<<

ABSTRACT Geodetic Constraints on Deformation of the Northeast Caribbean Microplates and Seismic Delay Times Measured via Waveform Cross-Correlation

Kenton A. Shaw, M.S.

Mentor: R. Jay Pulliam, Ph.D.

GPS data indicate that the northeastern Caribbean is deforming in ways that are

inconsistent with the rest of the Caribbean tectonic plate. Current deformation may be

due to a collision between Hispaniola and the Bahamas carbonate platform or the impact

of a westward-propagating, subducted edge of the plate, or both. We

process and interpret GPS data to evaluate, in conjunction with other observations, a) the

relative influence of these sources of deformation for Hispaniola and b) their implications

for the hypothesis that the northeastern Caribbean is comprised of one or more

microplates. We conclude that the most likely tectonic scenario is one in which a

northern Hispaniola microplate and a Hispaniola microplate move separately from the

larger Caribbean plate. An analysis of teleseismic relative arrival times shows delayed

arrivals at likely boundaries between microplates and unusually fast arrivals where

subducted North American lithosphere is expected to be found.

Copyright © 2016 by Kenton A. Shaw

All rights reserved

TABLE OF CONTENTS

Geologic Background ...... 1

Introduction ...... 7

Methods...... 13 GPS (GNSS) Processing ...... 13 Teleseismic Travel Time Measurements...... 15

Results ...... 27 GPS Results ...... 27 Teleseismic Delay Time Measurements ...... 31

Discussion ...... 36 GPS...... 36 AIMBAT and FMTOMO ...... 37

Conclusions ...... 39

APPENDIX A ...... 41 Time Series Data ...... 41 Hispaniola GPS Time Series Plots ...... 41 Puerto Rico GPS Time Series Plots ...... 52

APPENDIX B ...... 59 Processing Steps ...... 59 GPS Processing Steps ...... 59 Plotting of the data is in GNUPlot and GMT (Generic Mapping Tool)...... 60 Scripts ...... 61

REFERENCES ...... 99

iv

LIST OF FIGURES

Figure 1: Caribbean plate motions...... 2

Figure 2: The Caribbean plate motions and fault locations...... 3

Figure 3: Northeastern Caribbean tectonic reconstruction 23Ma...... 3

Figure 4: Northeastern Caribbean tectonic reconstruction of 11 Ma...... 4

Figure 5: Tectonics of the current northeastern Caribbean plate margin...... 5

Figure 6: DEM map outlining microplates of the northeastern Caribbean ...... 8

Figure 7: Poor waveform cross-correlations shown in sacplot ...... 17

Figure 8: A good waveform cross-correlation plot shown in sacplot ...... 18

Figure 9: The sacppk view of the poor cross-corrleation event ...... 19

Figure 10: The sacppk view of the better cross-correlation event ...... 20

Figure 11: Discarded wave traces from the better cross-correlation event ...... 21

Figure 12: Attempted alignment for the poorly correlated waveforms ...... 22

Figure 13: Attempt alignment for the better correlated waveforms ...... 23

Figure 14: Second iteration of waveform cross-correlation ...... 24

Figure 15: Final alignment after MCCC run for better correlated event ...... 25

Figure 16: BARA time series data with a best-fit linear curve ...... 27

Figure 17: Northeastern Caribbean velocities in the IGS08 reference frame from GME 28

Figure 18: Northeastern Caribbean velocities from UNAVCO in IGS08 ...... 29

Figure 19: Combination of Figures 17 and 18 velocities ...... 29

Figure 20: Figure 18 rotated into the NAM08 reference frame ...... 30

Figure 21: Lag times from waveform cross-correlations of the southeastern event ...... 32

Figure 22: Lag times from waveform cross-correlations of the eastern event ...... 33

v

Figure 23: Lag times from waveform cross-correlations of the northeastern event ...... 33

Figure 24: Lag times from waveform cross-correlations of the northwestern event ...... 34

Figure 25: Lag times from waveform cross-correlations of a southern event ...... 34

Figure 26: Lag times from waveform cross-correlations of a southern event ...... 35

Figure 27: Lag times from waveform cross-correlations of a southern event ...... 35

Figure A.1: SROD time series data with a best-fit linear curve ...... 41

Figure A.2: SPED time series data with a best-fit linear curve ...... 42

Figure A.3: RDTO time series data with a best-fit linear curve ...... 43

Figure A.4: RDSP time series data with a best-fit linear curve ...... 44

Figure A.5: RDSJ time series data with a best-fit linear curve ...... 45

Figure A.6: RDSF time series data with a best-fit linear curve ...... 46

Figure A.7: RDSD time series data with a best-fit linear curve ...... 47

Figure A.8: RDPP time series data with a best-fit linear curve ...... 48

Figure A.9: RDMO time series data with a best-fit linear curve ...... 49

Figure A.10: RDHM time series data with a best-fit linear curve ...... 50

Figure A.11: RDHG time series data with a best-fit linear curve ...... 51

Figure A.12: PRPS time series data with a best-fit linear curve ...... 52

Figure A.13: PRMZ time series data with a best-fit linear curve ...... 53

Figure A.14: PRHU time series data with a best-fit linear curve ...... 54

Figure A.15: PRGY time series data with a best-fit linear curve ...... 55

Figure A.16: PRCM time series data with a best-fit linear curve ...... 56

Figure A.17: PRCD time series data with a best-fit linear curve...... 57

Figure A.18: PRBY time series data with a best-fit linear curve...... 58

vi

ACKNOWLEDGMENTS

I would like to thank Dr. Jay Pulliam for all the help that he has given me over the last two years. He has helped mold my project and guide me to becoming a better scientist. I would also like to thank my fiancé Brittney Schaef and my parents, Kurt and

Jodie Shaw, for their support through these last two years. They have helped me when times were tough to get through my thesis work and onto the next step in life.

vii

CHAPTER ONE

Geologic Background

The origin of the Caribbean plate is controversial. According to van Benthem et al. (2013), there is a general consensus concerning the evolution of the Caribbean plate during the Cenozoic. However, the initial development of the Caribbean tectonic system during the Jurassic Period is still debated vigorously (e.g., James, 2005; Pindell and

Kennan, 2003; van Benthem et al., 2013). Reconstructions of Caribbean tectonics show a subducting Farallon lithosphere during the early Cretaceous along the western margins of the North and South America plates and the North and South America plates beginning to drift apart as early as the late Jurassic (Avé Lallemant, 1997) to late Cretaceous (Pindell and Barrett, 1990) (Figure 1). Two different possibilities for the origin of the middle-

Cretaceous Caribbean plate have been proposed: 1) On the Farallon plate, west of the

Farallon subduction zone (Pindell and Barrett, 1990) and 2) between the North and South

America plates, east of the Farallon subduction zone (James, 2009; Meschede and Frisch,

1998). At its current location, the Caribbean plate is bounded on the east by the Central

American subduction zone and on the west by the Great Arc of the Caribbean subduction zone (van Benthem et al., 2013).

1

Figure 1: The North and South America tectonic plates drift apart in the late Jurassic to late Cretaceous. The Caribbean plate moves between these tectonic plates during this timeframe. Figure from Pindell and Kennan (2009).

2

Figure 2: The Caribbean plate is bounded by subduction zones in the east and west and transform faults to the north and south. The northern plate boundary has two major transform faults, the Septentrional fault in northern Hispaniola and the Enriquillo- Plantain Garden fault zone (ENPGFZ). Black arrows represent overall Caribbean plate motions with their associated uncertainty ellipses from DeMets et al. (2000).

Figure 3: Northeastern Caribbean tectonic reconstruction of 23Ma. Hispaniola is in three separate segments and Puerto Rico has not yet rotated to its current orientation. The Bahama platform is shown in blue; faults are shown in red. Figure from Mann et al. (2003).

The subduction that began around the Great Arc of the Caribbean, at the plate’s eastern edge, at or before 135 Ma (Pindell and Dewey, 1982) may have been the result of

3

the absolute westward motion of the Americas, establishing the E-W convergence

between the future Caribbean lithosphere and the proto-Caribbean lithosphere between

the Americas (Boschman et al., 2014). Around 50 Ma, the major Caribbean plate motion

changed from northeastward to eastward relative to the North America plate, due mostly

to the collision with the Bahamas carbonate platform (Boschman et al., 2014). The

largely oceanic Caribbean tectonic plate (3500 km E-W by 1000 km N-S) is currently

bounded by convergent boundaries to the east and west and by strike-slip fault systems

on the north and south, moving eastward relative to North and South America (Wilson,

1966; Burke et al., 1978; Pindell and Barrett, 1990) (Figure 2).

In the north-northeastern boundary of the Caribbean plate, Atlantic lithosphere

subducted beneath the Great Arc of the Caribbean from late Cretaceous to Eocene, which

Figure 4: Northeastern Caribbean tectonic reconstruction of 11 Ma. Pieces of modern Hispaniola collide to become the present day island. Puerto Rico begins to rotate counterclockwise to its current orientation. Faults in northern Hispaniola form as well as north of Puerto Rico. The Bahamas platform is shown in blue; faults are shown in red. Figure from Mann et al. (2003).

4 was then followed by a collision with the Bahamas carbonate platform and Cuba in the

Eocene (Mann et al., 1995; van Hinsbergen et al., 2009) (Figures 3 – 5). Tectonic reconstructions of the Caribbean plate typically have large-scale features well- constrained but smaller-scale features, such as Oligocene subduction under Puerto Rico

(Molnar and Sykes, 1969; Sykes et al., 1982), much less well-constrained (van Benthem et al., 2013). Several tectonic scenarios have been proposed for the present geometry, nature, and style of subduction beneath the northeastern Caribbean plate boundary (i.e.,

Calais et al., 1992; Dolan and Mann, 1998). Under the northeastern Caribbean, specifically Hispaniola, Puerto Rico, and the Virgin Islands, the west-dipping Wadati-

Benioff zone from the northern Lesser Antilles to the east turns into a south-dipping

Wadati-Benioff zone (McCann and Sykes, 1984; Molnar and Sykes, 1969; Sykes and

Ewing, 1965). According to van Benthem et al. (2013), the slab’s lateral edge beneath

Figure 5: Tectonics of the current northeastern Caribbean plate margin. Hispaniola’s components have completed their convergence, however, the island is still segmented by faults. Puerto Rico has now fully rotated to an east-west orientation. The Bahamas platform apparently collides with northern Hispaniola and impedes further movement of the Caribbean plate to the east-northeast. The Bahamas platform is shown in blue; faults are shown in red. Figure from Mann et al. (2003).

5

Puerto Rico is located beneath eastern Hispaniola. Due to this geometry, as the slab continues to move westward with the North America plate, the western edge pushes and deforms the overriding Caribbean lithosphere (van Benthem et al., 2013). This style of deformation is called “Slab Edge Push” (SEP) by Govers and Wortel (2005).

Several groups have proposed that tectonic microplates exist in the northeastern

Caribbean. The Muertos trough is suggested by several authors to be the southern extent of both the Puerto Rico and Hispaniola microplates (Byrne et al., 1985; Dolan and Mann,

1998; McCann and Pennington, 1990). However, in one scenario, the Muertos trough acts as the backstop that transmits compressive stresses into the backarc region (ten Brink et al., 2009), and is not a site of true subduction nor a plate boundary. Granja-Bruña et al.

(2009) contends that the Muertos margin is not the main contributor to differential motion in the region, placing the differential motion at the Mona Passage.

SEP proposed by van Benthem et al. (2014) in the northeastern Caribbean acts as a barrier impeding the advancement of the Caribbean plate to the northeast causing deformation within Hispaniola. Van Benthem et al. (2014) states that the driving mechanisms for SEP are the push of the migrating Puerto Rico slab edge and the collision of Hispaniola with the Bahamas platform. Benford et al. (2012) suggests that the northeastern Caribbean is made up of four microplates, which developed as a result of stresses (possibly the SEP) imposed upon this region. Using a dense network of GPS stations, unresolved hypotheses concerning the structure and tectonics of the northeastern

Caribbean, including the occurrence of a SEP, the implications of a collision between

Hispaniola and the Bahamas platform, and number and geometrical configuration of microplates, if any, can be tested.

6

CHAPTER TWO

Introduction

Measurements of tectonic plate angular velocities (Figure 2) have become more precise and accurate, due to better coverage and more accurate corrections to data from the Global Positioning System (DeMets et al., 2010). Increases in accuracy and precision in GPS data have produced more accurate estimates of plate motion, detected slow deformation, and determined the limits to the rigid plate approximations worldwide

(DeMets et al., 2010). Note that the general term used internationally for satellite-based geo-spatial positioning with global coverage is “Global Navigation Satellite System”

(GNSS). The system operated by the United States is called the Global Positioning

System (GPS). Russia’s GLONASS is the second operational system that has global coverage. China is in the process of rolling out a global navigation system to be called

“BeiDou,” and the European Union's Galileo GNSS is also in its deployment phase.

India, France and Japan are all developing regional systems that will serve similar positioning and navigation purposes. We use the term GPS in this thesis, although not all of the data used here are from the U.S.-based NAVSTAR GPS system.

The primary differences between older tectonic plate models and the newest ones are that the data used with older models such as NUVEL-1(A) contain larger intrinsic ambiguities (DeMets et al., 2010). These older studies are less well-constrained due to greater unresolved errors within the data (DeMets et al., 2010). DeMets et al. (2010) and

DeMets et al. (2007) found modestly large errors for the Caribbean plate in both the

7 north and east components when compared to other plates, and required other non-GPS sources of data to better constrain the Caribbean plate motion (DeMets et al., 2010,

2007). DeMets et al. (2010) found that the general trend of the Caribbean tectonic plate is 20 ± 0.4 mm/yr towards S74°W ± 1° relative to the North America tectonic plate, which is nearly twice as fast and in the same direction of that reported by NUVEL-1A.

The boundary zone between the Caribbean plate and North America plate (the northeastern Caribbean) displays a complex pattern of deformation, and the zone likely contains one or more microplates. Although they are not the only ones proposed, the most widely-accepted microplates for the northeastern Caribbean are the Gônave, Puerto

Rico-Virgin Islands (PRVI), and south Jamaica microplates, with outlines for each proposed as early as 1991 by Rosencrantz and Mann (1991) (Figure 6). Along the northeastern Caribbean, more specifically, the Greater Antilles islands of Puerto Rico,

Hispaniola, and Jamaica, the convergence between the Caribbean and North America

Figure 6: A digital elevation map of the northeastern Caribbean. Outlines for three microplates are shown: the Gônave microplate to the west, the PRVI microplate to the east of the Mona Passage, and a North Hispaniola microplate west of the Mona Passage and north of the Septentrional fault. Benford et al. (2012a) define the stable Caribbean plate to be everything south of the Enriquillo-Plantain Garden fault. The figure is from Benford et al. (2012a).

8 plates is oblique with a left-lateral slip at rates of 19-20 mm/yr (DeMets et al., 2010,

2007, 2000; Dixon et al., 1998; López et al., 2006).

Convergence between these two tectonic plates causes a large region of partitioned deformation. The boundaries of this region, as defined by Benford et al.

(2012a), are the boundaries of the North America plate, which is the in the north and the Muertos trough, Enriquillo-Plantain Garden fault zone, and Walton fault in the south as the boundary of the Caribbean plate. Within the region of deformation, four distinct microplates, the PRVI, Gônave, south Jamaica, and north

Hispaniola, are proposed by Benford et al. (2012a). The PRVI (Byrne et al., 1985;

Masson and Scanlon, 1991) is moving approximately westward relative to the Caribbean plate interior at 2.6 ± 2.0 mm/yr (Jansma et al., 2000; Jansma and Mattioli, 2005), the

Gônave (Rosencrantz and Mann, 1991) with westward motions of 6-8 mm/yr relative to the Caribbean plate interior (Benford et al., 2012b; DeMets and Wiggins-Grandison,

2007), and the south Jamaica and north Hispaniola, which have been studied much less intensively, but also have partitioned deformation (Benford et al., 2012a). The Gônave plate has been divided into even smaller microplates, with such plates as the Hispaniola block (Byrne et al., 1985; Manaker et al., 2008) occupying the eastern end of the Gônave plate; however, this is still an unresolved microplate (Benford et al., 2012a).

The driving forces for these microplates are not well understood. The forces likely change along strike due to the irregular geometry of the plate boundary, transitioning from oblique, steep angle subduction along the Puerto Rico trench to shear- dominated deformation in Hispaniola and westward (Calais et al., 1992). The complexity of Hispaniola is furthered by the collision with the Bahamas platform along the northern

9 edge of the island (Mann et al., 2002, 1995), causing deformation to also occur within the

Gônave microplate (Benford et al., 2012a). The rotation of Hispaniola could be explained by either the collision of the Caribbean plate with the Bahamas platform, which would not affect the entire Caribbean plate, or by Slab Edge Push (SEP) occurring from the North America plate subducting beneath Puerto Rico (van Benthem et al., 2014).

Slab Edge Push, generated by a Subduction-Transform Edge Propagator, has been found elsewhere in the world but not definitely identified in this region (van Benthem et al.,

2014).

Calais et al. (2002) use GPS observations made on Hispaniola to demonstrate that there is a velocity gradient from north to south, suggesting elastic strain accumulation on locked faults on the island. Calais et al. (2002) defines four major active faults in

Hispaniola; we primarily looked at the left-lateral Septentrional fault and the east-west- striking Enriquillo-Plantain Garden fault that divide the island into three major blocks.

The northern portion lies north of the Septentrional fault, the middle block is between the

Septentrional in the north and the Enriquillo-Plantain Garden fault in the south, and the third block is south of the Enriquillo-Plantain Garden fault (Figure 6). Benford et al.

(2012a) found that the Septentrional fault has left-lateral slip of 9.8 ± 2 mm/yr, falling between estimates of slip rates defined by Prentice et al. (2003) of 6-12 mm/yr, yet was much slower than Calais et al. (2010) using GPS velocity block modeling with

DEFNODE software (McCaffrey, 2002) of 12 ± 2 mm/yr. Maximum slip estimated by

Benford et al. (2012a) is 13 mm/yr along the Septentrional fault. Stream terrace offsets of the Septentrional fault in northern Hispaniola show maximum Holocene strike-slip rates of 13 ± 4 mm/yr and 23 ± 7 mm/yr of boundary-parallel slip and boundary-normal

10 convergence, respectively (Dolan and Mann, 1998). Subduction may be adding to the stress on the Septentrional fault, however, the loading and triggering of these events is difficult to establish without a better understanding of the regional rheology (Dolan and Bowman, 2004). The Septentrional fault is a seismic hazard since the last rupture of the fault occurred in 1842 and did not rupture east of Santiago

(Prentice et al., 2013) (and therefore did not rupture the entire fault).

The southern Enriquillo-Plantain Garden fault is predicted by Benford et al.

(2012a) to have an angular velocity of 8-9.5 mm/yr of oblique convergent slip in western

Haiti, faster and more oblique than Calais et al.’s (2010) estimate of 5.1-5.8 mm/yr from

GPS inversion of sites solely located on Hispaniola. Differences between the estimates of angular velocities of Benford et al. (2012a) and Calais et al. (2010) could be attributable to the different Gônave microplate geometries used in each study. According to Benford et al. (2012a), the best-fitting Gônave-North America angular velocity predicts a seafloor-spreading rate of 12.6 ± 0.6 mm/yr across the Cayman spreading center. Differences between the velocities of the Caribbean plate and Hispaniola could be due to slab pull and ridge push affecting the northeastern Caribbean (van Benthem and

Govers, 2010).

This study analyzes GPS data to look at the motions of the northeastern Caribbean and test hypotheses presented in previous studies for the region, including the existence of microplates, locations of their boundaries, Slab Edge Push, and strain partitioning along fault systems. Our study described here uses the most comprehensive set of GPS data available for the region because it uses high-sample-rate GPS data. As Larson

(2003) describes, GPS instruments sampled at 1 Hz or higher allow the complete ground

11 motion time history to be captured during large earthquakes, providing insights into fundamental fault-propagation mechanisms. The data were collected over a series of large earthquakes to look at the surface offsets associated with large earthquakes in the northeastern Caribbean. Separately, we analyze data recorded by broadband seismic stations on islands for earthquakes located at (teleseismic) epicentral distances of 35° to

95° from the northeastern Caribbean. This analysis, performed via waveform cross- correlation, shows anomalously fast and slow regions beneath the northeastern Caribbean islands, and is the first step in seismic tomography. While producing a full model of Vp or Vs anomalies via tomography is beyond the scope of this thesis, the measurements performed here have the potential, on their own, to further our understanding of microplates, their boundaries, and Slab Edge Push occurring in the northeastern

Caribbean.

12

CHAPTER THREE

Methods

GPS (GNSS) Processing

We analyze daily RINEX files for GPS data from the northeastern Caribbean, specifically Hispaniola, Puerto Rico, and Jamaica. The data come from two different sources; from a public online database, University NAVSTAR (Navigation Satellite

Timing and Ranging) Consortium (UNAVCO), and a private dataset from Global Matrix

Engineering (GME). All GPS data are continuous, with thirty-five stations from

UNAVCO and twenty-four stations from GME. We consider data over different time spans: GME stations have time spans within the years of 2012 to 2014 and UNAVCO data on Hispaniola start in 2011 and continue to the present. UNAVCO data from other islands of the northeastern Caribbean extend as far back as 1995. Data from GME stations are recorded at a 1 Hz sample rate, whereas the public UNAVCO data has been decimated to fifteen and thirty second sample intervals.

We have processed the UNAVCO data from Hispaniola and continue to process the data from other northeastern Caribbean islands. The data analysis was performed with GNSS-Inferred Positioning SYstem and Orbit Analysis SImulation Software

(GIPSY-OASIS) II. This software package is freely available from the NASA Jet

Propulsion Laboratory (JPL) and includes access to JPL’s final bias-free GPS orbit products. For motions of the northeastern Caribbean, coordinates were estimated every twenty-four hours by applying the Precise Point Positioning method to ionosphere-free carrier phase and pseudo-range data (Zumberge et al., 1997). The carrier phase data were

13 decimated and pseudo-range carrier-smoothed to get the ionosphere-free carrier phase and pseudo-range every five minutes (Blewitt, 1990). Modeling of the data includes ocean tidal loading and daily tide data associated with them from the OSU12 ocean tidal model (Scherneck, 1991; Schmid et al., 2007). Estimates for both the wet and dry zenith troposphere were applied to the data (Bar-Sever et al., 1998). The random walk process and the estimate of the white-noise parameter for station clocks were estimated every five minutes (Bar-Sever et al., 1998). Ambiguity resolution was then applied using the wide lane and phase bias method to double differences of the estimated one-way bias parameters reducing the scatter of the data mostly in the east-west component of the time series (Blewitt, 1989). JPL supplied satellite orbit and clock parameters for the GPS stations, determined in a global bias-free analysis using a subset of available IGS

(International GNSS Service) core stations. The bias-free GPS solutions applying a daily seven-parameter Helmert transformation (Bertiger et al., 2010) were aligned with IGS08

(Rebischung et al., 2011), with the IGS08 reference frame being derived from the

ITRF08 reference frame, which was developed with a total of 232 globally-distributed stations (Altamimi et al., 2011). The processing of GPS data through GIPSY-OASIS II software included a quality control in order to reject output coordinates that fail to meet criteria such as unresolved cycle slips, incomplete daily data, and other formal errors

(Kreemer et al., 2014). In the case of data nearly collocated and coinciding time, the data is concatenated in order to extend the full length of the data. Data with large gaps between collocated stations are not concatenated due to possible offsets produced by earthquakes during periods for which data are missing.

14

Using the processed data, time series were generated with the plots in time versus change in position (i.e., velocity) of each station. The initial positions of the stations were used as the reference point for each to show overall motion over the extended time series.

Seasonal variations were not accounted for within the time series data that were processed as described above. Stations with data spanning fewer than 60 days were excluded. In total, twenty-four stations were processed and results are shown here. An additional twenty-one stations will be processed and added in the future. From the time series data, plots were made using GMT (Generic Mapping Tools) (Wessel et al., 2013) showing the overall motions of the northeastern Caribbean with respect to the

ITRF08/IGS08 reference frame.

Teleseismic Travel Time Measurements

We analyzed 86 earthquakes at epicentral distances of 35° to 95° producing teleseismic body-waves whose readings could be picked up at the Dominican Republic and surrounding northeastern Caribbean islands via waveform cross-correlation, using

AIMBAT software. These distances are within the limits needed to be able to have the best cross-correlations to find the lag times without having large disruptions from the core-mantle boundary (for more distant events) or complicated by upper mantle complexity (for nearer events). The earthquakes were then separated into three groups: ones with magnitudes > 6.5, events with magnitudes between 5.0 and 6.5, and small- magnitude events (<5.0). For this study, only the moderate- and large-magnitude events were measured.

Waveform data were filtered using a bandpass filter with corner frequencies at

0.05 Hz and 0.25 Hz to increase signal to noise ratios. The noise levels in the

15 northeastern Caribbean are typically greater than in many other regions, due to cultural noise and wave-action on the islands’ shores. Filtering was performed with the Seismic

Analysis Code (SAC). SAC files were then converted to “pkl” format for use with

AIMBAT in the next part of the analysis.

AIMBAT can accommodate hundreds of seismograms and align them via cross- correlation, thereby measuring relative arrival times of windowed seismic waves. The process for aligning seismograms begins the sacplot function of AIMBAT (Figures 7 and

8), which is used to see whether a correlation between multiple seismograms is possible.

Seismograms are then sorted into those that may have a correlation with one another and those that definitely do not. Seismograms that have a correlation associated with an earthquake are then put into the first correlation piece of AIMBAT, sacppk, in order to manually pick stations/seismograms that have good signal to noise ratios for later analysis (Figures 9 – 11). The high-correlation seismograms are then put through the iterative cross-correlation and stack (ICCS) algorithm within the ttpick function of

AIMBAT (Lou et al., 2013). The iterative process uses a manually picked time pick to stack all the waveforms within the designated time window. For each event we initially used a ±15 second time window and then changed its values as deemed appropriate

(Figure 12 and 13). After completion, we again looked through the seismograms and discarded those with poor correlations (Figure 14). ICCS was rerun to refine the alignments of seismograms with correlations. Multi-channel cross-correlation (MCCC),

16

Figure 7: Poor waveform cross-correlations shown in sacplot. These data are from an earthquake located to the southwest (latitude -4.53, longitude -106.07, depth 10 km, magnitude 5.7, origin time 23:02:53.359 on 2014-01-07).

17

Figure 8: A good waveform cross-correlation plot shown in sacplot. These waveforms are from an earthquake located to the northwest (51.44, -174.62, 20.0 km, 5.9, 15:41:54.100, on 2013-09-14). Sacplot does not discard poorly correlated waveforms.

18

Figure 9: The sacppk view of the earthquake located to the southwest (-4.53, -106.07, 10 km, 5.7, 23:02:53.359 on 2014-01-07). In this plot, correlations are still poor between waveforms that record over the same time interval.

19

Figure 10: The sacppk view of the earthquake located to the northwest (51.44, -174.62, 20.0 km, 5.9, 15:41:54.100 on 2013-09-14). Waveforms from nineteen stations show strong correlations. Blue station records indicate those used for the waveform cross- correlation, while greyed out seismograms are discarded.

20

Figure 11: The continuation of the grayed-out (discarded) seismograms for the waveform cross-correlation for the earthquake located to the northwest (51.44, -174.62, 20.0 km, 5.9, 15:41:54.100 on 2013-09-14).

21

Figure 12: An attempt to align the poorly correlated waveforms from the earthquake on January 7, 2014. Correlations between seismograms are not visible within this plot. Seismograms are shown in blue; the time window for which cross-correlations are performed (±15 s here) is shown in green; original impulse of the earthquake chosen is shown as a black dashed line.

22

Figure 13: An attempt to align waveforms of the earthquake that occurred on September 14, 2014. Correlatable wave arrivals are visible within this plot. Seismograms are shown in blue; the time window (±15 s here) is shown in green; the arrival time predicted by standard reference model ak135 is shown as a black dashed line.

23

Figure 14: The same seismograms shown in Figure 13 after completing the second iteration of waveform cross-correlation. More seismograms are excluded based on their lack of correlations with other traces. Updated time picks are shown as a red dashed line.

24

Figure 15: The final alignment of seismograms after MCCC is run. This alignment uses only stations that had strong correlations. Finalized time picks are shown as the green dashed line. The time lags for later analysis are measured from the green dashed line of this figure.

25 the final tool to align seismograms in AIMBAT, used user input to realign seismograms from the user inputs as the base to iteratively choose the final alignment (Figure 15).

Travel time residuals were plotted for each station and each event. The arrival times found from waveform cross-correlation arrived either faster or slower compared to the modeled time; these changes in arrivals were plotted. Events were separated by their direction with respect to the northeastern Caribbean. Due to the nature of earthquakes, not all directions were accounted for and not all directions with events had the same number of events recorded.

After the GMT plot was generated, a checkerboard test was performed with Fast

Marching TOMOgraphy (FMTOMO) (Rawlinson and Urvoy, 2006). FMTOMO uses teleseismic wave arrivals to create a 3D model of the Earth’s subsurface. We use the 1D ak135 reference Earth velocity model as a starting model for the tomographic inversion.

The near-vertical trajectories of rays arriving from teleseismic distances produces vertical smearing in both real and checkerboard tests that use synthetic data, but they tend to constrain lateral variations well. A model produced with teleseismic data alone is therefore unlikely to be sufficiently reliable for tectonic interpretations but these measurements can be added to measurements of arrivals from local earthquakes to produce a more accurate model.

26

CHAPTER FOUR

Results

GPS Results

Fifteen of the twenty-three GME stations processed for the northeastern

Caribbean were used for analysis. From the time series data (e.g., Figure 16 and other

figures in Appendix I), average motions of

stations are obtained. Of the privately-owned

GME stations, five acquired data from 2012 to

2014 while others either recorded data for most

of 2012 or during the periods 2012-2013 or

2013-2014. All time series data were generated

from stations with at least 60 days of data.

All processed stations show a general

trend to the northeast consistent with results

from models generated by Calais et al. (2002)

and DeMets et al. (2010) (Figure 17).

Figure 16: BARA (Barahona) time Velocities for stations with at least 60 days of series data with a best-fit linear curve. Equations for the best-fitting linear data were plotted using GMT with their 95% curve in the east and north directions are displayed in the figure. The linear confidence uncertainty ellipses in the ITRF08 curve slopes for all northeastern Caribbean stations are plotted in reference frame. Most stations on Hispaniola Figures 17 and 19. Other time series data can be found in Appendix A.

27

Figure 17: Velocities in the IGS08 reference frame for stations of the privately-owned GME network from time series data processed at Baylor plotted with DeMets et al.’s (2010) Caribbean plate motion in a stable North America plate reference frame. Two stations with velocities anomalous to nearby velocities are PRMN in north Puerto Rico and RDPP in north Hispaniola. Station color indicates the length of time (in years) that the station was operating.

follow a N30°E to N65°E trend with respect to ITRF08 and on Puerto Rico the stations mostly follow a N20°E to N60°E trend with respect to ITRF08. Average Hispaniola motions are 8.62 ± 2.33 mm/yr toward N53°E and average Puerto Rico motions are 24.12

± 2.33 mm/yr toward N59°E from the privately owned GME data. The average motions of the entire northeastern Caribbean are 14.8 ± 2.33 mm/yr toward N57°E according to the GME data. Motions on Puerto Rico, although slightly faster, move similar to other published results for the entire Caribbean plate showing average motions of 20 ± 0.4 mm/yr (DeMets et al., 2010). Hispaniola motions move ten to fourteen mm/yr, slower than the entire Caribbean plate and Puerto Rico motions (DeMets et al., 2010).

Two stations kept in the analysis of the northeastern Caribbean plate motions,

RDPP on Hispaniola and PRMN on Puerto Rico, do not follow the general motions we found for the other stations. PRMN, located in northern Puerto Rico, moves much faster

(61 mm/yr) and at a different azimuth (N83°E) than the rest of Puerto Rico. To our

28

Figure 18: Velocities of GPS stations operated by UNACVO in the IGS08 reference frame for the northeastern Caribbean as processed by UNACVO. UNAVCO stations have operated continuously since at least 2012, although most stations have been operating much longer than those shown in Figure 17.

Figure 19: Combination of Figures 17 and 18 with station velocities of the northeastern Caribbean in the IGS08 reference frame. UNAVCO stations are plotted in red; GME stations are plotted in blue. If two stations were collocated, the blue stations were plotted on top of the red stations with both velocity vectors and their associated uncertainty ellipses drawn.

knowledge, no one has proposed that Puerto Rico consists of multiple microplates, so this large difference with respect to the other stations is unexpected and anomalous. RDPP, in northern Hispaniola, moves with roughly the same velocity (9.31 mm/yr) as the rest of

29

Figure 20: Figure 18 rotated into the NAM08 reference frame. Results are consistent with those published by Calais et al. (2002).

Hispaniola, however, its direction is nearly orthogonal (N47°W) to motions found for other stations on the island. Benford et al. (2012a) described the northern Hispaniola block as its own microplate, possibly accounting for the difference in direction compared to the other stations.

Publicly available UNAVCO data were plotted in similar fashion (Figure 18).

Our processed results agree with other published results for this region (Figure 19), allowing our interpretations to be consistent with others for the northeastern Caribbean.

Plotting both UNAVCO and GME data allows for a larger set of velocity vectors to be analyzed (Figure 19). The results from the publicly available UNAVCO database were then rotated into the North America fixed reference frame (NAM08) (Figure 20) showing a consistency with other published results (i.e., Calais et al. (2002)), although the velocities and uncertainties are slightly different.

30

Teleseismic Delay Time Measurements

Cross-correlations were only feasible for 86 of the 224 earthquakes: 46 of 178 moderate-magnitude earthquakes with 1256 teleseismic picks and 40 of 46 large- magnitude earthquakes with 1375 teleseismic picks. The moderate-magnitude earthquakes had many more events (178) yet had an almost equal number of arrival measurements as we obtained for the large-magnitude earthquakes. The smaller yield of the moderate-magnitude events is partly a result of lower signal-to-noise ratios but is also due to the fact that a much greater percentage of the large-magnitude events were from deep focus earthquakes. Deep earthquakes tend to have sharp, impulsive onsets that are ideal for cross-correlation measurements, whereas shallow events often include complicating depth phases shortly after the first arrival. The earthquakes were cross- correlated to show seismic time lags from station to station. Time lags were then plotted so that slow and fast regions in the subsurface could be shown below the island nations in the northeastern Caribbean. Plots from the four cardinal directions would enhance the total understanding of the subsurface below Hispaniola. However, since earthquakes typically occur in specific locations, determined by tectonics, obtaining events from the four cardinal directions was not feasible. We therefore chose events with as much azimuthal coverage as possible. Seven events were chosen for display, one from the southeast (latitude -31.85, longitude -111.24, depth 10 km, magnitude 6.0, origin time

10:59:28.500, on 2014-11-01) (Figure 21), one from the east (18.79, -107.47, 5.0 km, 6.2,

11:09:13.250 on 2014-05-31) (Figure 22), one to the northeast (59.89, -153.20, 119.3 km,

6.3, 02:34:59.630, on 2015-07-29) (Figure 23), one from the northwest (38.67, 20.60,

0.01 km, 6.5, 07:10:07.300, on 2015-11-17) (Figure 24), and three from the south to

31 show consistency in our results with two on 2015-09-19 (-29.64, -72.07, 6.0 km, 6.1,

05:06:46.510, on 2015-09-19) (-32.33, -72.07, 18.0 km, 6.2, 12:52:09.985, on 2015-09-

19) and one on 2015-09-21 (-31.57, -71.74, 30.0 km, 6.1, 05:39:35.370, on 2015-09-21)

(Figures 25 – 27).

Tomographic checkerboard tests of the northeastern Caribbean using our results from waveform cross-correlation return reasonable results. The input checkboard pattern is not returned exactly (as it never is) due to vertical smearing that is expected when using teleseismic body-waves alone, but also because our seismic stations are located only on land, which leaves a great deal of unmonitored area between islands.

Figure 21: Event time lags from waveform cross-correlations of the event from the southeast (latitude -31.85, longitude -111.24, depth 10 km, magnitude 6.0, origin time 10:59:28.500, on 2014-11-01). Lag times that indicate earlier arrivals than are predicted by standard Earth model ak135 are shown in blue; later arrivals are shown in red. The inset map shows the event location.

32

Figure 22: Event time lag plot from waveform cross-correlations of the event located to the east (18.79, -107.47, 5.0 km, 6.2, 11:09:13.250 on 2014-05-31). Fast arrivals are in blue; slow arrivals are in red. The inset map shows the location of the earthquake.

Figure 23: Event time lag plot from waveform cross-correlations of the event located to the northeast (59.89, -153.20, 119.3 km, 6.3, 02:34:59.630 on 2015-07-29; see inset map). Fast arrivals are in blue; slow arrivals are in red. The inset map shows the location of the earthquake.

33

Figure 24: Event time lag plot from waveform cross-correlations of the event from the northwest (38.67, 20.60, 0.01 km, 6.5, 07:10:07.300 on 2015-11-17; see inset map). Fast arrivals are in blue; slow arrivals are in red. The inset map shows the location of the earthquake.

Figure 25: Event time lag plot from waveform cross-correlations of the event from the south (-29.64, -72.07, 6.0 km, 6.1, 05:06:46.510 on 2015-09-19; see inset map). Fast arrivals are in blue; slow arrivals are in red. The inset map shows the location of the earthquake.

34

Figure 26: Event time lag plot from waveform cross-correlations of the event from the south (-32.33, -72.07, 18.0 km, 6.2, 12:52:09.985 on 2015-09-19; see inset map). Fast arrivals are in blue; slow arrivals are in red. The inset map shows the location of the earthquake.

Figure 27: Event time lag plot from waveform cross-correlations of the event located to the south (-31.57, -71.74, 30.0 km, 6.1, 05:39:35.370 on 2015-09-21; see inset map). Fast arrivals are in blue; slow arrivals are in red. The inset map shows the location of the earthquake.

35

CHAPTER FIVE

Discussion

GPS

Our GPS results indicate that the north Hispaniola block microplate proposed by

Benford et al. (2012a) is indeed present; the portion of Hispaniola north of the

Septentrional fault is the only region moving separately from the rest of the island. The

Bahamas platform impeding the advancement of the northern section of the island may be causing the north Hispaniola block to move separately from the rest of Hispaniola.

The proposed Bahamas platform collision with northern Hispaniola seems to be located in a similar geographic location as the proposed Slab Edge Push (SEP) in the northeastern

Caribbean. In this region, the North America plate is subducting beneath Hispaniola impeding its advancement to the east-northeast.

The Dominican Republic south of the northern Hispaniola block seems to be moving as a single microplate, with a velocity that is slower than those measured for the entire Caribbean plate. Puerto Rico motions appear to match published Caribbean plate motions (i.e., Calais et al. (2002) and DeMets et al. (2012)), yet move slightly faster than the Dominican Republic. The Dominican Republic, south of the Septentrional fault, may therefore make up its own microplate; it was labeled the Hispaniola microplate by

Benford et al. (2012a). As measurements for the Virgin Islands were not made, and the

Puerto Rico island measurements match closely with those of the entire Caribbean plate, a PRVI microplate is not indicated by our data.

36

The SEP hypothesis for the northeastern Caribbean may explain some of the anomalous changes within the interior of Hispaniola. Slower velocities to the west of the proposed SEP boundary, relative to the east, could be the result of the leading edge of subducted North American lithosphere impinging on Hispaniola’s lithosphere, at depth, and impeding its eastward motion. Our slower velocities west of the eastern coastline of

Hispaniola are consistent with the UNAVCO public data.

AIMBAT and FMTOMO

Figures 21-27 indicate that the average arrival times near central Hispaniola are slower than those of surrounding areas. Puerto Rico, however, seems to consistently be the fastest area of the northeastern Caribbean. The average arrival times for Hispaniola are also slower than those for Jamaica and Cuba, which could result from a layer of lithosphere from the North American plate beneath eastern Hispaniola. The existence of the North American lithosphere beneath eastern, but not western, Hispaniola, would provide further support for the Slab Edge Push (SEP) hypothesis. The slowest arrival times coincide with the region of Hispaniola where the North America plate is subducting and colliding with the northeastern Caribbean. The fastest region is where the North

American slab is no longer present below Puerto Rico, due to the slab rollback that created the Puerto Rico Trench.

The initial checkerboard tomographic inversion shows that teleseisms constrain structure laterally but not in depth. This suggests that future tomographic modeling of the northeastern Caribbean, in conjunction with local and regional earthquakes, will benefit from the addition of the measurements of teleseismic arrivals made here. While the lateral variations are well-constrained within the northeastern Caribbean, checkboard

37 tests still need to be run with local earthquakes as input to evaluate depth constraints within this region.

38

CHAPTER SIX

Conclusions

We conclude that two microplates make up the eastern portion of Hispaniola. The first is located north of the Septentrional fault and is called the North Hispaniola microplate. The second microplate comprises the remainder of Hispaniola, south of the

Septentrional fault. GPS velocities support the hypothesis that Slab Edge Push (SEP) occurs in the northeastern Caribbean, due to the changes of velocities west of

Hispaniola’s eastern coastline. Waveform cross-correlation measurements of teleseismic arrivals also support the occurrence of SEP beneath eastern Hispaniola.

39

APPENDICES

40

APPENDIX A

Time Series Data

Hispaniola GPS Time Series Plots

Figure A.1: SROD (Santiago Rodriguez, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

41

Figure A.2: SPED (Santiago Rodriguez, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

42

Figure A.3: RDTO (Santo Domingo, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

43

Figure A.4: RDSP (San Pedro, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

44

Figure A.5: RDSJ (San Juan de la Maguana, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

45

Figure A.6: RDSF (San Franciso de Macoros, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

46

Figure A.7: RDSD (Santo Domingo, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

47

Figure A.8: RDPP (Puerto Plata, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

48

Figure A.9: RDMO (Mao, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

49

Figure A.10: RDHM (Hato Mayor, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

50

Figure A.11: RDHG (Higuey, Dominican Republic) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

51

Puerto Rico GPS Time Series Plots

Figure A.12: PRPS (Patillas, Puerto Rico) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

52

Figure A.13: PRMZ (Mayaguez, Puerto Rico) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

53

Figure A.14: PRHU (Humacao, Puerto Rico) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

54

Figure A.15: PRGY (Guayama, Puerto Rico) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

55

Figure A.16: PRCM (Ponce, Puerto Rico) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

56

Figure A.17: PRCD (Ponce, Puerto Rico) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

57

Figure A.18: PRBY (Bayamon, Puerto Rico) time series data with a best-fit linear curve. Equations for the best-fitting linear curve in the east and north directions are displayed in the figure. The linear curve slopes for all northeastern Caribbean stations are plotted in Figures 17 and 19.

58

APPENDIX B

Processing Steps

GPS Processing Steps

In order to run data in the Geophysics Lab the 1Hz_processing.sh, daily24hourprocessing.sh, earthquake_time_only.sh, make24hourfiles.sh, and map_GPS.sh scripts should be run. Each script runs the data through a different process depending on the wanted end result for the data. In order to process data at the 1 Hz level the 1Hz_processing.sh script should be run, for daily data daily24hourprocessing.sh should be run, for a map with velocities and their associated uncertainty ellipses of the northeastern Caribbean map_GPS.sh should be run, and in order to combine multiple hourly files into one large daily file make24hourfiles.sh should be run.

Within each script pieces need to be changed in order to run it. The most common of which is the year and input location of the data. Other edits may be made to the script which is made in bash scripting. Full processing of the data includes many flags for gd2p.pl. The only necessary input flags are -i, -n, and -d, with those corresponding to the input file identifier, station name within the rinex header, and the date, respectively. The -i input has the format [STAT][DDD]a.[YY]o, where a is replaced by letters from a to x depending on the hour of data. The -n flag is the four character station code that GIPSY-OASIS II looks for in the rinex header. The -d flag has an input format of YYYY-MM-DD and must match the date of the file processed.

Other flags are shown in Table 1, and can be found using gd2p.pl -h and can at the

GIPSY-OASIS II website. Other commands are -h_global, -h_edit, and -h_examples,

59 which show help on flags that apply to multiple steps, help on editing data, and example runs, respectively.

The scripts found at /data/ucumari/DR_GPS/FilesForFutureGPSWork/ already have input variables to generate the necessary information for the flags of gd2p.pl. The initial processing was run using processing1.sh and processingYYYY.sh, however, more updated scripts are those mentioned earlier. The scripts process the data and then generate files that can be used for plotting (stacov_final and tdp_final). While the script runs, Postfit.sum, stacov_final, and tdp_final files should be checked for reasonable motions. After the script concludes, sta2env needs to be run in order to change the residuals plot into an east, north, and vertical position change file. In order to run sta2env, -r and -i inputs are needed with -r as the reference file and -i all the input files for the reference file. More information on this step can be found at Post-Processing and

Network Processing on the GIPSY-OASIS II website.

Plotting of the data is in GNUPlot and GMT (Generic Mapping Tool).

The data run though GISPY-OASIS II are plotted in east, north, and vertical through GNUPlot with the initial position of the station as the reference point for motions. Using the east and north components and the psvelo piece of GMT, the surface projection offsets of the northeastern Caribbean are plotted. This plot can be found at

/data/ucumari/DR_GPS/FilesForFutureGPSWork/ using the map_GPS.sh file, which may be amended to add more precise data and more stations. More helpful background information about GIPSY-OASIS II can be found within the black three ring binder within the Geophysics Lab such as initial errors incurred, resolutions to those errors, and the breakdown of the initial script run.

60

Scripts

1Hz_processing.sh

# Process with change file receiver information, does initial run with -r 300 -type s run, gets tropo information, attempted k run with two ways, pastes information into new file (has extra information at the bottom of the file not being part of the script)

# This process is used to create error bar plots with all the information given from the initial processing steps dir=/data/ucumari/DR_GPS yr=14 year=20${yr} dirp=$dir/Earthquake_GPS/ProcessedMay2813DaysOnly a=00:00; b=01:00; c=02:00; d=03:00; e=04:00; y=05:00; g=06:00; h=07:00; i=08:00; j=09:00; k=10:00; l=11:00; m=12:00; n=13:00; o=14:00; p=15:00; q=16:00; z=17:00; s=18:00; t=19:00; u=20:00; v=21:00; w=22:00; x=23:00; aa=00:59:59; bb=01:59:59; cc=02:59:59; dd=03:59:59; ee=04:59:59; yy=05:59:59; gg=06:59:59; hh=07:59:59; ii=08:59:59; jj=09:59:59; kk=10:59:59; ll=11:59:59; mm=12:59:59; nn=13:59:59; oo=14:59:59; pp=15:59:59; qq=16:59:59; zz=17:59:59; ss=18:59:59; tt=19:59:59; uu=20:59:59; vv=21:59:59; ww=22:59:59; xx=23:59:59; ant=$dir/antex_files mkdir -p $dirp cd $dirp rm *.zip rm *.${yr}n *.${yr}o *.${yr}S *.${yr}g rm *_lc_res_${year}.txt rm *_pc_res_${year}.txt rm gdp2p_all_${year}.err *.1Hz rm gdp2p_all_${year}.log rm tdp_final_* rm -r Stacov_files/ rm sta_pos_* *neu* *_1 *_2 *_3 *_4 hour=0; #ls $dir/$year > list_days.dat # Take the file from ../list_days_RDSF4.5.dat and make it list_days.dat here pwd for day in `cat list_days.dat`; do # Call day=206 ls $dir/$year/$day > list_stations.dat # Take the file from ../list_stations_RDSF4.5only.dat and make it list_stations.dat here for sta in `cat list_stations.dat`; do # Call sta=rdsf ls $dir/$year/$day/$sta > list_files.dat # Run this piece STA=${sta^^} for file in `cat list_files.dat`; do # Call file=rdsf206e.zip cp $dir/$year/$day/$sta/$file . unzip $file

61

echo $file | awk -F. '{print $1}' > filein.t for f in `cat filein.t`; do # Call f=rdsf206e epoch $day $year > date1.t cat date1.t |awk '{print $3}' > date2.t for date in `cat date2.t`; do # Call date=2013-07-25 if [[ "$f" == "$sta${day}a" ]]; then echo 'Working on file:' $f.${yr}o $date (gd2p.pl -i $f.${yr}o -n $sta -d $date -r 300 -type s -w_elmin 7 -e "-a 20 -PC -LC -F" -pb_min_slip 1.0e-3 -pb_min_elev 30 -amb_res 2 -dwght 1.0e-5 1.0e-3 - post_wind 5.0e-3 5.0e-5 -trop_z_rw -5.0e-8 -wetzgrad 5.0e-9 -trop_map GPT2 -tides WahrK1 FreqDepLove OctTid PolTid -add_ocnld " -c /opt/GIPSY/goa- 6.3/file_formats/Ocean_Load_Files/OSU12_Ocean_Loading_File" -OcnldCpn - add_ocnldpoltid -orb_clk "flinnR" -stacov > gd2p.log) >& gd2p.err

mkdir -p Stacov_files/ cd Stacov_files/ cp ../stacov_final ${date}.stacov cat ${date}.stacov >> ${date}_${sta}_${hour}.stacov rm ${date}.stacov cd ../

mkdir -p troponominal cd troponominal

grep -A1 lat ../qregres.nml > ./latlongelev cat latlongelev | awk '{print $2}' | awk '{if (NR==2) {print}}' > lat.t cat latlongelev | awk '{print $3}' | awk '{if (NR==2) {print}}' > long.t cat latlongelev | awk '{print $4}' | awk '{if (NR==2) {print}}' > elev.t rm latlongelev

lat=`cat lat.t` long=`cat long.t` elev=`cat elev.t`

else echo 'No initial run needed on: ' $f.${yr}o $date cd troponominal fi

if [[ "$f" == "${sta}${day}a" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}a epoch $date $a > gpsclockstart_${a}.txt; awk '{print $1}' gpsclockstart_${a}.txt > gpsclockstart.txt epoch $date $aa > gpsclockend_${aa}.txt; awk '{print $1}' gpsclockend_${aa}.txt > gpsclockend.txt

62

awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}b" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}b epoch $date $b > gpsclockstart_${b}.txt; awk '{print $1}' gpsclockstart_${b}.txt > gpsclockstart.txt epoch $date $bb > gpsclockend_${bb}.txt; awk '{print $1}' gpsclockend_${bb}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}c" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}c epoch $date $c > gpsclockstart_${c}.txt; awk '{print $1}' gpsclockstart_${c}.txt > gpsclockstart.txt epoch $date $cc > gpsclockend_${cc}.txt; awk '{print $1}' gpsclockend_${cc}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}d" ]]; then

63

echo 'Working on Tropo Delay for file:' ${sta}${day}d epoch $date $d > gpsclockstart_${d}.txt; awk '{print $1}' gpsclockstart_${d}.txt > gpsclockstart.txt epoch $date $dd > gpsclockend_${dd}.txt; awk '{print $1}' gpsclockend_${dd}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}e" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}e epoch $date $e > gpsclockstart_${e}.txt; awk '{print $1}' gpsclockstart_${e}.txt > gpsclockstart.txt epoch $date $ee > gpsclockend_${ee}.txt; awk '{print $1}' gpsclockend_${ee}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}f" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}f epoch $date $y > gpsclockstart_${y}.txt; awk '{print $1}' gpsclockstart_${y}.txt > gpsclockstart.txt epoch $date $yy > gpsclockend_${yy}.txt; awk '{print $1}' gpsclockend_${yy}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev -

64 stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}g" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}g epoch $date $g > gpsclockstart_${g}.txt; awk '{print $1}' gpsclockstart_${g}.txt > gpsclockstart.txt epoch $date $gg > gpsclockend_${gg}.txt; awk '{print $1}' gpsclockend_${gg}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}h" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}h epoch $date $h > gpsclockstart_${h}.txt; awk '{print $1}' gpsclockstart_${h}.txt > gpsclockstart.txt epoch $date $hh > gpsclockend_${hh}.txt; awk '{print $1}' gpsclockend_${hh}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}i" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}i epoch $date $i > gpsclockstart_${i}.txt; awk '{print $1}' gpsclockstart_${i}.txt > gpsclockstart.txt epoch $date $ii > gpsclockend_${ii}.txt; awk '{print $1}' gpsclockend_${ii}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t

65

rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}j" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}j epoch $date $j > gpsclockstart_${j}.txt; awk '{print $1}' gpsclockstart_${j}.txt > gpsclockstart.txt epoch $date $jj > gpsclockend_${jj}.txt; awk '{print $1}' gpsclockend_${jj}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}k" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}k epoch $date $k > gpsclockstart_${k}.txt; awk '{print $1}' gpsclockstart_${k}.txt > gpsclockstart.txt epoch $date $kk > gpsclockend_${kk}.txt; awk '{print $1}' gpsclockend_${kk}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}l" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}l epoch $date $l > gpsclockstart_${l}.txt; awk '{print $1}'

66 gpsclockstart_${l}.txt > gpsclockstart.txt epoch $date $ll > gpsclockend_${ll}.txt; awk '{print $1}' gpsclockend_${ll}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}m" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}m epoch $date $m > gpsclockstart_${m}.txt; awk '{print $1}' gpsclockstart_${m}.txt > gpsclockstart.txt epoch $date $mm > gpsclockend_${mm}.txt; awk '{print $1}' gpsclockend_${mm}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}n" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}n epoch $date $n > gpsclockstart_${n}.txt; awk '{print $1}' gpsclockstart_${n}.txt > gpsclockstart.txt epoch $date $nn > gpsclockend_${nn}.txt; awk '{print $1}' gpsclockend_${nn}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet >

67

${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}o" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}o epoch $date $o > gpsclockstart_${o}.txt; awk '{print $1}' gpsclockstart_${o}.txt > gpsclockstart.txt epoch $date $oo > gpsclockend_${oo}.txt; awk '{print $1}' gpsclockend_${oo}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}p" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}p epoch $date $p > gpsclockstart_${p}.txt; awk '{print $1}' gpsclockstart_${p}.txt > gpsclockstart.txt epoch $date $pp > gpsclockend_${pp}.txt; awk '{print $1}' gpsclockend_${pp}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}q" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}q epoch $date $q > gpsclockstart_${q}.txt; awk '{print $1}' gpsclockstart_${q}.txt > gpsclockstart.txt epoch $date $qq > gpsclockend_${qq}.txt; awk '{print $1}' gpsclockend_${qq}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt

68

starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}r" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}r epoch $date $z > gpsclockstart_${z}.txt; awk '{print $1}' gpsclockstart_${z}.txt > gpsclockstart.txt epoch $date $zz > gpsclockend_${zz}.txt; awk '{print $1}' gpsclockend_${zz}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}s" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}s epoch $date $s > gpsclockstart_${s}.txt; awk '{print $1}' gpsclockstart_${s}.txt > gpsclockstart.txt epoch $date $ss > gpsclockend_${ss}.txt; awk '{print $1}' gpsclockend_${ss}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}t" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}t epoch $date $t > gpsclockstart_${t}.txt; awk '{print $1}' gpsclockstart_${t}.txt > gpsclockstart.txt epoch $date $tt > gpsclockend_${tt}.txt; awk '{print $1}'

69 gpsclockend_${tt}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}u" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}u epoch $date $u > gpsclockstart_${u}.txt; awk '{print $1}' gpsclockstart_${u}.txt > gpsclockstart.txt epoch $date $uu > gpsclockend_${uu}.txt; awk '{print $1}' gpsclockend_${uu}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}v" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}v epoch $date $v > gpsclockstart_${v}.txt; awk '{print $1}' gpsclockstart_${v}.txt > gpsclockstart.txt epoch $date $vv > gpsclockend_${vv}.txt; awk '{print $1}' gpsclockend_${vv}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet

70

elif [[ "$f" == "${sta}${day}w" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}w epoch $date $w > gpsclockstart_${w}.txt; awk '{print $1}' gpsclockstart_${w}.txt > gpsclockstart.txt epoch $date $ww > gpsclockend_${ww}.txt; awk '{print $1}' gpsclockend_${ww}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet elif [[ "$f" == "${sta}${day}x" ]]; then echo 'Working on Tropo Delay for file:' ${sta}${day}x epoch $date $x > gpsclockstart_${x}.txt; awk '{print $1}' gpsclockstart_${x}.txt > gpsclockstart.txt epoch $date $xx > gpsclockend_${xx}.txt; awk '{print $1}' gpsclockend_${xx}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet else echo 'No Tropo Delay Needed, Not a good file' fi

cd ../

grep $STA /data/ucumari/GIPSY/goa-var/sta_info/sta_pos > sta_pos_${sta} awk '{printf "%.6f\n", $8*1E-3}' sta_pos_${sta} > sta_pos_1_${sta} awk '{printf "%.6f\n", $9*1E-3}' sta_pos_${sta} > sta_pos_2_${sta} awk '{printf "%.6f\n", $10*1E-3}' sta_pos_${sta} > sta_pos_3_${sta} echo 0 > sta_pos_1_2_${sta} echo 0 > sta_pos_2_2_${sta}

71

echo 0 > sta_pos_3_2_${sta}

p1=`cat sta_pos_1_${sta}` p2=`cat sta_pos_2_${sta}` p3=`cat sta_pos_3_${sta}`

env1=0.0 #Taken from /data/ucumari/GIPSY/goa-var/sta_info/sta_svec, could change if needed env2=0.0 env3=0.0

if [[ "$f" == "${sta}${day}a01" ]]; then echo 'No Processing Needed on: ' $f.${yr}o

elif [[ "$f" == "${sta}148v" ]]; then echo 'Ninja' ninja -i $f.${yr}o -q qmfile_1 -t 1 -a 20 -LC -PC -n $STA -F > tt.t

echo 'Using Tropo Delay in Processing:' $f.${yr}o $date (gd2p.pl -i $f.${yr}o -n $sta -d $date -r 1 -type k -w_elmin 7 -eldepwght SQRTSIN -e "-a 20 -PC -LC -F" -pb_min_slip 1.0e-3 -pb_min_elev 30 -amb_res 2 - dwght 1.0e-5 1.0e-3 -post_wind 5.0e-3 5.0e-5 -trop_z_rw -5.0e-8 -wetzgrad 5.0e-9 - trop_map GPT2 -tdp_in ${sta}_GPT2.TDPdryandwet -tides WahrK1 FreqDepLove OctTid PolTid -add_ocnld " -c /opt/GIPSY/goa- 6.3/file_formats/Ocean_Load_Files/OSU12_Ocean_Loading_File" -OcnldCpn - add_ocnldpoltid -ion_2nd -shell_height 600 -tec_mdl iri -orb_clk "flinnR" -AntCal $ant/${STA}_antex.xyz -p $p1 $p2 $p3 -env_km $env1 $env2 $env3 -stacov - kin_sta_xyz 2.0e-3 1.0e-3 1 RANDOMWALK -ae 'ln -s qmfile_1 qmfile' > gd2p.log.1Hz) >& gd2p.err.1Hz # Figure example 2 and 4 in kinematic processing

else echo 'Ninja' ninja -i $f.${yr}o -q qmfile_1 -t 1 -a 20 -LC -PC -n $STA -F > tt.t

echo 'Using Tropo Delay in Processing:' $f.${yr}o $date (gd2p.pl -i $f.${yr}o -n $sta -d $date -r 1 -type k -w_elmin 7 -eldepwght SQRTSIN -e "-a 20 -PC -LC -F" -pb_min_slip 1.0e-3 -pb_min_elev 30 -amb_res 2 - dwght 1.0e-5 1.0e-3 -tides WahrK1 FreqDepLove OctTid PolTid -add_ocnld " -c /opt/GIPSY/goa-6.3/file_formats/Ocean_Load_Files/OSU12_Ocean_Loading_File" - OcnldCpn -add_ocnldpoltid -ion_2nd -shell_height 600 -tec_mdl iri -orb_clk "flinnR" -p $p1 $p2 $p3 -env_km $env1 $env2 $env3 -stacov -kin_sta_xyz 1.0e-3 9.9e-6 1 RANDOMWALK -ae 'ln -s qmfile_1 qmfile' > gd2p.log.1Hz) >& gd2p.err.1Hz # Figure example 2 and 4 in kinematic processing fi

echo 'Grouping tdp_final files together for plotting:' $f.${yr}o $date

72

tdp2llh tdp_final $STA | grep est | cl h3 '1e2*c4' '1e2*c5' '1e2*c6' > ${STA}_neu_${date}.txt cat ${STA}_neu_${date}.txt | awk -v hour=$hour '{print $1+=hour, " " $2 " " $3 " " $4}' >> ${STA}_neu_${hour}_${date}.txt

if [[ "$f" == "${sta}${day}a" ]]; then awk '{print $1}' ${STA}_neu_${hour}_${date}.txt > ${STA}_1 awk '{print $2}' ${STA}_neu_${hour}_${date}.txt > ${STA}_2 awk '{print $3}' ${STA}_neu_${hour}_${date}.txt > ${STA}_3 awk '{print $4}' ${STA}_neu_${hour}_${date}.txt > ${STA}_4 (paste <(awk '{print $1}' ${STA}_1) <(awk '{print $1}' ${STA}_2) <(awk '{print $1}' ${STA}_3) <(awk '{print $1}' ${STA}_4) ) > ${STA}_neu_final_${date}.txt else tail -n 1 ${STA}_neu_final_${date}.txt > file_editor_end awk '{print $2}' file_editor_end > ${STA}_2_end awk '{print $3}' file_editor_end > ${STA}_3_end awk '{print $4}' file_editor_end > ${STA}_4_end

head -n 1 ${STA}_neu_${hour}_${date}.txt > file_editor_start awk '{print $2}' file_editor_start > ${STA}_2_start awk '{print $3}' file_editor_start > ${STA}_3_start awk '{print $4}' file_editor_start > ${STA}_4_start paste ${STA}_2_end ${STA}_2_start | awk '{print $1 - $2; }' > edit_${STA}_2 paste ${STA}_3_end ${STA}_3_start | awk '{print $1 - $2; }' > edit_${STA}_3 paste ${STA}_4_end ${STA}_4_start | awk '{print $1 - $2; }' > edit_${STA}_4 awk "{print $2+`cat edit_${STA}_2`}" ${STA}_neu_${hour}_${date}.txt > ${STA}_2_2 awk "{print $3+`cat edit_${STA}_3`}" ${STA}_neu_${hour}_${date}.txt > ${STA}_2_3 awk "{print $4+`cat edit_${STA}_4`}" ${STA}_neu_${hour}_${date}.txt > ${STA}_2_4 awk '{print $2}' ${STA}_neu_${hour}_${date}.txt > ${STA}_use_2 awk '{print $3}' ${STA}_neu_${hour}_${date}.txt > ${STA}_use_3 awk '{print $4}' ${STA}_neu_${hour}_${date}.txt > ${STA}_use_4 awk '{print $1}' ${STA}_neu_${hour}_${date}.txt > ${STA}_final_1 paste ${STA}_use_2 ${STA}_2_2 | awk '{print $1 + $2; }' > ${STA}_final_2 paste ${STA}_use_3 ${STA}_2_3 | awk '{print $1 + $2; }' > ${STA}_final_3 paste ${STA}_use_4 ${STA}_2_4 | awk '{print $1 + $2; }' > ${STA}_final_4 (paste <(awk '{print $1}' ${STA}_final_1) <(awk '{print $1}' ${STA}_final_2) <(awk '{print $1}' ${STA}_final_3) <(awk '{print $1}'

73

${STA}_final_4) ) >> ${STA}_neu_final_${date}.txt fi

done done echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> gdp2p_all_${year}.log cat gd2p.log >> gdp2p_all_${year}.log cat gd2p.log.1Hz >> gdp2p_all_${year}.log.1Hz rm gd2p.log gd2p.log.1Hz

echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> gdp2p_all_${year}.err cat gd2p.err >> gdp2p_all_${year}.err cat gd2p.err.1Hz >> gdp2p_all_${year}.err.1Hz rm gd2p.err gd2p.err.1Hz

echo ' ' >> logs/editor_all_${year}.log echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> logs/editor_all_${year}.log cat logs/editor.log >> logs/editor_all_${year}.log rm logs/editor.log

echo ' ' >> logs/qregres1_all_${year}.log echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> logs/qregres1_all_${year}.log cat logs/qregres1.log >> logs/qregres1_all_${year}.log rm logs/qregres1.log

echo ' ' >> residuals_${year}.pl echo 'New Residual:' $dirp/$year/$day/$sta/$file >> Residual_${year}.pl residuals.pl cat residuals.txt | awk '{if ($4 == 120) print $0}' | cl h1 5 | awk -v hour=$hour '{print $1+=hour, " " $2}' >> ${sta}_lc_res_${year}.txt cat residuals.txt | awk '{if ($4 == 110) print $0}' | cl h1 5 | awk -v hour=$hour '{print $1+=hour, " " $2}' >> ${sta}_pc_res_${year}.txt rm residuals.txt

echo ' ' >> Postfit_${sta}_${year}.sum echo 'New Postfit sum:' $dirp/$year/$day/$sta/$file >> Postfit_${year}.sum cat Postfit.sum >> Postfit_${year}.sum rm Postfit.sum

cp tdp_final tdp_final_$sta cat tdp_final_$sta >> tdp_final_$STA

e[++hour]=hour;

rm $file

74

rm *.${yr}n *.${yr}o *.${yr}S *.${yr}g done hour=0; done done cd $dirp

The script shown above will process data acquired at the 1 Hz scale. The major components of this script are the two gd2p.pl runs near the end of the script and the one at the beginning. The beginning gd2p.pl run is used in order to get static offset data to be used for troposphere and ionosphere corrections for all the data aside from the earthquake offset data. The other two runs will take the data from the May 28th 2014 earthquake and specifically process that data in such a way that the earthquake offsets will be output.

The if loop that surrounds these two gd2p.pl runs should be changed if another earthquake is recorded and processing is attempted over that earthquake. In this script, the twenty-second hour of data is where the earthquake propagates through the station so data file v (22) is used as the earthquake file. Other pieces of this script that would need to be changed are the year and the directories that are used.

daily24hourprocessing.sh

# Process in order to get the daily solutions for each station. This processing is done so that no changes need to be made in order to run data from 2012 to 2014. This is run after each ${sta}${day}final.${yr}o file is generated using the make24hourfiles.sh script. dir=/data/ucumari/DR_GPS/UNAVCO_Data_DR dirp=$dir/ProcessedData a=00:00; xx=23:59; mkdir -p $dirp $dirp/Stacov_files cd $dirp awk '{print substr($0,3,2)}' list_years.dat > list_yrs.dat

75 rm -r LC_Residuals PC_Residuals Postfits Stacov_files Tar_files for yr in `cat list_yrs.dat`; do year=20${yr} dirk=$dir/$year mkdir -p $dirk for sta in `cat list_stations.dat`; do mkdir -p $dirp/${sta}$year $dirp/Stacov_files/$sta $dirp/LC_Residuals/$sta $dirp/PC_Residuals/$sta $dirp/Postfits/$sta $dirk/$sta cd $dirp/${sta}$year cp ../list_days.dat . for day in `cat list_days.dat`; do ls ../../${sta}${day}0.${yr}d.Z > list_files.dat.t awk '{print substr($0,7)}' list_files.dat.t > list_files.dat STA=${sta^^} for file in `cat list_files.dat`; do mv ../../$file . crz2rnx $file f=${sta}${day}0.${yr}o

epoch $day $year > date1.t cat date1.t | awk '{print $3}' > date.t date=`cat date.t`

echo 'Working on Station:' $STA 'Day:' $day 'Full Date:' $date (gd2p.pl -i $f -n $sta -d $date -r 3600 -type s -w_elmin 7 -e "-a 20 - PC -LC -F" -pb_min_slip 1.0e-3 -pb_min_elev 30 -amb_res 2 -dwght 1.0e-5 1.0e-3 - post_wind 5.0e-3 5.0e-5 -trop_z_rw -5.0e-8 -wetzgrad 5.0e-9 -trop_map GPT2 -tides WahrK1 FreqDepLove OctTid PolTid -add_ocnld " -c /opt/GIPSY/goa- 6.3/file_formats/Ocean_Load_Files/Ocean_Loading_File" -OcnldCpn -add_ocnldpoltid - orb_clk "flinnR" -stacov > gd2p.log) >& gd2p.err

mkdir -p troponominal cd troponominal

grep -A1 lat ../qregres.nml > ./latlongelev cat latlongelev | awk '{print $2}' | awk '{if (NR==2) {print}}' > lat.t cat latlongelev | awk '{print $3}' | awk '{if (NR==2) {print}}' > long.t cat latlongelev | awk '{print $4}' | awk '{if (NR==2) {print}}' > elev.t

lat=`cat lat.t` long=`cat long.t` elev=`cat elev.t`

echo 'Working on Tropo Delay for file:' ${sta}${day}a epoch $date $a > gpsclockstart_${a}.txt; awk '{print $1}' gpsclockstart_${a}.txt > gpsclockstart.txt

76

epoch $date $xx > gpsclockend_${xx}.txt; awk '{print $1}' gpsclockend_${xx}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev -stsec $starttime -endsec $endtime -samp 3600 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet

cd ../

grep $STA /data/ucumari/GIPSY/goa-var/sta_info/sta_pos > sta_pos_${sta} awk '{printf "%.6f\n", $8*1E-3}' sta_pos_${sta} > sta_pos_1_${sta} awk '{printf "%.6f\n", $9*1E-3}' sta_pos_${sta} > sta_pos_2_${sta} awk '{printf "%.6f\n", $10*1E-3}' sta_pos_${sta} > sta_pos_3_${sta} echo 0 > sta_pos_1_2_${sta} echo 0 > sta_pos_2_2_${sta} echo 0 > sta_pos_3_2_${sta}

p1=`cat sta_pos_1_${sta}` p2=`cat sta_pos_2_${sta}` p3=`cat sta_pos_3_${sta}`

env1=0.0 #Taken from /data/ucumari/GIPSY/goa- var/sta_info/sta_svec, could change if needed env2=0.0 env3=0.0

echo 'Using Tropo Delay in Processing on station:' $STA 'Day:' $day 'Full date:' $date (gd2p.pl -i $f -n $sta -d $date -r 3600 -type s -w_elmin 7 -eldepwght SQRTSIN -e "-a 20 -PC -LC -F" -pb_min_slip 1.0e-3 -pb_min_elev 30 -amb_res 2 - dwght 1.0e-5 1.0e-3 -post_wind 5.0e-3 5.0e-5 -trop_z_rw -5.0e-8 -wetzgrad 5.0e-9 - trop_map GPT2 -tdp_in ${sta}_GPT2.TDPdryandwet -tides WahrK1 FreqDepLove OctTid PolTid -add_ocnld " -c /opt/GIPSY/goa- 6.3/file_formats/Ocean_Load_Files/Ocean_Loading_File" -OcnldCpn -add_ocnldpoltid - ion_2nd -shell_height 600 -tec_mdl iri -orb_clk "flinnR" -p $p1 $p2 $p3 -env_km $env1 $env2 $env3 -stacov > gd2p.log.fullprocessing) >& gd2p.err.fullprocessing

77

cp stacov_final $dirk/$sta/${date}.stacov

mkdir -p save

echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> gdp2p_all_${year}.log cat gd2p.log >> save/gdp2p_all_${year}.log cat gd2p.log.fullprocessing >> save/gdp2p_all_${year}.log.fullprocessing

echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> gdp2p_all_${year}.err cat gd2p.err >> save/gdp2p_all_${year}.err cat gd2p.err.fullprocessing >> save/gdp2p_all_${year}.err.fullprocessing

echo ' ' >> logs/editor_all_${year}.log echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> logs/editor_all_${year}.log cat logs/editor.log >> save/editor_all_${year}.log

echo ' ' >> logs/qregres1_all_${year}.log echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> logs/qregres1_all_${year}.log cat logs/qregres1.log >> save/qregres1_all_${year}.log

echo ' ' >> residuals_${year}.pl echo 'New Residual:' $dirp/$year/$day/$sta/$file >> Residual_${year}.pl residuals.pl cat residuals.txt | awk '{if ($4 == 120) print $0}' | cl h1 5 > ${sta}_lc_res_${date}.txt cat residuals.txt | awk '{if ($4 == 110) print $0}' | cl h1 5 > ${sta}_pc_res_${date}.txt mv *lc_res* $dirp/LC_Residuals/$sta mv *pc_res* $dirp/PC_Residuals/$sta

echo ' ' >> Postfit_${sta}_${year}.sum echo 'New Postfit sum:' $dirp/$year/$day/$sta/$file >> Postfit_${year}.sum cat Postfit.sum >> save/Postfit_${year}.sum mv Postfit.sum $dirp/Postfits/$sta/Postfit_${date}.sum

mv *d.Z save mv list_days.dat save

78

find . -maxdepth 1 ! -name 'backup' ! -name 'save' | xargs rm -r

mv save/list_days.dat . done done cd $dirp done done cd /data/ucumari/DR_GPS/Processing/Processing_Entire_Year

This file runs similar to 1Hz_processing.sh in that the major components are the gd2p.pl runs. The first run again makes files that will be used to correct for troposphere and ionosphere delay times. The second run then takes that data and creates static offset changes of the daily data. The important outputs from this file are in Postfit.sum and

*res_${date}.txt formats. After the conclusion of this script, sta2env should be run in order to create the east, north, and vertical files for other steps. Also like

1Hz_processing.sh, the directories need to be changed, however, the date does not need to be changed as long as data does not extend further back than 2000 and the list_yrs.dat file has been updated.

earthquake_time_only.sh

# Process with change file receiver information, does initial run with -r 300 -type s run, gets tropo information, attempted k run with two ways, pastes information into new file (has extra information at the bottom of the file not being part of the script)

# This process is used to create error bar plots with all the information given from the initial processing steps dir=/data/ucumari/DR_GPS yr=14 year=20${yr} dirp=$dir/DailySolutions/results/Earthquake_period_.5Hz a=00:00; b=01:00; c=02:00; d=03:00; e=04:00; y=05:00; g=06:00; h=07:00; i=08:00; j=09:00; k=10:00; l=11:00; m=12:00; n=13:00; o=14:00; p=15:00; q=16:00; z=17:00; s=18:00; t=19:00; u=20:00; v=21:00; w=22:00; x=23:00; aa=00:59:59; bb=01:59:59; cc=02:59:59; dd=03:59:59; ee=04:59:59; yy=05:59:59;

79 gg=06:59:59; hh=07:59:59; ii=08:59:59; jj=09:59:59; kk=10:59:59; ll=11:59:59; mm=12:59:59; nn=13:59:59; oo=14:59:59; pp=15:59:59; qq=16:59:59; zz=17:59:59; ss=18:59:59; tt=19:59:59; uu=20:59:59; vv=21:59:59; ww=22:59:59; xx=23:59:59; ant=$dir/antex_files mkdir -p $dirp cd $dirp rm *.zip rm *.${yr}n *.${yr}o *.${yr}S *.${yr}g rm *_lc_res_${year}.txt rm *_pc_res_${year}.txt rm gdp2p_all_${year}.err *.1Hz rm gdp2p_all_${year}.log rm tdp_final_* rm -r Stacov_files/ rm sta_pos_* *neu* *_1 *_2 *_3 *_4 hour=0; #ls $dir/$year > list_days.dat # Take the file from ../list_days_RDSF4.5.dat and make it list_days.dat here pwd for day in `cat list_days.dat`; do # Call day=206 ls $dir/$year/$day > list_stations.dat # Take the file from ../list_stations_RDSF4.5only.dat and make it list_stations.dat here for sta in `cat list_stations.dat`; do # Call sta=rdsf ls $dir/$year/$day/$sta/${sta}${day}v* > list_files # Run this piece awk '{print substr($0,36,12)}' list_files > list_files.dat STA=${sta^^} for file in `cat list_files.dat`; do # Call file=rdsf206e.zip cp $dir/$year/$day/$sta/$file . unzip $file echo $file | awk -F. '{print $1}' > filein.t sed '6 c 463463 LEICA GRX1200PRO 5.62/2.127 REC # / TYPE / VERS' ${sta}${day}v.14o > ${sta}${day}_1 mv ${sta}${day}_1 ${sta}${day}v.14o for f in `cat filein.t`; do # Call f=rdsf206e epoch $day $year > date1.t cat date1.t |awk '{print $3}' > date2.t for date in `cat date2.t`; do # Call date=2013-07-25 echo 'Working on file:' $f.${yr}o $date (gd2p.pl -i $f.${yr}o -n $sta -d $date -r 300 -type s -w_elmin 7 -e "-a 20 -PC -LC -F" -pb_min_slip 1.0e-3 -pb_min_elev 30 -amb_res 2 -dwght 1.0e-5 1.0e-3 - post_wind 5.0e-3 5.0e-5 -trop_z_rw -5.0e-8 -wetzgrad 5.0e-9 -trop_map GPT2 -tides WahrK1 FreqDepLove OctTid PolTid -add_ocnld " -c /opt/GIPSY/goa- 6.3/file_formats/Ocean_Load_Files/OSU12_Ocean_Loading_File" -OcnldCpn - add_ocnldpoltid -orb_clk "flinnR" -stacov > gd2p.log) >& gd2p.err

mkdir -p Stacov_files/

80

cd Stacov_files/ cp ../stacov_final ${date}.stacov cat ${date}.stacov >> ${date}_${sta}_${hour}.stacov rm ${date}.stacov cd ../

mkdir -p troponominal cd troponominal

grep -A1 lat ../qregres.nml > ./latlongelev cat latlongelev | awk '{print $2}' | awk '{if (NR==2) {print}}' > lat.t cat latlongelev | awk '{print $3}' | awk '{if (NR==2) {print}}' > long.t cat latlongelev | awk '{print $4}' | awk '{if (NR==2) {print}}' > elev.t rm latlongelev

lat=`cat lat.t` long=`cat long.t` elev=`cat elev.t`

echo 'Working on Tropo Delay for file:' ${sta}${day}v epoch $date $v > gpsclockstart_${v}.txt; awk '{print $1}' gpsclockstart_${v}.txt > gpsclockstart.txt epoch $date $vv > gpsclockend_${vv}.txt; awk '{print $1}' gpsclockend_${vv}.txt > gpsclockend.txt awk '{print ($1 - 946684800.000)}' gpsclockstart.txt > starttime.t awk '{print ($1 - 946684800.000)}' gpsclockend.txt > endtime.t rm gpsclockend.txt gpsclockstart.txt gpsclockstart_??:??.txt gpsclockend_??:??:??.txt starttime=`cat starttime.t`.0 endtime=`cat endtime.t`.0 tropnominal -n $sta -m GPT2 -latdeg $lat -londeg $long -h_m $elev - stsec $starttime -endsec $endtime -samp 300 cat ${STA}.TDPdry ${STA}.TDPwet > ${sta}_GPT2.TDPdryandwet mv ${sta}_GPT2.TDPdryandwet ../${sta}_GPT2.TDPdryandwet

cd ../

grep $STA /data/ucumari/GIPSY/goa-var/sta_info/sta_pos > sta_pos_${sta} awk '{printf "%.6f\n", $8*1E-3}' sta_pos_${sta} > sta_pos_1_${sta} awk '{printf "%.6f\n", $9*1E-3}' sta_pos_${sta} > sta_pos_2_${sta} awk '{printf "%.6f\n", $10*1E-3}' sta_pos_${sta} > sta_pos_3_${sta} echo 0 > sta_pos_1_2_${sta} echo 0 > sta_pos_2_2_${sta} echo 0 > sta_pos_3_2_${sta}

81

p1=`cat sta_pos_1_${sta}` p2=`cat sta_pos_2_${sta}` p3=`cat sta_pos_3_${sta}`

env1=0.0 #Taken from /data/ucumari/GIPSY/goa-var/sta_info/sta_svec, could change if needed env2=0.0 env3=0.0

echo 'Ninja' ninja -i $f.${yr}o -q qmfile_1 -t 2 -a 20 -LC -PC -n $STA -F > tt.t

echo 'Using Tropo Delay in Processing:' $f.${yr}o $date (gd2p.pl -i $f.${yr}o -n $sta -d $date -r 2 -type k -w_elmin 7 -eldepwght SQRTSIN -e "-a 20 -PC -LC -F" -pb_min_slip 1.0e-3 -pb_min_elev 30 -amb_res 2 - dwght 1.0e-5 1.0e-3 -post_wind 5.0e-3 5.0e-5 -trop_z_rw -5.0e-8 -wetzgrad 5.0e-9 - trop_map GPT2 -tdp_in ${sta}_GPT2.TDPdryandwet -tides WahrK1 FreqDepLove OctTid PolTid -add_ocnld " -c /opt/GIPSY/goa- 6.3/file_formats/Ocean_Load_Files/OSU12_Ocean_Loading_File" -OcnldCpn - add_ocnldpoltid -ion_2nd -shell_height 600 -tec_mdl iri -orb_clk "flinnR" -p $p1 $p2 $p3 -env_km $env1 $env2 $env3 -stacov -kin_sta_xyz 2.0e-3 1.0e-3 1 RANDOMWALK -ae 'ln -s qmfile_1 qmfile' > gd2p.log.1Hz) >& gd2p.err.1Hz # Figure example 2 and 4 in kinematic processing

echo 'Grouping tdp_final files together for plotting:' $f.${yr}o $date tdp2llh tdp_final $STA | grep est | cl h3 '1e2*c4' '1e2*c5' '1e2*c6' > ${STA}_neu_${date}.txt cat ${STA}_neu_${date}.txt | awk -v hour=$hour '{print $1+=hour, " " $2 " " $3 " " $4}' >> ${STA}_neu_${hour}_${date}.txt

done done echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> gdp2p_all_${year}.log cat gd2p.log >> gdp2p_all_${year}.log cat gd2p.log.1Hz >> gdp2p_all_${year}.log.1Hz rm gd2p.log gd2p.log.1Hz

echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> gdp2p_all_${year}.err cat gd2p.err >> gdp2p_all_${year}.err cat gd2p.err.1Hz >> gdp2p_all_${year}.err.1Hz rm gd2p.err gd2p.err.1Hz

echo ' ' >> logs/editor_all_${year}.log echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> logs/editor_all_${year}.log cat logs/editor.log >> logs/editor_all_${year}.log rm logs/editor.log

82

echo ' ' >> logs/qregres1_all_${year}.log echo 'New gd2pl run:' $dirp/$year/$day/$sta/$file >> logs/qregres1_all_${year}.log cat logs/qregres1.log >> logs/qregres1_all_${year}.log rm logs/qregres1.log

echo ' ' >> residuals_${year}.pl echo 'New Residual:' $dirp/$year/$day/$sta/$file >> Residual_${year}.pl residuals.pl cat residuals.txt | awk '{if ($4 == 120) print $0}' | cl h1 5 | awk -v hour=$hour '{print $1+=hour, " " $2}' >> ${sta}_lc_res_${year}.txt cat residuals.txt | awk '{if ($4 == 110) print $0}' | cl h1 5 | awk -v hour=$hour '{print $1+=hour, " " $2}' >> ${sta}_pc_res_${year}.txt rm residuals.txt

echo ' ' >> Postfit_${sta}_${year}.sum echo 'New Postfit sum:' $dirp/$year/$day/$sta/$file >> Postfit_${year}.sum cat Postfit.sum >> Postfit_${year}.sum rm Postfit.sum

cp tdp_final tdp_final_$sta cat tdp_final_$sta >> tdp_final_$STA

e[++hour]=hour;

rm $file rm *.${yr}n *.${yr}o *.${yr}S *.${yr}g done hour=0; done done cd $dirp

This script is the same as 1Hz_processing.sh, however, this script processes only the day of the earthquake. In this file, the entire days’ worth of data are run such that the earthquake offsets will be run. This adds a bit more uncertainty to the results when output using this file instead of 1Hz_processing.sh. This file needs to have the directories and date updated like the other scripts.

83 make24hourfiles.sh

# Process to make all daily files dir=/media/EXTERNALNAME/Data dirp=$dir/DailySolutions

#dir=/data/ucumari/DR_GPS #dirp=$dir/DailySolutions yr=08 year=20${yr} cd $dirp ls LISTDAYS_PIECE pwd for year in `cat list_years.dat`; do for day in `cat list_days.dat`; do ls LISTSTATIONS_PIECE for sta in `cat list_stations`; do ls LISTFILES_PIECE for file in `cat list_files.dat`; do cp $file . unzip $file rm *zip *14n ${sta}${day}???.14o *14g mkdir -p ${sta}$year mkdir -p ${sta}$year/${sta}$day mv *.14o ${sta}$year/${sta}$day done done done done cd /data/ucumari/DR_GPS/Processing/Processing_Entire_Year

ls $dir/$year/$day > list_stations.dat ls $dir/$year/$day/$sta > list_files.dat cp $dir/$year/$day/$sta/$file . unzip $file rm *zip *14n ${sta}${day}???.14o *14g mkdir -p ${sta}$year mkdir -p ${sta}$year/${sta}$day mv *.14o ${sta}$year/${sta}${day}

This script will take multiple hourly data files and concatenate them together into one larger file. In this script, the data were taken from an external hard drive and from

84 the original data location and created the twenty-four hour files to be added to another location. This script requires the directories to be altered or uncommented out, and for the locations with all capital letters to be changed with the pertinent information.

map_GPS.sh

#/bin/sh -f gmtDATAdir=. gmtDATAdir=/Users/jay_pulliam/Jay/Projects/Metadata #gmtDATAdir=/opt/GMT/Data/SRTMplus/grd gmtDATAdir=/data/bruin/Map_Data/GMT gmtDATAdir=/data/ursa/GMT/Data cmap_dir=$gmtDATAdir/Colormaps faults_dir=$gmtDATAdir/Plate_Boundaries dir=. # grd=filt.grd # grd=pr-surface.grd #grd=${gmtDATAdir}/Topography_Bathymetry/SRTM30/w100n40.Bathymetry.srtm.grd grd=$gmtDATAdir/Topography_Bathymetry/SRTM30/w100n40.Bathymetry.srtm.grd # cpt=${cmap_dir}/dr_topo.cpt cpt=${cmap_dir}/pr-dr.cpt #cpt2=${dir}/disc.cpt

xmin=-72.00 # Dominican Republic xmax=-68.00 ymin=17.25 ymax=20.25 xoff=1.5 yoff=1.0 xwidth=22 ticks=1.00f0.250 dscale=-Lf-71.50/17.50/-70.00/17.75/100K xmin=-74.75 # Hispaniola xmax=-68.00 ymin=17.25 ymax=20.25 xoff=1.5 yoff=1.0

85 xwidth=22 xwidth=80 ticks=1.00f0.250 dscale=-Lf-71.50/17.50/-70.00/17.75/100K xmin=-75.00 # NE Caribbean xmax=-63.00 ymin=17.25 ymax=22.00 xoff=1.75 yoff=1.75 xwidth=65 ticks=1.00f0.250 dscale=-Lf-71.50/17.50/-70.00/17.75/100K # dscale=-Lf-69.25/17.60/17.60/200k gmtset PAPER_MEDIA A1

#gmtset PAPER_WIDTH 21 #gmtset PAPER_MEDIA archC # gmtset PAPER_MEDIA A1

#xoff=4.5 yoff=2.0 #xwidth=22 region=${xmin}/${xmax}/${ymin}/${ymax} sz1=0.550 sz2=0.550 sz3=0.555 sz4=0.150 sz5=0.550 clr2=000/000/000 clrEH=255/000/000 clrHH=255/255/000 clrBH=000/000/000 clrBH=255/000/255 clrISU=000/000/255 clrPRSN=000/255/255 clrUSGS=255/255/000 clrFrench=000/255/000 clrVBB=255/000/255 clrOBS=255/000/000 clrPlanned=255/255/255

86 oc1C=0/000/000/000 # oc3C=8/000/000/000 oc3C=4/000/000/000 symPR_EH=t${sz1} symPR_HH=t${sz1} symPR_BH=t${sz1} symPR_VBB=t${sz1} symPR_Planned=t${sz1} symDR_EH=d${sz1} symDR_HH=d${sz1} symGSN=h${sz2} symUT_BH=s${sz1} symOBS=s${sz3} ps=Joined_UNAVCO_and_GME_DEMETS2010_IGS08_Thicker.ps rm $ps

# grdfilter ${grd1} -D4 -Fg5 -I10c -G${grd} grdimage -K $grd -C$cpt -R$region -JM$xwidth -X$xoff -Y$yoff >> $ps

# grdimage /data/bruin/Map_Data/GMT/Seafloor_Age/age_1.6.grd - C/data/bruin/Map_Data/GMT/Seafloor_Age/age.cpt -R$region -JM$xwidth -K -V - X$xoff -Y$yoff >> $ps

# psbasemap -O -K -R$region -JM$xwidth -Lf-69.25/17.60/17.60/200k -B$ticks >> $ps dscale=-Lf-71.00/17.45/17.45/100k psbasemap -O -K -R$region -JM$xwidth $dscale -B$ticks >> $ps echo '-71.00 17.30 16 0 1 2 kilometers' | pstext -R$region -JM$xwidth -O -K >> $ps # psbasemap -K -R$region -JM$xwidth $dscale -B$ticks -T-68.5/19.5/1/1 > $ps pscoast -O -K -R$region -JM$xwidth -Ir -Df -W0/000/000/000 -Na >> $ps

# Plot Earthquakes # awk '{print $4, $3, $5, $6/2}' eqks_edepGE50.0.dat |\ # awk '{print $4, $3, $5, $6/2}' eqks_2005_2014_Long60-75_edep50-100.dat |\ # psxy -R$region -JM$xwidth -O -K -A -Sc0.15 -G255/000/000 -W1 >> $ps # awk '{print $4, $3, $5, $6/2}' eqks_2005_2014_Long60-75_edep100-150.dat |\ # psxy -R$region -JM$xwidth -O -K -A -Sc0.20 -G000/255/255 -W1 >> $ps # awk '{print $4, $3, $5, $6/2}' eqks_2005_2014_Long60-75_edepGE150.dat |\ # psxy -R$region -JM$xwidth -O -K -A -Sc0.25 -G000/255/000 -W1 >> $ps # awk '{print $6, $5}' eqks_Cuba.evts |\ # psxy -R$region -JM$xwidth -O -K -A -Ss0.35 -G000/000/000 -W1 >> $ps # awk '{print $4, $3}' ANSS_20140801-20160213.dat |\

87

# psxy -R$region -JM$xwidth -O -K -A -Ss0.35 -G000/000/000 -W1 >> $ps lx0=-74.0 lx1=-73.85 lx2=-73.80 ly=17.95 offset=0.09 psxy $faults_dir/caribbean_faults.gmt -JM -R -W3/255/0/0 -M -O -K >> $ps

#lx1=-69.40 #lx2=-69.32 lx1=-70.08 lx2=-70.00 ly=17.22 ly=17.95 offset=0.09

lx1=-73.28 lx2=-73.20 ly=17.22 ly=17.95 offset=0.09

isw_new_sites=0 if [ $isw_new_sites -eq 2 ] then echo $lx1 $ly | psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} - G${clrBH} >> $ps echo $lx2 $ly '16 0 1 LM GrASP Stations (ZC 2013-17)'|pstext -R$region -JM$xwidth - O -K -G0 >> $ps

# HIGDR: Higuey 18.59151667 -68.71523333 echo '-68.7152 18.59152'| psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} - G${clrBH} >> $ps echo '18.500 -68.7169 16 0 1 2 HIGDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# NADR: 19.3545 -69.8560 Nagua echo '19.3545 -69.8560'| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '19.4245 -69.8560 16 0 1 2 NADR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

88

# MADR: 19.5659 -71.1026 Mao echo '19.5659 -71.1026 '| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '19.4659 -71.1026 16 0 1 2 MADR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# MIDR: 18.9833 -69.0498 Miches echo '18.9833 -69.0498 '| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '18.8883 -69.0498 16 0 1 2 MIDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# SODR: 19.7510 -70.5750 Sosua, Puerto Plata echo '-70.5750 19.7510'| psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} - G${clrBH} >> $ps echo '-70.5750 19.8150 16 0 1 2 SODR' | pstext -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# LUDR: Luperon 19.893n, -70.954w echo '-70.9531 19.8933'| psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} - G${clrBH} >> $ps echo '-70.9531 19.9633 16 0 1 2 LUDR' | pstext -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# SMDR: -69.1882 19.4562 echo '-69.1882 19.2898'| psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} - G${clrBH} >> $ps echo '19.3508 -69.1182 16 0 1 2 SMDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# ABDR: 18.8121 -70.6267 Alto Bandera echo '18.8121 -70.6267 '| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '18.8751 -70.6267 16 0 1 2 ABDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# MCDR: 19.8924 -71.6569 echo '19.8924 -71.6569'| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '19.9554 -71.6569 16 0 1 2 MCDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# NEDR: 18.4835 -71.4180 Neiba echo '18.4835 -71.4180'| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '18.5535 -71.4080 16 0 1 2 NEDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O -

89

K >> $ps

# JIDR: 18.4937 -71.8535 Jimani echo '18.4937 -71.8535'| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '18.4050 -71.8535 16 0 1 2 JIDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# PODR: 18.1663 -71.2817 Polo, Barahona echo '18.1663 -71.2817'| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '18.0800 -71.2817 16 0 1 2 PODR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# REDR: 19.2766 -71.7012 Restauracion echo '19.2766 -71.7012'| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '19.3466 -71.7012 16 0 1 2 REDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# SC01: 19.4272 -70.7277 230 Guralp 3T Santiago echo '19.4272 -70.7277 '| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrISU} >> $ps echo '19.3372 -70.7277 16 0 1 2 SC01' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# SADR: 18.1929 -68.7797 16 Isla Saona echo '18.1929 -68.7797'| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrBH} >> $ps echo '18.2029 -68.9057 16 0 1 2 SADR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# SDD: 18.4632 -69.9169 Guralp 3T echo '-69.9169 18.4632'| psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} - G${clrISU} >> $ps echo '18.3700 -69.9069 16 0 1 2 SDD' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# NAVI: 18.9591 -70.0278 echo '18.9591 -70.0278'| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G${clrISU} >> $ps echo '19.0300 -70.0300 16 0 1 2 NAVI' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# CADR: Cabo Francés 19.667n, -69.940w echo '19.6670 -69.9400 '| psxy -: -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C}

90

-G${clrBH} >> $ps echo '19.7270 -69.9400 16 0 1 2 CADR' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps fi isw_planned_sites=0 if [ $isw_planned_sites -eq 2 ] then ly=$(echo $ly - $offset| bc) echo $lx1 $ly | psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} - G255/255/255 >> $ps echo $lx2 $ly '16 0 1 LM Planned GrASP Stations (ZC 2013-17)'|pstext -R$region - JM$xwidth -O -K -G0 >> $ps

# SPDR: San Pedro de Macoris 18.4747n, -69.3343w # echo '-69.3343 18.4747'| psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W${oc3C} -G255 >> $ps # echo '-69.3343 18.5307 16 0 1 2 SPDR' | pstext -R$region -JM$xwidth -G${clr2} -O - K >> $ps

# CRDR: 17.9034 -71.6701 Cabo Rojo #echo '17.9034 -71.6701'| psxy -R$region -: -JM$xwidth -O -K -M -St${sz3} - W${oc3C} -G255 >> $ps #echo '17.9034 -71.5501 16 0 1 2 CRDR' | pstext -: -R$region -JM$xwidth -G${clr2} -O -K >> $ps

# SFM1: 19.2874 -70.2441 114 San Francisco de Macoris #echo '19.2874 -70.2441'| psxy -R$region -: -JM$xwidth -O -K -M -St${sz3} - W${oc3C} -G255 >> $ps #echo '19.2074 -70.2441 16 0 1 2 SFM1' | pstext -: -R$region -JM$xwidth -G${clr2} -O - K >> $ps fi

# Plot accelerometer stations # ly=$(echo $ly - $offset| bc) # awk '{print $4, $3}' < DR_accelerometers.stns| psxy -R$region -JM$xwidth -O -K -M - Sh0.30 -W3/0 -G155/255/000 >> $ps # echo $lx1 $ly | psxy -R$region -JM$xwidth -O -K -M -Sh0.30 - W3/0 -G155/255/000 >> $ps # echo $lx2 $ly '10 0 1 LM ISU Accelerometer Stations'| pstext -R$region -JM$xwidth - O -K -G0 >> $ps # echo '18.8723 -70.3900 8 0 1 2 BON1' | pstext -: -R$region -JM$xwidth - G000/255/000 -O -K >> $ps # echo '18.1482 -71.0931 8 0 1 2 BRH1' | pstext -: -R$region -JM$xwidth -

91

G000/255/000 -O -K >> $ps # echo '18.69500 -69.25000 8 0 1 2 HTM1' | pstext -: -R$region -JM$xwidth - G000/255/000 -O -K >> $ps # echo '19.2200 -70.2441 8 0 1 2 SFM1' | pstext -: -R$region -JM$xwidth - G000/255/000 -O -K >> $ps # echo '18.8430 -71.2200 8 0 1 2 SJM1' | pstext -: -R$region -JM$xwidth -G000/255/000 -O -K >> $ps # echo '19.2070 -69.725 8 0 1 2 SNH1' | pstext -: -R$region -JM$xwidth -G000/255/000 -O -K >> $ps # # echo '19.5035 -71.1032 8 0 1 2 MAO1' | pstext -: -R$region -JM$xwidth -O -K >> $ps # echo '19.3536 -69.8551 8 0 1 2 NADR' | pstext -: -R$region -JM$xwidth -O -K >> $ps # echo '19.8053 -70.7243 8 0 1 2 PPDR' | pstext -: -R$region -JM$xwidth -O -K >> $ps # echo '19.4272 -70.7287 8 0 1 2 SC02' | pstext -: -R$region -JM$xwidth -O -K >> $ps # echo '18.532 -68.7169 8 0 1 2 HGY1' | pstext -: -R$region -JM$xwidth -O -K >> $ps

# Plot GPS sites isw_GPS=1 if [ $isw_GPS -eq 1 ] then

# Plot GNSS sites isw=1 if [ $isw -eq 1 ] then ly=$(echo $ly - $offset| bc) awk '{print $1, $2}' < GNSS_sites.txt| psxy -R$region -JM$xwidth -O -K -M -Si${sz3} - W3/0 -G000/000/000 >> $ps awk '{print $1, $2}' < GNSS_goodsites.txt| psxy -R$region -JM$xwidth -O -K -M - Si${sz3} -W3/0 -G000/204/000 >> $ps awk '{print $1, $2}' < GNSS_okay2013-2014sites.txt| psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 -G000/000/255 >> $ps awk '{print $1, $2}' < GNSS_okay2012-2013sites.txt| psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 -G051/255/255 >> $ps awk '{print $1, $2}' < GNSS_bad2012sites.txt| psxy -R$region -JM$xwidth -O -K -M - Si${sz3} -W3/0 -G255/051/051 >> $ps awk '{print $1, $2}' < GNSS_bad2013sites.txt| psxy -R$region -JM$xwidth -O -K -M - Si${sz3} -W3/0 -G255/000/255 >> $ps #echo $lx1 $ly | psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/000 >> $ps #echo $lx2 $ly '14 0 1 LM GNSS/Global Matrix Continuous GPS Stations'|pstext - R$region -JM$xwidth -O -K -G0 -G000/000/000 >> $ps echo '-71.09823 18.24870 16 0 1 2 bara' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/000/255 >> $ps echo '-70.53109 19.26272 16 0 1 2 lveg' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K

92

-G255/000/255 >> $ps echo '-66.16120 18.40783 16 0 1 2 prby' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G051/255/255 >> $ps echo '-66.57914 18.07502 16 0 1 2 prcd' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G051/255/255 >> $ps echo '-66.52696 17.88622 16 0 1 2 prcm' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G051/255/255 >> $ps echo '-66.10682 17.96540 16 0 1 2 prgy' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/204/000 >> $ps echo '-65.83856 18.14874 16 0 1 2 prhu' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/204/000 >> $ps echo '-67.04537 17.97039 16 0 1 2 prmi' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G255/000/255 >> $ps echo '-66.52444 18.46861 16 0 1 2 prmn' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/204/000 >> $ps echo '-67.15887 18.21758 16 0 1 2 prmz' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/204/000 >> $ps echo '-66.02274 18.21758 16 0 1 2 prps' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/000/255 >> $ps echo '-69.31291 18.46466 16 0 1 2 rdds' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G255/000/255 >> $ps echo '-68.71657 18.63177 16 0 1 2 rdhg' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/204/000 >> $ps echo '-69.25583 18.76250 16 0 1 2 rdhm' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/000/255 >> $ps echo '-68.91655 18.44913 16 0 1 2 rdlr' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K - G255/051/051 >> $ps echo '-71.10312 19.60390 16 0 1 2 rdmo' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/204/000 >> $ps echo '-70.56585 19.79763 16 0 1 2 rdpp' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/000/255 >> $ps echo '-69.94132 18.50140 16 0 1 2 rdsd' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G255/051/051 >> $ps echo '-70.24401 19.32656 16 0 1 2 rdsf' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K - G000/000/255 >> $ps echo '-71.21884 18.84294 16 0 1 2 rdsj' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K - G051/255/255 >> $ps echo '-69.43436 18.51468 16 0 1 2 rdsp' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G255/051/051 >> $ps echo '-69.80595 18.51924 16 0 1 2 rdto' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/000/255 >> $ps echo '-69.19557 18.46102 16 0 1 2 sped' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G255/000/255 >> $ps echo '-71.34116 19.51525 16 0 1 2 srod' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G255/000/255 >> $ps echo '-64.33249 18.72968 16 0 1 2 vian' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K

93

-G255/000/255 >> $ps

#echo '-71.67407 17.90337 16 0 1 2 rdcr' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/000/000 >> $ps #echo '-66.75409 18.34653 16 0 1 2 prao' | pstext -R$region -JM$xwidth -Dj.25/.25 -O - K -G000/000/000 >> $ps #echo '-65.28252 18.30744 16 0 1 2 prcu' | pstext -R$region -JM$xwidth -Dj.25/.25 -O - K -G000/000/000 >> $ps #echo '-65.11778 18.38139 16 0 1 2 prfa' | pstext -R$region -JM$xwidth -Dj.25/.25 -O -K -G000/000/000 >> $ps #echo '-67.93116 18.07690 16 0 1 2 prmo' | pstext -R$region -JM$xwidth -Dj.25/.25 -O - K -G000/000/000 >> $ps echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/000 >> $ps echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/204/000 >> $ps echo $lx2 $ly '12 0 1 LM Stations with data from 2012 to 2014' |pstext -R$region - JM$xwidth -O -K -G0 >> $ps ly=$(echo $ly - $offset |bc) echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/000 >> $ps echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/255 >> $ps echo $lx2 $ly '12 0 1 LM Stations with data from 2013 to 2014' |pstext -R$region - JM$xwidth -O -K -G0 >> $ps ly=$(echo $ly - $offset |bc) echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/000 >> $ps echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G051/255/255 >> $ps echo $lx2 $ly '12 0 1 LM Stations with data from 2012 to 2013' |pstext -R$region - JM$xwidth -O -K -G0 >> $ps ly=$(echo $ly - $offset |bc) echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/000 >> $ps echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G255/000/255 >> $ps echo $lx2 $ly '12 0 1 LM Stations with data from 2013' |pstext -R$region -JM$xwidth -O -K -G0 >> $ps ly=$(echo $ly - $offset |bc) echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 -

94

G000/000/000 >> $ps echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G255/051/051 >> $ps echo $lx2 $ly '12 0 1 LM Stations with data from 2012' |pstext -R$region -JM$xwidth -O -K -G0 >> $ps

#ly=$(echo $ly - $offset |bc) #echo $lx1 $ly |psmeca -R$region -JM$xwidth -O -K -Sa.50 MayEarthquake_2.txt >> $ps #echo $lx2 $ly '12 0 1 LM May 28th, 2014 Mw = 5.8 Earthquake Focal Mechanism' | pstext -R$region -JM$xwidth -O -K -G0 >> $ps fi # GNSS endif fi # GPS endif

# Plot Joined Data isw_Joined=0 if [ $isw_Joined -eq 1 ] then ly=$(echo $ly - $offset| bc) awk '{print $1, $2}' < sites_joined.txt| psxy -R$region -JM$xwidth -O -K -M -Si${sz3} - W3/0 -G000/000/000 >> $ps awk '{print $1, $2}' < UNAVCO_sites.txt| psxy -R$region -JM$xwidth -O -K -M - Si${sz3} -W3/0 -G255/000/000 >> $ps awk '{print $1, $2}' < GME_sites.txt| psxy -R$region -JM$xwidth -O -K -M -Si${sz3} - W3/0 -G000/000/255 >> $ps ly=$(echo $ly - $offset |bc) echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/000 >> $ps echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/255 >> $ps echo $lx2 $ly '12 0 1 LM Privately Owned GME stations' |pstext -R$region -JM$xwidth - O -K -G0 >> $ps ly=$(echo $ly - $offset |bc) echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G000/000/000 >> $ps echo $lx1 $ly |psxy -R$region -JM$xwidth -O -K -M -Si${sz3} -W3/0 - G255/000/000 >> $ps echo $lx2 $ly '12 0 1 LM Publicly Available UNAVCO station data' |pstext -R$region - JM$xwidth -O -K -G0 >> $ps fi

# Plot seismic stations #if [ $isw_seismic -eq 1 ]

95

#then

# Planned to become broadband stations in 2014 (by ISU) #isw_ISU=0 #if [ $isw_ISU -eq 2 ] #then #ly=$(echo $ly - $offset| bc) #echo $lx1 $ly | psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W8/0 - G255/255/255 >> $ps #echo $lx2 $ly '14 0 1 LM 2014 ISU Planned Station Upgrades'|pstext -R$region - JM$xwidth -O -K -G0 >> $ps ## HATO #echo '-69.3811 18.7879'| psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W8/0 - G255/255/255 >> $ps ## BANI #echo '-70.3611 18.3983'| psxy -R$region -JM$xwidth -O -K -M -St${sz3} -W8/0 - G255/255/255 >> $ps #echo '-70.2311 18.3983 16 0 1 2 BADR' | pstext -R$region -JM$xwidth -O -K >> $ps #fi # #fi

# awk '{print $4, $3}' < SC02.stns |\ # psxy -R$region -JM$xwidth -O -K -M -St${sz4} -G000/000/000 >> $ps

# Plate Motions: DeMets 2010 #awk '{print $8, $7, $9, $10}' < ${gmtDATAdir}/Plate_Motions/nnr_nuvel1a.vx.1.- 1.grd|\ psvelo -R$region -JM$xwidth -O -K -Se0.25/0/8 -G000/000/000 -W5/000/000/000 - A0.07/0.28/0.21 DEMETS2010.dat >> $ps pstext DEMETS2010.InputWords.dat -R$region -JM$xwidth -O -K -G000/000/000 >> $ps

# Velocity arrows with Uncertainty Ellipses psvelo -R$region -JM$xwidth -O -K -Se0.25/0.95/20 -G000/000/000 -W05/000/000/000 -A0.07/0.28/0.21 Both_Velocities_IGS08.dat >> $ps pstext 1cmperyr.dat -R$region -JM$xwidth -O -K -G000/000/000 >> $ps

# Earthquake Offsets #psvelo -R$region -JM$xwidth -O -K -Se1.00/0/15 -G255/255/255 -W3 Earthquake_offsets.txt >> $ps

# Focal Mechanism Plotting #psmeca -R$region -JM$xwidth -O -K -Sa1.50 MayEarthquake.txt >> $ps

# Plate Boundaries

96

#psxy -R$region -JM$xwidth -O -K -M -W4/255/255/255 ${gmtDATAdir}/Plate_Boundaries/transform.gmt >> $ps #psxy -R$region -JM$xwidth -O -K -M -W4/000/000/000 ${gmtDATAdir}/Plate_Boundaries/trench.gmt >> $ps #psxy -R$region -JM$xwidth -O -K -M -W4/255/000/000 ${gmtDATAdir}/Plate_Boundaries/ridge.gmt >> $ps #psxy -R$region -JM$xwidth -O -K -M -W4/255/000/000 ${gmtDATAdir}/Plate_Boundaries/>> $ps

# Plot Earthquakes # awk '{print $8, $7, $10/2}' DR-ISU/sis2005-2011 |\ # psxy -R$region -JM$xwidth -O -K -A -Sa${szEq} -G255/000/000 -W1 >> $ps

# awk '{print $8, $7, $10/2}' DR-ISU/catalogoISU.reformatted |\ # psxy -R$region -JM$xwidth -O -A -Sa${szEq} -G255/000/255 -W1 >> $ps

psxy -R$region -JM$xwidth -O -M -Sa0.25 << EOF >> $ps -80 10 EOF

This script was supplied by Dr. Jay Pulliam and altered from his original. The changes that were made in order to generate a map of the northeastern Caribbean with the

GPS velocities were to the ps name, station names and locations, and adding a psvelo piece of information to the script. In order to run this script, the ps file output name should be changed in order to create a new file with the data input. The “Plot GPS sites” and “Plot Joined Data” scripts are the information that needs to be changed in order to add more information or change what has been added. Within the “Plot GPS sites” script, the station locations and names are input to be placed on the map. The colors of specific stations may be changed using the -G flag at the end of each station information line. The next part of “Plot GPS sites” then creates the legend according to the colors for the stations. Finally, to make sure that this piece of the script is run, change both isw_GPS and isw to equal one so that the script knows to run those pieces. The “Plot

Joined Data” section of the script acts similar to the “Plot GPS sites.” In this piece of the

97 script, plotting is done for both the GME GPS data and UNAVCO GPS data. The difference between “Plot Joined Data” and “Plot GPS sites” is that the joined data has a different color scheme associated with it in order to differentiate between the two types of data input.

The last change to this script in order to plot velocities with their associated uncertainties is a change to the “Velocity arrows with Uncertainty Ellipses” and “Plate

Motions: DeMets 2010.” The plate motions section will not need changes unless a better model has been produced for the Caribbean plate total motion. The motion plotted is derived from DeMets et al. (2010). The velocity arrows section has to be changed in order to alter the arrows input. First a file with the velocities and their associated north and east uncertainties needs to be generated following the format from the psvelo manual.

Once generated, that file should be substituted for Both_Veloicities_IGS08.dat. The rest of the psvelo code may be altered, however, changes are not necessary in order to generate velocity and uncertainty ellipse outputs.

98

REFERENCES

Altamimi, Z., Collilieux, X., Métivier, L., 2011. ITRF2008: an improved solution of the international terrestrial reference frame. J. Geod. 85, 457–473. doi:10.1007/s00190-011-0444-4

Avé Lallemant, H.G., 1997. Transpression, displacement partitioning, and exhumation in the eastern Caribbean / South American plate boundary zone. Tectonics 16, 272– 289. doi:10.1029/96TC03725

Bar-Sever, Y.E., Kroger, P.M., Borjesson, J.A., 1998. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J. Geophys. Res. Solid Earth 103, 5019–5035. doi:10.1029/97JB03534

Benford, B., DeMets, C., Calais, E., 2012a. GPS estimates of microplate motions, northern Caribbean: evidence for a Hispaniola microplate and implications for earthquake hazard. Geophys. J. Int. 191, 481–490. doi:10.1111/j.1365- 246X.2012.05662.x

Benford, B., DeMets, C., Tikoff, B., Williams, P., Brown, L., Wiggins-Grandison, M., 2012b. Seismic hazard along the southern boundary of the Gônave microplate: block modelling of GPS velocities from Jamaica and nearby islands, northern Caribbean. Geophys. J. Int. 190, 59–74. doi:10.1111/j.1365-246X.2012.05493.x

Bertiger, W., Desai, S.D., Haines, B., Harvey, N., Moore, A.W., Owen, S., Weiss, J.P., 2010. Single receiver phase ambiguity resolution with GPS data. J. Geod. 84, 327–337. doi:10.1007/s00190-010-0371-9

Blewitt, G., 1990. An automatic editing algorithm for GPS data. Geophys. Res. Lett. 17, 199–202.

Blewitt, G., 1989. Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km. J. Geophys. Res. Solid Earth 94, 10187–10203. doi:10.1029/JB094iB08p10187

Boschman, L.M., van Hinsbergen, D.J.J., Torsvik, T.H., Spakman, W., Pindell, J.L., 2014. Kinematic reconstruction of the Caribbean region since the Early Jurassic. Earth-Sci. Rev. 138, 102–136. doi:10.1016/j.earscirev.2014.08.007

99

Burke, K., Fox, P.J., Şengör, A.M.C., 1978. Buoyant ocean floor and the evolution of the Caribbean. J. Geophys. Res. Solid Earth 83, 3949–3954. doi:10.1029/JB083iB08p03949

Byrne, D.B., Suarez, G., McCann, W.R., 1985. Muertos Trough subduction—microplate tectonics in the northern Caribbean? Nature 317, 420–421. doi:10.1038/317420a0

Calais, E., Béthoux, N., de Lépinay, B.M., 1992. From transcurrent faulting to frontal subduction: A seismotectonic study of the Northern Caribbean Plate Boundary from Cuba to Puerto Rico. Tectonics 11, 114–123. doi:10.1029/91TC02364

Calais, E., Freed, A., Mattioli, G., Amelung, F., Jónsson, S., Jansma, P., Hong, S.-H., Dixon, T., Prépetit, C., Momplaisir, R., 2010. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nat. Geosci. 3, 794–799. doi:10.1038/ngeo992

Calais, E., Mazabraud, Y., Mercier de Lépinay, B., Mann, P., Mattioli, G., Jansma, P., 2002. Strain partitioning and fault slip rates in the northeastern Caribbean from GPS measurements. Geophys. Res. Lett. 29, 1856. doi:10.1029/2002GL015397

DeMets, C., Gordon, R.G., Argus, D.F., 2010. Geologically current plate motions. Geophys. J. Int. 181, 1–80. doi:10.1111/j.1365-246X.2009.04491.x

DeMets, C., Jansma, P.E., Mattioli, G.S., Dixon, T.H., Farina, F., Bilham, R., Calais, E., Mann, P., 2000. GPS geodetic constraints on Caribbean-North America Plate Motion. Geophys. Res. Lett. 27, 437–440. doi:10.1029/1999GL005436

DeMets, C., Mattioli, G., Jansma, P., Rogers, R.D., Tenorio, C., Turner, H.L., 2007. Present motion and deformation of the Caribbean plate: Constraints from new GPS geodetic measurements from Honduras and Nicaragua. Geol. Soc. Am. Spec. Pap. 428, 21–36. doi:10.1130/2007.2428(02)

DeMets, C., Wiggins-Grandison, M., 2007. Deformation of Jamaica and motion of the Gonâve microplate from GPS and seismic data. Geophys. J. Int. 168, 362–378. doi:10.1111/j.1365-246X.2006.03236.x

Dixon, T.H., Farina, F., DeMets, C., Jansma, P., Mann, P., Calais, E., 1998. Relative motion between the Caribbean and North American plates and related boundary zone deformation from a decade of GPS observations. J. Geophys. Res. Solid Earth 103, 15157–15182. doi:10.1029/97JB03575

100

Dolan, J.F., Bowman, D.D., 2004. Tectonic and Seismologic Setting of the 22 September 2003, Puerto Plata, Dominican Republic Earthquake: Implications for Earthquake Hazard in Northern Hispaniola. Seismol. Res. Lett. 75, 587–597. doi:10.1785/gssrl.75.5.587

Dolan, J.F., Mann, P., 1998. Active Strike-slip and Collisional Tectonics of the Northern Caribbean Plate Boundary Zone. Geological Society of America.

James, K.H., 2009. Evolution of Middle America and the in situ Caribbean Plate model. Geol. Soc. Lond. Spec. Publ. 328, 127–138. doi:10.1144/SP328.4

Jansma, P.E., Mattioli, G.S., 2005. GPS results from Puerto Rico and the Virgin Islands: Constraints on tectonic setting and rates of active faulting. Geol. Soc. Am. Spec. Pap. 385, 13–30. doi:10.1130/0-8137-2385-X.13

Jansma, P.E., Mattioli, G.S., Lopez, A., DeMets, C., Dixon, T.H., Mann, P., Calais, E., 2000. Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS geodesy. Tectonics 19, 1021–1037. doi:10.1029/1999TC001170

Kreemer, C., Blewitt, G., Klein, E.C., 2014. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosystems 15, 3849–3889. doi:10.1002/2014GC005407

Larson, K.M., Bodin, P., Gomberg, J., 2003. Using 1-Hz GPS Data to Measure Deformations Caused by the Fault Earthquake. Science 300, 1421–1424. doi:10.1126/science.1084531

López, A.M., Stein, S., Dixon, T., Sella, G., Calais, E., Jansma, P., Weber, J., LaFemina, P., 2006. Is there a northern Lesser Antilles forearc block? Geophys. Res. Lett. 33, L07313. doi:10.1029/2005GL025293

Lou, X., Lee, S. van der, Lloyd, S., 2013. AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times. Seismol. Res. Lett. 84, 85–93. doi:10.1785/0220120033

Manaker, D.M., Calais, E., Freed, A.M., Ali, S.T., Przybylski, P., Mattioli, G., Jansma, P., Prépetit, C., Chabalier, J.B.D., 2008. Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean. Geophys. J. Int. 174, 889–903. doi:10.1111/j.1365-246X.2008.03819.x

Mann, P., Calais, E., Ruegg, J.-C., DeMets, C., Jansma, P.E., Mattioli, G.S., 2002. Oblique collision in the northeastern Caribbean from GPS measurements and geological observations. Tectonics 21, 1057. doi:10.1029/2001TC001304

101

Mann, P., Gahagan, L., Gordon, M.B., 2003. Tectonic Setting of the World’s Giant Oil and Gas Fields 15–105.

Mann, P., Taylor, F.W., Edwards, R.L., Ku, T.-L., 1995. Actively evolving microplate formation by oblique collision and sideways motion along strike-slip faults: An example from the northeastern Caribbean plate margin. Tectonophysics 246, 1– 69. doi:10.1016/0040-1951(94)00268-E

Masson, D.G., Scanlon, K.M., 1991. The neotectonic setting of Puerto Rico. Geol. Soc. Am. Bull. 103, 144–154. doi:10.1130/0016- 7606(1991)103<0144:TNSOPR>2.3.CO;2

McCaffrey, R., 2002. Crustal Block Rotations and Plate Coupling, in: Stein, S., Freymueller, J.T. (Eds.), Plate Boundary Zones. American Geophysical Union, pp. 101–122.

McCann, W.R., Pennington, W.D., 1990. Seismicity, large earthquakes, and the margin of the Caribbean Plate The geology of North America. Geol. Soc. Am. : Boulder, CO, United States, United States, pp. 291–306.

McCann, W.R., Sykes, L.R., 1984. Subduction of aseismic ridges beneath the Caribbean Plate: Implications for the tectonics and seismic potential of the northeastern Caribbean. J. Geophys. Res. Solid Earth 89, 4493–4519. doi:10.1029/JB089iB06p04493

Meschede, M., Frisch, W., 1998. A plate-tectonic model for the Mesozoic and Early Cenozoic history of the Caribbean plate. Tectonophysics 296, 269–291.

Molnar, P., Sykes, L.R., 1969. Tectonics of the Caribbean and Middle America Regions from Focal Mechanisms and Seismicity. Geol. Soc. Am. Bull. 80, 1639–1684. doi:10.1130/0016-7606(1969)80[1639:TOTCAM]2.0.CO;2

Pindell, J., Dewey, J.F., 1982. Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics 1, 179–211. doi:10.1029/TC001i002p00179

Pindell, J.L., Barrett, S.F., 1990. Geological evolution of the Caribbean region; a plate tectonic perspective The geology of North America. Geol. Soc. Am. : Boulder, CO, United States, United States, pp. 405–432.

Pindell, J.L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. Geol. Soc. Lond. Spec. Publ. 328, 1–55. doi:10.1144/SP328.1

102

Prentice, C.S., Mann, P., Peña, L.R., 2013. Comment on “Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region” by U. ten Brink et al.: COMMENT. J. Geophys. Res. Solid Earth 1–4. doi:10.1002/jgrb.50170

Prentice, C.S., Mann, P., Peña, L.R., Burr, G., 2003. Slip rate and earthquake recurrence along the central Septentrional fault, North American–Caribbean plate boundary, Dominican Republic. J. Geophys. Res. Solid Earth 108, 2149. doi:10.1029/2001JB000442

Rawlinson, N., Urvoy, M., 2006. Simultaneous inversion of active and passive source datasets for 3-D seismic structure with application to Tasmania. Geophys. Res. Lett. 33, L24313. doi:10.1029/2006GL028105

Rebischung, P., Griffiths, J., Ray, J., Schmid, R., Collilieux, X., Garayt, B., 2011. IGS08: the IGS realization of ITRF2008. GPS Solut. 16, 483–494. doi:10.1007/s10291- 011-0248-2

Rosencrantz, E., Mann, P., 1991. SeaMARC II mapping of transform faults in the , Caribbean Sea. Geology 19, 690–693. doi:10.1130/0091- 7613(1991)019<0690:SIMOTF>2.3.CO;2

Scherneck, H.-G., 1991. A parametrized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophys. J. Int. 106, 677–694. doi:10.1111/j.1365-246X.1991.tb06339.x

Schmid, R., Steigenberger, P., Gendt, G., Ge, M., Rothacher, M., 2007. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J. Geod. 81, 781–798. doi:10.1007/s00190-007-0148-y

Sykes, L.R., Ewing, M., 1965. The seismicity of the Caribbean region. J. Geophys. Res. 70, 5065–5074. doi:10.1029/JZ070i020p05065

Sykes, L.R., McCann, W.R., Kafka, A.L., 1982. Motion of Caribbean Plate during last 7 million years and implications for earlier Cenozoic movements. J. Geophys. Res. Solid Earth 87, 10656–10676. doi:10.1029/JB087iB13p10656 ten Brink, U.S., Marshak, S., Bruña, J.-L.G., 2009. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern Caribbean plate. Geol. Soc. Am. Bull. 121, 1522–1536. doi:10.1130/B26512.1 van Benthem, S., Govers, R., 2010. The Caribbean plate: Pulled, pushed, or dragged? J. Geophys. Res. Solid Earth 115, B10409. doi:10.1029/2009JB006950

103 van Benthem, S., Govers, R., Spakman, W., Wortel, R., 2013. Tectonic evolution and mantle structure of the Caribbean. J. Geophys. Res. Solid Earth 118, 3019–3036. doi:10.1002/jgrb.50235 van Benthem, S., Govers, R., Wortel, R., 2014. What drives microplate motion and deformation in the northeastern Caribbean plate boundary region? Tectonics 33, 2013TC003402. doi:10.1002/2013TC003402 van Hinsbergen, D.J.J., Iturralde-Vinent, M.A., van Geffen, P.W.G., García-Casco, A., van Benthem, S., 2009. Structure of the accretionary prism, and the evolution of the Paleogene northern Caribbean subduction zone in the region of Camagüey, Cuba. J. Struct. Geol. 31, 1130–1144. doi:10.1016/j.jsg.2009.06.007

Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J., Wobbe, F., 2013. Generic Mapping Tools: Improved Version Released. Eos Trans. Am. Geophys. Union 94, 409– 410. doi:10.1002/2013EO450001

Wilson, J.T., 1966. Are the structures of the Caribbean and Scotia arc regions analogous to ice rafting? Earth Planet. Sci. Lett. 1, 335–338.

Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 102, 5005–5017. doi:10.1029/96JB03860

104