VIA EPIA M-Series Mini-ITX Mainboard Operation Guidelines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Operating Guide
Operating Guide EPIA EN-Series Mini-ITX Mainboard January 18, 2012 Version 1.21 EPIA EN-Series Operating Guide Table of Contents Table of Contents ...................................................................................................................................................................................... i VIA EPIA EN-Series Overview.............................................................................................................................................................. 1 VIA EPIA EN-Series Layout .................................................................................................................................................................. 2 VIA EPIA EN-Series Specifications ...................................................................................................................................................... 3 VIA EPIA EN Processor SKUs .............................................................................................................................................................. 4 VIA CN700 Chipset Overview ............................................................................................................................................................... 5 VIA EPIA EN-Series I/O Back Panel Layout ...................................................................................................................................... 6 VIA EPIA EN-Series Layout Diagram & Mounting Holes .............................................................................................................. -
Flexatx-SKL-S
USER GUIDE FlexATX-SKL-S Doc. Rev. 1.4 Doc.-ID: 1061-4868 FlexATX-SKL-S – Rev. 1.4 This page has been intentionally left blank www.kontron.com // 2 FlexATX-SKL-S – Rev. 1.4 FLEXATX-SKL-S - USER GUIDE Disclaimer Kontron would like to point out that the information contained in this manual may be subject to alteration, particularly as a result of the constant upgrading of Kontron products. This document does not entail any guarantee on the part of Kontron with respect to technical processes described in the manual or any product characteristics set out in the manual. Kontron assumes no responsibility or liability for the use of the described product(s), conveys no license or title under any patent, copyright or mask work rights to these products and makes no representations or warranties that these products are free from patent, copyright or mask work right infringement unless otherwise specified. Applications that are described in this manual are for illustration purposes only. Kontron makes no representation or warranty that such application will be suitable for the specified use without further testing or modification. Kontron expressly informs the user that this manual only contains a general description of processes and instructions which may not be applicable in every individual case. In cases of doubt, please contact Kontron. This manual is protected by copyright. All rights are reserved by Kontron. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the express written permission of Kontron. -
A Superscalar Out-Of-Order X86 Soft Processor for FPGA
A Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel -
Analysis and Comparison of Different Microprocessors Used in Computer
Analysis and Comparison of Different Microprocessors used in Computer Architecture Manoj Gyanani Computer Science Department San Jose State University San Jose, CA 95192 408-455-4128 [email protected] ABSTRACT low level activities. It mainly performs the task of uploading, In the current world, it’s almost impossible to imagine that someone downloading and recalling data into and from the memory card. can live without computers. Computers have become an electronic Apart from that it also does complex mathematical calculations device of almost every day use for individuals of every age. we within a single command. cannot imagine of advancements without computers. Hence it becomes very important to understand the principal running entity of 2.2 Reduced Instruction Set Microprocessor the computer architecture. The microprocessor is the brain of a This processor is also called as RISC. These kinds of chips are made computer. it is a multipurpose, programmable device that according to the function in which the microprocessor can carry out accepts digital data as input, processes it according to instructions small things within a particular command. In this way it completes stored in its memory, and provides results as output. Hence, it is more commands at a faster rate. significant to analyze various processors and then compare them. So that we can know about pros and cons of different processors. We 2.3 Superscalar Processors have to select the best microprocessor and for that , it is really This is a processor that copies the hardware on the microprocessor important to analyze & make a comparison among them. Parameters for performing numerous tasks at a time. -
Cash Flow Comparison
國立政治大學商學院國際經營管理 英語碩士學位學程 International MBA Program College of Commerce National Chengchi University 碩士論文 治 Master政 ’s Thesis大 立 學 國 三大電腦晶片製造商之財務比較‧ ‧ A ComparisonN of Major Computer Chipset Vendors a y t t i Inio Financial Point of View s n r a e i v l C n heng chi U Student: Roger Chang Advisor: Professor James Liu 中華民國一百年六月 June 2011 三大電腦晶片製造商之財務比較 A Comparison of Major Computer Chipset Vendors In Financial Point of View 研究生: 張鼎昱 Student: Roger Chang 指導教授: 劉助 Advisor: Prof. James Liu 治 政 大 立 國立政治大學 商學院國際經營管理英語碩士學 學位學程 國 碩士論文 ‧ ‧ N a y t t A Thesis i i s o r Sunbmitted to International MBAe Program a i v l NationalC Chengchi nUniversity he i U in partial fulfillmentngch of the Requirements for the degree of Master in Business Administration 中華民國一百年六月 June 2011 i Abstract A Comparison of Major Computer Chipset Vendors In Financial Point of View By Roger Chang The goal of this master thesis is to analyze the治 three major chipset players in today’s Personal 政 大 Computer (PC) industry, while立 providing recommendations in different perspectives. One of the perspectives is from the investor’s point of view to single out a 學company with the most long term 國 investment value. The other is from each company’s management point of view to suggest for the ‧ areas of improvement for the companies. Two of the three companies discussed in this thesis are ‧ American-based global companiesN namely, Intel and AMD, while the other is a Taiwanese company: a y t t i VIA Technology. -
694Tas User's Manual
694TAS USER'S MANUAL M/B For Socket 370 Pentium III Processor NO. G03-694TAS3A Release date: May 2002 Trademark: ∗ Pentium is registered trademark and Celeron is a trademark of Intel corporation, the other names and brands are the property of their respective owners. ∗ Specifications and Information contained in this documentation are furnished for information use only, and are subject to change at any time without notice, and should not be construed as a commitment by manufacturer. TABLE OF CONTENT USER’S NOTICE ............................................................................. 1 MANUAL REVISION INFORMATION ............................................. 2 COOLING SOLUTIONS.................................................................. 2 CHAPTER 1 INTRODUCTION OF 694TAS MOTHERBOARD 1-1 FEATURE OF MOTHERBOARD............................................................... 3 1-2 SPECIFICATION .......................................................................................... 4 1-3 PERFORMANCE LIST................................................................................ 5 1-4 LAYOUT & JUMPER SETTING................................................................ 6 CHAPTER 2 HARDWARE INSTALLATION 2-1 HARDWARE INSTALLATION STEPS..................................................... 8 2-2 CHECKING MOTHERBOARD'S JUMPER SETTING .......................... 8 2-3 INSTALL CPU............................................................................................... 10 2-3-1 GLOSSARY....................................................................................................10 -
Single-Chip North Bridge for Pentium 4 Cpus with 800 Mhz FSB
Single-Chip North Bridge for Pentium 4 CPUs with 800 MHz FSB and8x/4x/2xAGPBus plus Advanced ECC Memory Controller supporting DDR400, 333, 266, and 200 (PC3200 / 2700 / 2100 / 1600) DDR DRAM for Desktop PC Systems Revision 0.4 April 14, 2003 VIA TECHNOLOGIES, INC. Copyright Notice: Copyright © 2001, 2002, 2003, VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users. Trademark Notices: VT8235, VT8236, VT8237 and PT800 may only be used to identify products of VIA Technologies. Intel™, Pentium™ and MMX™ are registered trademarks of Intel Corp. VIA C3™ is a registered trademark of VIA Technologies Athlon™ and AMD-K7™ are registered trademarks of Advanced Micro Devices Corp. Windows XP™. Windows 2000™. Windows ME™, Windows 98™, and Plug and Play™ are registered trademarks of Microsoft Corp. PCI™ is a registered trademark of the PCI Special Interest Group. PS/2™ is a registered trademark of International Business Machines Corp. All trademarks are the properties of their respective owners. Disclaimer Notice: No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies, Inc. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. -
Computer Service Technician- CST Competency Requirements
Computer Service Technician- CST Competency Requirements This Competency listing serves to identify the major knowledge, skills, and training areas which the Computer Service Technician needs in order to perform the job of servicing the hardware and the systems software for personal computers (PCs). The present CST COMPETENCIES only address operating systems for Windows current version, plus three older. Included also are general common Linux and Apple competency information, as proprietary service contracts still keep most details specific to in-house service. The Competency is written so that it can be used as a course syllabus, or the study directed towards the education of individuals, who are expected to have basic computer hardware electronics knowledge and skills. Computer Service Technicians must be knowledgeable in the following technical areas: 1.0 SAFETY PROCEDURES / HANDLING / ENVIRONMENTAL AWARENESS 1.1 Explain the need for physical safety: 1.1.1 Lifting hardware 1.1.2 Electrical shock hazard 1.1.3 Fire hazard 1.1.4 Chemical hazard 1.2 Explain the purpose for Material Safety Data Sheets (MSDS) 1.3 Summarize work area safety and efficiency 1.4 Define first aid procedures 1.5 Describe potential hazards in both in-shop and in-home environments 1.6 Describe proper recycling and disposal procedures 2.0 COMPUTER ASSEMBLY AND DISASSEMBLY 2.1 List the tools required for removal and installation of all computer system components 2.2 Describe the proper removal and installation of a CPU 2.2.1 Describe proper use of Electrostatic Discharge -
Quick Installation Guide
PW-60AA-MINI-ITX 12VDC-DC Converter Quick Installation Guide Version 1.1 P/N 6657400 Mini-Box.com DC-DC converter series Introduction The PW-60A-Mini-ITX is a small yet powerful DC-DC converter used in low power PCs or laptops. The PW-60A is the only cable-less mini-ITX power supply solution for the VIA platform. Compatible with an entire range of mini-ITX motherboards such as VIA EPIA-V, EPIA-5000, EPIA-800, Lucky Star Mini-ITX, FIC C3 933 mini-ITX, the PW-60A provides cool, silent power for your small mini-ITX motherboard. Additionally, PW-60A dc-dc converter can power up your EPIA-M or other VIA C3 boards by using a small ATX adaptor cable. Quick installation The PW-60A has been specifically designed for the Mini- ITX form factor, thus eliminating the need for ATX power cables or ATX power extenders. In case you are using a non mini-itx board or a mini-ITX board that doesn’t conform to the form factor that the PW- 60A was designed for, please use a regular female-male ATX power supply extension cable. Important note: Due to small tight requirements, please ensure that you first connect your IDE cables to the motherboard. For mini-ITX systems such as EPIA-800/5000 or EPIA-V simply plug the DC-DC converter board into the mother board as shown in fig 1.1. PW-60A quick installation guide Page 2 Mini-Box.com DC-DC converter series Fig 1.1, DC-DC daughterboard installation After the DC-DC power board was ‘snapped in’, hook the HDD power or floppy power to your floppy/hard drive (if any). -
Operating Guide
Operating Guide EPIA-N800 Mainboard December 11, 2009 Version 1.00 EPIA-N800 Operating Guide Table of Contents Table of Contents ..................................................................................................................i VIA EPIA-N800 Overview ......................................................................................................1 VIA EPIA-N800 Layout ..........................................................................................................2 VIA EPIA-N800 Specifications ................................................................................................3 VIA EPIA-N800 Processor SKUs..............................................................................................4 VIA VX800 Chipset Overview .................................................................................................5 VIA EPIA-N800 Dimensions ...................................................................................................6 VIA EPIA-N800 Height Distribution .........................................................................................7 VIA EPIA-N800 Side Profile....................................................................................................9 Power Consumption............................................................................................................10 VIA EPIA-N800-13 ...........................................................................................................10 A. Playing a DVD ..........................................................................................................10 -
VIA EPIA M-Series Mini-ITX Mainboard Operation Guidelines
Operating Guidelines VIA EPIA M-Series Mini-ITX Mainboard Operation Guidelines The Ultra Compact Motherboard Form Factor From VIA Technologies Operating Guidelines Contents · Overview · Layout · Specifications · CLE266 Chipset Overview · I/O Back Panel Layout · Power Specifications · DVD Playback Tests · Power Consumption Tests · FliteDeck – System Management Suite · Smart5.1 – Intelligent 6 Channel Audio · Contact Operating Guidelines EPIA M-Series Overview The VIA EPIA M-Series Mini-ITX Mainboard is a revolutionary, ultra-compact x86 platform optimized for today’s killer digital applications. At just 17cm x 17cm, Mini- ITX is the world’s smallest native x86 mainboard platform, and is fully compatible with Microsoft® and Linux Operating Systems. Available with an embedded VIA Eden™ ESP processor core for fanless systems with ultra low-power requirements, or an embedded VIA C3™ E-Series processor for more demanding digital multimedia applications, the EPIA M-Series is the perfect platform for a whole range of small form factor, low-power digital media devices and home entertainment centers. EPIA M-Series Layout VIA Apollo CLE266 North Bridge, featuring int. 2D/3D graphics 1 x DDR266DIMM Embedded VIA C3™ -E or Eden™ ESP processor 2 x IDE Ports ATA/133/100/ Support VIA VT8235 South Bridge 10/100 Ethernet USB 2.0 1 PCI Slot TV-OUT IEEE 1394 Audio Jacks / VIA Smart5.1 Surround Sound Operating Guidelines EPIA M-Series Specifications Processor - VIA C3/Eden EBGA Processor Chipset - VIA CLE266 North Bridge - VT8235 South Bridge System Memory -
Communication Theory II
Microprocessor (COM 9323) Lecture 2: Review on Intel Family Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Feb 17th, 2016 1 Text Book/References Textbook: 1. The Intel Microprocessors, Architecture, Programming and Interfacing, 8th edition, Barry B. Brey, Prentice Hall, 2009 2. Assembly Language for x86 processors, 6th edition, K. R. Irvine, Prentice Hall, 2011 References: 1. Computer Architecture: A Quantitative Approach, 5th edition, J. Hennessy, D. Patterson, Elsevier, 2012. 2. The 80x86 Family, Design, Programming and Interfacing, 3rd edition, Prentice Hall, 2002 3. The 80x86 IBM PC and Compatible Computers, Assembly Language, Design, and Interfacing, 4th edition, M.A. Mazidi and J.G. Mazidi, Prentice Hall, 2003 2 Lecture Objectives 1. Provide an overview of the various 80X86 and Pentium family members 2. Define the contents of the memory system in the personal computer 3. Convert between binary, decimal, and hexadecimal numbers 4. Differentiate and represent numeric and alphabetic information as integers, floating-point, BCD, and ASCII data 5. Understand basic computer terminology (bit, byte, data, real memory system, protected mode memory system, Windows, DOS, I/O) 3 Brief History of the Computers o1946 The first generation of Computer ENIAC (Electrical and Numerical Integrator and Calculator) was started to be used based on the vacuum tube technology, University of Pennsylvania o1970s entire CPU was put in a single chip. (1971 the first microprocessor of Intel 4004 (4-bit data bus and 2300 transistors and 45 instructions) 4 Brief History of the Computers (cont’d) oLate 1970s Intel 8080/85 appeared with 8-bit data bus and 16-bit address bus and used from traffic light controllers to homemade computers (8085: 246 instruction set, RISC*) o1981 First PC was introduced by IBM with Intel 8088 (CISC**: over 20,000 instructions) microprocessor oMotorola emerged with 6800.