functions. Artifacts affecting the quality of electronic structure calculations such as spin contamination are also discussed. I. INTRODUCTION Coarse graining is commonly used in computational chemistry and physics. It is ex- ploited in a number of classic models serving as a foundation of modern solid-state physics: tight binding[1, 2], Drude{Sommerfeld's model[3{5], Hubbard's [6] and Heisenberg's[7{9] Hamiltonians. These models explain macroscopic properties of materials through effective interactions whose strengths are treated as model parameters. The values of these pa- rameters are determined either from more sophisticated theoretical models or by fitting to experimental observables.
    [Show full text]
  • Introduction to the Physical Properties of Graphene
    Introduction to the Physical Properties of Graphene Jean-No¨el FUCHS Mark Oliver GOERBIG Lecture Notes 2008 ii Contents 1 Introduction to Carbon Materials 1 1.1 TheCarbonAtomanditsHybridisations . 3 1.1.1 sp1 hybridisation ..................... 4 1.1.2 sp2 hybridisation – graphitic allotopes . 6 1.1.3 sp3 hybridisation – diamonds . 9 1.2 Crystal StructureofGrapheneand Graphite . 10 1.2.1 Graphene’s honeycomb lattice . 10 1.2.2 Graphene stacking – the different forms of graphite . 13 1.3 FabricationofGraphene . 16 1.3.1 Exfoliatedgraphene. 16 1.3.2 Epitaxialgraphene . 18 2 Electronic Band Structure of Graphene 21 2.1 Tight-Binding Model for Electrons on the Honeycomb Lattice 22 2.1.1 Bloch’stheorem. 23 2.1.2 Lattice with several atoms per unit cell . 24 2.1.3 Solution for graphene with nearest-neighbour and next- nearest-neighour hopping . 27 2.2 ContinuumLimit ......................... 33 2.3 Experimental Characterisation of the Electronic Band Structure 41 3 The Dirac Equation for Relativistic Fermions 45 3.1 RelativisticWaveEquations . 46 3.1.1 Relativistic Schr¨odinger/Klein-Gordon equation . ... 47 3.1.2 Diracequation ...................... 49 3.2 The2DDiracEquation. 53 3.2.1 Eigenstates of the 2D Dirac Hamiltonian . 54 3.2.2 Symmetries and Lorentz transformations . 55 iii iv 3.3 Physical Consequences of the Dirac Equation . 61 3.3.1 Minimal length for the localisation of a relativistic par- ticle ............................ 61 3.3.2 Velocity operator and “Zitterbewegung” . 61 3.3.3 Klein tunneling and the absence of backscattering . 61 Chapter 1 Introduction to Carbon Materials The experimental and theoretical study of graphene, two-dimensional (2D) graphite, is an extremely rapidly growing field of today’s condensed matter research.
    [Show full text]
  • Arxiv:1601.03499V1 [Quant-Ph] 14 Jan 2016 Networks [23]
    Non-Hermitian tight-binding network engineering Stefano Longhi Dipartimento di Fisica, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano, Italy We suggest a simple method to engineer a tight-binding quantum network based on proper coupling to an auxiliary non-Hermitian cluster. In particular, it is shown that effective complex non-Hermitian hopping rates can be realized with only complex on-site energies in the network. Three applications of the Hamiltonian engineering method are presented: the synthesis of a nearly transparent defect in an Hermitian linear lattice; the realization of the Fano-Anderson model with complex coupling; and the synthesis of a PT -symmetric tight-binding lattice with a bound state in the continuum. PACS numbers: 03.65.-w, 11.30.Er, 72.20.Ee, 42.82.Et I. INTRODUCTION self-sustained emission in semi-infinite non-Hermitian systems at the exceptional point [29], optical simulation of PT -symmetric quantum field theories in the ghost Hamiltonian engineering is a powerful technique regime [30, 31], invisible defects in tight-binding lattices to control classical and quantum phenomena with [32], non-Hermitian bound states in the continuum [33], important applications in many areas of physics such and Bloch oscillations with trajectories in complex plane as quantum control [1{4], quantum state transfer and [34]. Previous proposals to implement complex hopping quantum information processing [5{10], quantum simu- amplitudes are based on fast temporal modulations of lation [11{13], and topological phases of matter [14{19]. complex on-site energies [31, 32], however such methods In quantum systems described by a tight-binding are rather challenging in practice and, as a matter of Hamiltonian, quantum engineering is usually aimed at fact, to date there is not any experimental demonstration tailoring and controlling hopping rates and site energies, of non-Hermitian complex couplings in tight-binding using either static or dynamic methods.
    [Show full text]
  • CP2K: Atomistic Simulations of Condensed Matter Systems
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 CP2K: Atomistic simulations of condensed matter systems Hutter, Juerg; Iannuzzi, Marcella; Schiffmann, Florian; VandeVondele, Joost Abstract: cp2k has become a versatile open-source tool for the simulation of complex systems on the nanometer scale. It allows for sampling and exploring potential energy surfaces that can be computed using a variety of empirical and first principles models. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern and massively parallel hardware. This review briefly summarizes the main capabilities and illustrates with recent applications thescience cp2k has enabled in the field of atomistic simulation. DOI: https://doi.org/10.1002/wcms.1159 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-89998 Journal Article Accepted Version Originally published at: Hutter, Juerg; Iannuzzi, Marcella; Schiffmann, Florian; VandeVondele, Joost (2014). CP2K: Atomistic simulations of condensed matter systems. Wiley Interdisciplinary Reviews. Computational Molecular Science, 4(1):15-25. DOI: https://doi.org/10.1002/wcms.1159 cp2k: Atomistic Simulations of Condensed Matter Systems J¨urgHutter and Marcella Iannuzzi Physical Chemistry Institute University of Zurich Winterthurerstrasse 190 CH-8057 Zurich, Switzerland Florian Schiffmann and Joost VandeVondele Nanoscale Simulations ETH Zurich Wolfgang-Pauli-Strasse 27 CH-8093 Zurich, Switzerland December 17, 2012 Abstract cp2k has become a versatile open source tool for the simulation of complex systems on the nanometer scale. It allows for sampling and exploring potential energy surfaces that can be computed using a variety of empirical and first principles models.
    [Show full text]
  • Pushing Back the Limit of Ab-Initio Quantum Transport Simulations On
    1 Pushing Back the Limit of Ab-initio Quantum Transport Simulations on Hybrid Supercomputers Mauro Calderara∗, Sascha Bruck¨ ∗, Andreas Pedersen∗, Mohammad H. Bani-Hashemian†, Joost VandeVondele†, and Mathieu Luisier∗ ∗Integrated Systems Laboratory, ETH Zurich,¨ 8092 Zurich,¨ Switzerland †Nanoscale Simulations, ETH Zurich,¨ 8093 Zurich,¨ Switzerland ABSTRACT The capabilities of CP2K, a density-functional theory package and OMEN, a nano-device simulator, are combined to study transport phenomena from first-principles in unprecedentedly large nanostructures. Based on the Hamil- tonian and overlap matrices generated by CP2K for a given system, OMEN solves the Schr¨odinger equation with open boundary conditions (OBCs) for all possible electron momenta and energies. To accelerate this core operation a robust algorithm called SplitSolve has been developed. It allows to simultaneously treat the OBCs on CPUs and the Schr¨odinger equation on GPUs, taking advantage of hybrid nodes. Our key achievements on the Cray-XK7 Titan are (i) a reduction in time-to-solution by more than one order of magnitude as compared to standard methods, enabling the simulation of structures with more than 50000 atoms, (ii) a parallel efficiency of 97% when scaling from 756 up to 18564 nodes, and (iii) a sustained performance of 15 DP-PFlop/s. arXiv:1812.01396v1 [physics.comp-ph] 4 Dec 2018 1. INTRODUCTION The fabrication of nanostructures has considerably improved over the last couple of years and is rapidly ap- proaching the point where individual atoms are reliably manipulated and assembled according to desired patterns. There is still a long way to go before such processes enter mass production, but exciting applications have already been demonstrated: a low-temperature single-atom transistor [1], atomically precise graphene nanoribbons [2], or van der Waals heterostructures based on metal-dichalcogenides [3] were recently synthesized.
    [Show full text]
  • An Efficient Magnetic Tight-Binding Method for Transition
    An efficient magnetic tight-binding method for transition metals and alloys Cyrille Barreteau, Daniel Spanjaard, Marie-Catherine Desjonquères To cite this version: Cyrille Barreteau, Daniel Spanjaard, Marie-Catherine Desjonquères. An efficient magnetic tight- binding method for transition metals and alloys. Comptes Rendus Physique, Centre Mersenne, 2016, 17 (3-4), pp.406 - 429. 10.1016/j.crhy.2015.12.014. cea-01384597 HAL Id: cea-01384597 https://hal-cea.archives-ouvertes.fr/cea-01384597 Submitted on 20 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. C. R. Physique 17 (2016) 406–429 Contents lists available at ScienceDirect Comptes Rendus Physique www.sciencedirect.com Condensed matter physics in the 21st century: The legacy of Jacques Friedel An efficient magnetic tight-binding method for transition metals and alloys Un modèle de liaisons fortes magnétique pour les métaux de transition et leurs alliages ∗ Cyrille Barreteau a,b, , Daniel Spanjaard c, Marie-Catherine Desjonquères a a SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France b DTU NANOTECH, Technical University of Denmark, Ørsteds Plads 344, DK-2800 Kgs. Lyngby, Denmark c Laboratoire de physique des solides, Université Paris-Sud, bâtiment 510, 91405 Orsay cedex, France a r t i c l e i n f o a b s t r a c t Article history: An efficient parameterized self-consistent tight-binding model for transition metals using s, Available online 21 December 2015 p and d valence atomic orbitals as a basis set is presented.
    [Show full text]
  • Density-Functional Tight-Binding for Beginners
    Computational Materials Science 47 (2009) 237–253 Contents lists available at ScienceDirect Computational Materials Science journal homepage: www.elsevier.com/locate/commatsci Density-functional tight-binding for beginners Pekka Koskinen *, Ville Mäkinen NanoScience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä, Finland article info abstract Article history: This article is a pedagogical introduction to density-functional tight-binding (DFTB) method. We derive it Received 1 June 2009 from the density-functional theory, give the details behind the tight-binding formalism, and give practi- Accepted 29 July 2009 cal recipes for parametrization: how to calculate pseudo-atomic orbitals and matrix elements, and espe- Available online 22 August 2009 cially how to systematically fit the short-range repulsions. Our scope is neither to provide a historical review nor to make performance comparisons, but to give beginner’s guide for this approximate, but PACS: in many ways invaluable, electronic structure simulation method—now freely available as an open- 31.10.+z source software package, hotbit. 71.15.Dx 2009 Elsevier B.V. All rights reserved. 71.15.Nc Ó 31.15.EÀ Keywords: DFTB Tight-binding Density-functional theory Electronic structure simulations 1. Introduction sizes were already possible. With DFT as a competitor, the DFTB community never grew large. If you were given only one method for electronic structure calcu- Despite being superseded by DFT, DFTB is still useful in many lations, which method would you choose? It certainly depends on ways: (i) In calculations of large systems [4,5]. Computational scal- your field of research, but, on average, the usual choice is probably ing of DFT limits system sizes, while better scaling is easier to achieve density-functional theory (DFT).
    [Show full text]
  • DFTB-MD Simulation of Shocked Water Cluster Hongtao
    5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) DFTB-MD Simulation of Shocked Water Cluster Hongtao Liu 1, a, Ping Zhou 1, b, Hongjian Li 1, Anyang Li 2 and Yusheng Dou 1 1Department of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China 2Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, 710069, China [email protected], [email protected] Keywords: multiscale shock technique, water, DFTB, quantum molecular dynamics Abstract. Relatively efficient and precise quantum molecular dynamics simulations were performed to gain fundamental insights into the mechanisms for the primary detonation process of water under shock wave loading using self-consistent charge density-functional tight binding (SCC-DFTB) calculations combined with the multiscale shock technique (MSST) as well as DFTB+ program conjunct with MSST. We observe that water achieves chemical equilibrium in less than 4ps for all shock conditions studied. What’s more, we make comparison with the experimental results for the Hugoniot pressure and density final states. At last, our simulations show that + - decomposition occurs through the reversible H2O↔H +OH , in agreement with experiment. Therefore, the molecular dynamics method of water under extreme conditions is effective. 1. Introduction In recent years, the nature of water under extreme conditions has gradually been widely concerned. For example, subcritical water and supercritical water can be used as clean and efficient reaction medium or reactant. [1] In spite of intense experimental research [2], the coverage of the nature of water under high temperature and pressure is still rarely.
    [Show full text]
  • Project in Physics and Astronomy, 15C: Tight Binding Modelling of Materials
    Project in Physics and Astronomy, 15c: Tight Binding Modelling of Materials Raquel Esteban Puyuelo October 28, 2015 Abstract In this project, a parametrized tight binding (TB) code is developed in order to describe the essential physics of real materials using a minimal model. We have used this code to compute the band structure of different materials where the primary inputs are the hopping parameters, obtained from a Nth order muffin-tin orbital (NMTO) method. The code has been tested for a single atom in a unit cell having only one effective orbital (Li) as well as for many atoms having more than one orbital (NiS and IrO2). A successful reproduction of the density functional theory band structure for all these three systems implies that this code can be applied in general to any real material. We have also analyzed the effect of various nearest neighbor interactions on the electronic structure of these systems. Contents 1 Introduction 2 2 Theory 2 2.1 Description of the Tight Binding Model . .2 2.2 Examples . .3 2.2.1 One-dimensional chain: single s-band . .3 2.2.2 One dimensional chain with two atoms . .4 2.2.3 Three dimensional example: Lithium . .5 2.2.4 Summary . .5 2.3 Extraction of the Tight Binding parameters . .6 2.3.1 Density Functional Theory . .6 2.3.2 Fitting of TBM parameters . .7 3 Code operation 7 3.1 Inputs . .7 3.2 Working scheme . .7 4 Applications 8 4.1 Li .................................................8 4.2 NiS.................................................9 4.3 IrO2 ................................................ 10 5 Conclusion 11 6 Appendix 13 1 Tight Binding Modelling of Materials Raquel Esteban Puyuelo 1 Introduction model), but it can be easily extended to more com- plex cases.
    [Show full text]
  • An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation
    Institute for Advanced Simulation An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation Anthony T. Paxton published in Multiscale Simulation Methods in Molecular Sciences, J. Grotendorst, N. Attig, S. Bl¨ugel, D. Marx (Eds.), Institute for Advanced Simulation, Forschungszentrum J¨ulich, NIC Series, Vol. 42, ISBN 978-3-9810843-8-2, pp. 145-176, 2009. c 2009 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above. http://www.fz-juelich.de/nic-series/volume42 An Introduction to the Tight Binding Approximation – Implementation by Diagonalisation Anthony T. Paxton Atomistic Simulation Centre School of Mathematics and Physics Queen’s University Belfast Belfast BT1 7NN, UK E-mail: [email protected] 1 What is Tight Binding? “Tight binding” has existed for many years as a convenient and transparent model for the description of electronic structure in molecules and solids. It often provides the basis for construction of many body theories such as the Hubbard model and the Anderson impurity model. Slater and Koster call it the tight binding or “Bloch” method and their historic paper provides the systematic procedure for formulating a tight binding model.1 In their paper you will find the famous “Slater–Koster” table that is used to build a tight binding hamiltonian.
    [Show full text]
  • Part V: Electronic Band Structure
    Part V: Electronic Band Structure Now that we know what types of lattices are possible, and how to measure them, let us try to figure out what happens to the valence electrons when they move in such lattices, i.e. what energies and wavefunctions can they have. We’ve already seen a simple model (the tight-binding model in 1D) – here we will discuss the general case and try to understand when simple models like the tight-binding model are valid, and when not. To start with, let me remind you what happens to electrons in free space (i.e., when there are no nuclei on an ordered lattice in the neighbourhood, just the electrons). As usual, we will ignore electron-electron interactions, so we need only find the spectrum for a single electron and then occupy the lowest levels with all the electrons we have available. Since there are no interactions, the Hamiltonian for a single electron has only the kinetic energy h¯2 H~ = − ∇2 0 2m Because this system is invariant to all translations, we expect the wavefunctions to be plane-waves: ~ φ(0)(~r) ∝ eik·~r ~k where ~k = ~p/h¯ is the momentum of the electron, up to a factor ofh ¯. Indeed, this guess works and the corresponding eigenenergy is: h¯2~k2 ~p2 E (~k)= = 0 2m 2m i.e. the expected kinetic energy. Note that here there are no restrictions on the allowed momenta: any value of ~k is allowed, meaning that there are eigenstates for any energy E > 0 (there are no eigenstates with E < 0; check if you’re not sure why).
    [Show full text]
  • Quasiparticle Interference, Quasiparticle Interactions and the Origin of the Charge Density-Wave in 2H-Nbse2
    Quasiparticle Interference, quasiparticle interactions and the origin of the charge density-wave in 2H-NbSe2 C. J. Arguello1, E. P. Rosenthal1, E. F. Andrade1, W. Jin2, P. C. Yeh2, N. Zaki3, S. Jia4, R. J. Cava4, R. M. Fernandes5, A. J. Millis1, T. Valla6, R. M. Osgood Jr.3;4, A. N. Pasupathy1 1. Department of Physics, Columbia University, NY, NY, 10027 2. Department of Applied Physics and Applied Math, Columbia University, NY, NY, 10027 3. Department of Electrical Engineering, Columbia University, NY, NY, 10027 4. Department of Chemistry, Princeton University, Princeton NJ 08540 5. School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 6. Brookhaven National Laboratory, Upton NY (Dated: August 26, 2014) Abstract We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe2, that we measure by scanning tunneling spectroscopic imaging. We show from the momentum and energy dependence of the quasiparticle interference that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe2. We demonstrate that by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wavevector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiology and the interactions. arXiv:1408.4432v2 [cond-mat.str-el] 22 Aug 2014 In 2H-NbSe2, we use this combination to show that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the CDW ordering wave vector.
    [Show full text]