Electronic Band Structure of Transition Metal Dichalcogenides from Ab Initio and Slater–Koster Tight-Binding Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crystal Structures
Crystal Structures Academic Resource Center Crystallinity: Repeating or periodic array over large atomic distances. 3-D pattern in which each atom is bonded to its nearest neighbors Crystal structure: the manner in which atoms, ions, or molecules are spatially arranged. Unit cell: small repeating entity of the atomic structure. The basic building block of the crystal structure. It defines the entire crystal structure with the atom positions within. Lattice: 3D array of points coinciding with atom positions (center of spheres) Metallic Crystal Structures FCC (face centered cubic): Atoms are arranged at the corners and center of each cube face of the cell. FCC continued Close packed Plane: On each face of the cube Atoms are assumed to touch along face diagonals. 4 atoms in one unit cell. a 2R 2 BCC: Body Centered Cubic • Atoms are arranged at the corners of the cube with another atom at the cube center. BCC continued • Close Packed Plane cuts the unit cube in half diagonally • 2 atoms in one unit cell 4R a 3 Hexagonal Close Packed (HCP) • Cell of an HCP lattice is visualized as a top and bottom plane of 7 atoms, forming a regular hexagon around a central atom. In between these planes is a half- hexagon of 3 atoms. • There are two lattice parameters in HCP, a and c, representing the basal and height parameters Volume respectively. 6 atoms per unit cell Coordination number – the number of nearest neighbor atoms or ions surrounding an atom or ion. For FCC and HCP systems, the coordination number is 12. For BCC it’s 8. -
A Valleytronic Diamond Transistor: Electrostatic Control of Valley-Currents and Charge State Manipulation of NV Centers
A valleytronic diamond transistor: electrostatic control of valley-currents and charge state manipulation of NV centers N. Suntornwipat1, S. Majdi1, M. Gabrysch1, K. K. Kovi1,3, V. Djurberg1, I. Friel2, D. J. Twitchen2 and J. Isberg1* 1 Division for Electricity, Department of Electrical Engineering, Uppsala University, Box 65, 751 03, Uppsala, Sweden. 2 Element Six, Global Innovation Centre, Fermi Ave, Harwell Oxford, Oxfordshire OX11 0QR, United Kingdom. 3 Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL-60439, United States. (Dated: 17nd Sep 2020) The valley degree of freedom in many-valley semiconductors provides a new paradigm for storing and processing information in valleytronic and quantum-computing applications. Achieving practical devices require all-electric control of long-lived valley-polarized states, without the use of strong external magnetic fields. Attributable to the extreme strength of the carbon-carbon bond, diamond possesses exceptionally stable valley states which provides a useful platform for valleytronic devices. Using ultra-pure single- crystalline diamond, we here demonstrate electrostatic control of valley-currents in a dual gate field-effect transistor, where the electrons are generated with a short UV pulse. The charge- and the valley- current measured at receiving electrodes are controlled separately by varying the gate voltages. A proposed model based on drift-diffusion equations coupled through rate terms, with the rates computed by microscopic Monte Carlo simulations, is used to interpret experimental data. As an application, valley-current charge- state modulation of nitrogen-vacancy (NV) centers is demonstrated. Charge and spin are both well-defined quantum numbers created in diamond.6 This occurs by the hot electron in solids. -
Crystal Structure of a Material Is Way in Which Atoms, Ions, Molecules Are Spatially Arranged in 3-D Space
Crystalline Structures – The Basics •Crystal structure of a material is way in which atoms, ions, molecules are spatially arranged in 3-D space. •Crystal structure = lattice (unit cell geometry) + basis (atom, ion, or molecule positions placed on lattice points within the unit cell). •A lattice is used in context when describing crystalline structures, means a 3-D array of points in space. Every lattice point must have identical surroundings. •Unit cell: smallest repetitive volume •Each crystal structure is built by stacking which contains the complete lattice unit cells and placing objects (motifs, pattern of a crystal. A unit cell is chosen basis) on the lattice points: to represent the highest level of geometric symmetry of the crystal structure. It’s the basic structural unit or building block of crystal structure. 7 crystal systems in 3-D 14 crystal lattices in 3-D a, b, and c are the lattice constants 1 a, b, g are the interaxial angles Metallic Crystal Structures (the simplest) •Recall, that a) coulombic attraction between delocalized valence electrons and positively charged cores is isotropic (non-directional), b) typically, only one element is present, so all atomic radii are the same, c) nearest neighbor distances tend to be small, and d) electron cloud shields cores from each other. •For these reasons, metallic bonding leads to close packed, dense crystal structures that maximize space filling and coordination number (number of nearest neighbors). •Most elemental metals crystallize in the FCC (face-centered cubic), BCC (body-centered cubic, or HCP (hexagonal close packed) structures: Room temperature crystal structure Crystal structure just before it melts 2 Recall: Simple Cubic (SC) Structure • Rare due to low packing density (only a-Po has this structure) • Close-packed directions are cube edges. -
Enhanced Valley-Resolved Thermoelectric Transport in a Magnetic Silicene Superlattice
Home Search Collections Journals About Contact us My IOPscience Enhanced valley-resolved thermoelectric transport in a magnetic silicene superlattice This content has been downloaded from IOPscience. Please scroll down to see the full text. 2015 New J. Phys. 17 073026 (http://iopscience.iop.org/1367-2630/17/7/073026) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 62.204.246.50 This content was downloaded on 13/08/2015 at 09:21 Please note that terms and conditions apply. New J. Phys. 17 (2015) 073026 doi:10.1088/1367-2630/17/7/073026 PAPER Enhanced valley-resolved thermoelectric transport in a magnetic OPEN ACCESS silicene superlattice RECEIVED 19 April 2015 Zhi Ping Niu, Yong Mei Zhang and Shihao Dong REVISED College of Science, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, Peopleʼs Republic of China 8 June 2015 ACCEPTED FOR PUBLICATION E-mail: [email protected] 18 June 2015 Keywords: valleytronics, magnetic silicene superlattice, thermoelectric transport PUBLISHED 22 July 2015 Content from this work Abstract may be used under the Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of terms of the Creative Commons Attribution 3.0 freedom in addition to charge and spin, which has revived the field of valleytronics. In this work we licence. investigate the valley-resolved thermoelectric transport through a magnetic silicene superlattice. Since Any further distribution of this work must maintain spin is coupled to the valley, this device allows a coexistence of the insulating transmission gap of one attribution to the author(s) and the title of valley and the metallic resonant band of the other, resulting in a strong valley polarization Pv. -
Effective Hamiltonians Derived from Equation-Of-Motion Coupled-Cluster
Effective Hamiltonians derived from equation-of-motion coupled-cluster wave-functions: Theory and application to the Hubbard and Heisenberg Hamiltonians Pavel Pokhilkoa and Anna I. Krylova a Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 Effective Hamiltonians, which are commonly used for fitting experimental observ- ables, provide a coarse-grained representation of exact many-electron states obtained in quantum chemistry calculations; however, the mapping between the two is not triv- ial. In this contribution, we apply Bloch's formalism to equation-of-motion coupled- cluster (EOM-CC) wave functions to rigorously derive effective Hamiltonians in the Bloch's and des Cloizeaux's forms. We report the key equations and illustrate the theory by examples of systems with electronic states of covalent and ionic characters. We show that the Hubbard and Heisenberg Hamiltonians are extracted directly from the so-obtained effective Hamiltonians. By making quantitative connections between many-body states and simple models, the approach also facilitates the analysis of the correlated wave functions. Artifacts affecting the quality of electronic structure calculations such as spin contamination are also discussed. I. INTRODUCTION Coarse graining is commonly used in computational chemistry and physics. It is ex- ploited in a number of classic models serving as a foundation of modern solid-state physics: tight binding[1, 2], Drude{Sommerfeld's model[3{5], Hubbard's [6] and Heisenberg's[7{9] Hamiltonians. These models explain macroscopic properties of materials through effective interactions whose strengths are treated as model parameters. The values of these pa- rameters are determined either from more sophisticated theoretical models or by fitting to experimental observables. -
The VOI-Based Valleytronics
The VOI-Based Valleytronics G. Y. Wu,1,2,* N.-Y. Lue,1 and Y.-C. Chen,1 Abstract We discuss the valley-orbit interaction (VOI) and the concept of VOI based valleytronics. Potential of such valleytronics is illustrated, with graphene as an example material, in several frontier applications comprising FETs, quantum computing, and quantum communications. Two important devices are discussed as examples, namely, 1) valley pair qubits in coupled graphene quantum dots, to build quantum networks consisting of graphene and photons, and 2) valley- based FETs consisting of graphene quantum wires (channels) and armchair graphene nanoribbons (sources and drains), to build graphene-based, low-power FET circuits. This demonstration makes the VOI-based valleytronics an attractive R & D direction in the area of electronics. 1 Department of Physics, National Tsing-Hua University, Hsin-Chu, Taiwan 30013 2Department of Electrical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30013 * Email: [email protected] PACS numbers: 85.35.-p, 72.80.Vp, 73.63.Nm, 03.67.Lx, 03.67.Hk, 85.30.Tv 1 I. Introduction The emerging graphene[1] has provided an exciting continent of physics for exploration[1-4] and, as a promising future electronic material, numerous interesting possibilities for frontier applications. In particular, it has opened the door to implement a new realm of electronics, namely, valleytronics, based on the valley degree of freedom[5] in electrons for the control of electrical properties[5-16]. Valley filtering (or polarization)[5-12,15], magnetic effects[6,7], and devices[5,9,13-16] have been explored or proposed. -
Dimensionality and Anisotropicity Dependence of Radiative Recombination in Nanostructured Phosphorene
Journal of Materials Chemistry C Dimensionality and Anisotropicity Dependence of Radiative Recombination in Nanostructured Phosphorene Journal: Journal of Materials Chemistry C Manuscript ID TC-ART-04-2019-002214.R1 Article Type: Paper Date Submitted by the 28-May-2019 Author: Complete List of Authors: Wu, Feng; University of California Santa Cruz Rocca, Dario; Universite de Lorraine Ecole Doctorale LTS Ping, Yuan; University of California Santa Cruz, Chemistry and Biochemistry Page 1 of 8 Journal of Materials Chemistry C Dimensionality and Anisotropicity Dependence of Ra- diative Recombination in Nanostructured Phospho- rene Feng Wua, Dario Roccab and Yuan Ping∗c The interplay between dimensionality and anisotropicity leads to intriguing optoelectronic prop- erties and exciton dynamics in low dimensional semiconductors. In this study we use nanos- tructured phosphorene as a prototypical example to unfold such complex physics and develop a general first-principles framework to study exciton dynamics in low dimensional systems. Specif- ically we derived the radiative lifetime and light emission intensity from 2D to 0D systems based on many body perturbation theory, and investigated the dimensionality and anisotropicity effects on radiative recombination lifetime both at 0 K and finite temperature, as well as polarization and angle dependence of emitted light. We show that the radiative lifetime at 0 K increases by an order of 103 with the lowering of one dimension (i.e. from 2D to 1D nanoribbons or from 1D to 0D quantum dots). We also show that obtaining the radiative lifetime at finite temperature requires accurate exciton dispersion beyond the effective mass approximation. Finally, we demonstrate that monolayer phosphorene and its nanostructures always emit linearly polarized light consistent with experimental observations, different from in-plane isotropic 2D materials like MoS2 and h-BN that can emit light with arbitrary polarization, which may have important implications for quantum information applications. -
Introduction to the Physical Properties of Graphene
Introduction to the Physical Properties of Graphene Jean-No¨el FUCHS Mark Oliver GOERBIG Lecture Notes 2008 ii Contents 1 Introduction to Carbon Materials 1 1.1 TheCarbonAtomanditsHybridisations . 3 1.1.1 sp1 hybridisation ..................... 4 1.1.2 sp2 hybridisation – graphitic allotopes . 6 1.1.3 sp3 hybridisation – diamonds . 9 1.2 Crystal StructureofGrapheneand Graphite . 10 1.2.1 Graphene’s honeycomb lattice . 10 1.2.2 Graphene stacking – the different forms of graphite . 13 1.3 FabricationofGraphene . 16 1.3.1 Exfoliatedgraphene. 16 1.3.2 Epitaxialgraphene . 18 2 Electronic Band Structure of Graphene 21 2.1 Tight-Binding Model for Electrons on the Honeycomb Lattice 22 2.1.1 Bloch’stheorem. 23 2.1.2 Lattice with several atoms per unit cell . 24 2.1.3 Solution for graphene with nearest-neighbour and next- nearest-neighour hopping . 27 2.2 ContinuumLimit ......................... 33 2.3 Experimental Characterisation of the Electronic Band Structure 41 3 The Dirac Equation for Relativistic Fermions 45 3.1 RelativisticWaveEquations . 46 3.1.1 Relativistic Schr¨odinger/Klein-Gordon equation . ... 47 3.1.2 Diracequation ...................... 49 3.2 The2DDiracEquation. 53 3.2.1 Eigenstates of the 2D Dirac Hamiltonian . 54 3.2.2 Symmetries and Lorentz transformations . 55 iii iv 3.3 Physical Consequences of the Dirac Equation . 61 3.3.1 Minimal length for the localisation of a relativistic par- ticle ............................ 61 3.3.2 Velocity operator and “Zitterbewegung” . 61 3.3.3 Klein tunneling and the absence of backscattering . 61 Chapter 1 Introduction to Carbon Materials The experimental and theoretical study of graphene, two-dimensional (2D) graphite, is an extremely rapidly growing field of today’s condensed matter research. -
Arxiv:1707.02465V2 [Cond-Mat.Mes-Hall] 28 Jun 2018 Ri Opig(O)Adaszbegpo 1 Spin- of Its Gap Large Sizable a Recently
Strain-controlled valley and spin separation in silicene heterojunctions Yuan Li1,2,∗ H. B. Zhu1, G. Q. Wang1, Y. Z. Peng1, J. R. Xu1, Z. H. Qian2, R. Bai2, G. H. Zhou3, C. Yesilyurt4, Z. B. Siu4, and M. B. A. Jalil4† 1Department of Physics, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China 2Center for Integrated Spintronic Devices (CISD), Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China 3Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China and 4 Computational Nanoelectronics and Nano-device Laboratory, Electrical and Computer Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore (Dated: October 1, 2018) We adopt the tight-binding mode-matching method to study the strain effect on silicene hetero- junctions. It is found that valley and spin-dependent separation of electrons cannot be achieved by the electric field only. When a strain and an electric field are simultaneously applied to the central scattering region, not only are the electrons of valleys K and K’ separated into two distinct transmission lobes in opposite transverse directions, but the up-spin and down-spin electrons will also move in the two opposite transverse directions. Therefore, one can realize an effective modu- lation of valley and spin-dependent transport by changing the amplitude and the stretch direction of the strain. The phenomenon of the strain-induced valley and spin deflection can be exploited for silicene-based valleytronics devices. PACS numbers: 73.63.-b, 71.70.Ej, 71.70.Fk, 73.22.-f I. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
Density Functional Theory
Density Functional Theory Fundamentals Video V.i Density Functional Theory: New Developments Donald G. Truhlar Department of Chemistry, University of Minnesota Support: AFOSR, NSF, EMSL Why is electronic structure theory important? Most of the information we want to know about chemistry is in the electron density and electronic energy. dipole moment, Born-Oppenheimer charge distribution, approximation 1927 ... potential energy surface molecular geometry barrier heights bond energies spectra How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Theoretical Musings! ● Ψ is complicated. ● Difficult to interpret. ● Can we simplify things? 1/2 ● Ψ has strange units: (prob. density) , ● Can we not use a physical observable? ● What particular physical observable is useful? ● Physical observable that allows us to construct the Hamiltonian a priori. How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Pierre Hohenberg and Walter Kohn 1964 — density functional theory All the information is contained in the density, a simple function of 3 coordinates. Electronic structure (continued) Erwin Schrödinger -
“Band Structure” for Electronic Structure Description
www.fhi-berlin.mpg.de Fundamentals of heterogeneous catalysis The very basics of “band structure” for electronic structure description R. Schlögl www.fhi-berlin.mpg.de 1 Disclaimer www.fhi-berlin.mpg.de • This lecture is a qualitative introduction into the concept of electronic structure descriptions different from “chemical bonds”. • No mathematics, unfortunately not rigorous. • For real understanding read texts on solid state physics. • Hellwege, Marfunin, Ibach+Lüth • The intention is to give an impression about concepts of electronic structure theory of solids. 2 Electronic structure www.fhi-berlin.mpg.de • For chemists well described by Lewis formalism. • “chemical bonds”. • Theorists derive chemical bonding from interaction of atoms with all their electrons. • Quantum chemistry with fundamentally different approaches: – DFT (density functional theory), see introduction in this series – Wavefunction-based (many variants). • All solve the Schrödinger equation. • Arrive at description of energetics and geometry of atomic arrangements; “molecules” or unit cells. 3 Catalysis and energy structure www.fhi-berlin.mpg.de • The surface of a solid is traditionally not described by electronic structure theory: • No periodicity with the bulk: cluster or slab models. • Bulk structure infinite periodically and defect-free. • Surface electronic structure theory independent field of research with similar basics. • Never assume to explain reactivity with bulk electronic structure: accuracy, model assumptions, termination issue. • But: electronic