Diverse Rupture Modes for Surface-Deforming Upper Plate Earthquakes in the Southern Puget Lowland of Washington State

Total Page:16

File Type:pdf, Size:1020Kb

Diverse Rupture Modes for Surface-Deforming Upper Plate Earthquakes in the Southern Puget Lowland of Washington State Diverse rupture modes for surface-deforming upper plate earthquakes in the southern Puget Lowland of Washington State Alan R. Nelson1,*, Stephen F. Personius1, Brian L. Sherrod2, Harvey M. Kelsey3, Samuel Y. Johnson4, Lee-Ann Bradley1, and Ray E. Wells5 1Geologic Hazards Science Center, U.S. Geological Survey, MS 966, PO Box 25046, Denver, Colorado 80225, USA 2U.S. Geological Survey at Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, Washington 98195, USA 3Department of Geology, Humboldt State University, Arcata, California 95521, USA 4Western Coastal and Marine Geology Science Center, U.S. Geological Survey, 400 Natural Bridges Drive, Santa Cruz, California 95060, USA 5Geology, Minerals, Energy, and Geophysics Science Center, U.S. Geological Survey, 345 Middlefi eld Road, MS 973, Menlo Park, California 94025, USA ABSTRACT earthquakes. In the northeast-striking Saddle migrating forearc has deformed the Seto Inland Mountain deformation zone, along the west- Sea into a series of basins and uplifts bounded Earthquake prehistory of the southern ern limit of the Seattle and Tacoma fault by faults. One of these, the Nojima fault, pro- Puget Lowland, in the north-south com- zones, analysis of previous ages limits earth- duced the 1995 Mw6.9 Hyogoken Nanbu (Kobe) pressive regime of the migrating Cascadia quakes to 1200–310 cal yr B.P. The prehistory earthquake, which killed more than 6400 peo- forearc, refl ects diverse earthquake rupture clarifi es earthquake clustering in the central ple, destroyed the port of Kobe, and caused modes with variable recurrence. Stratigraphy Puget Lowland, but cannot resolve potential $100 billion in damage (Chang, 2010). Unlike and Bayesian analyses of previously reported structural links among the three Holocene the Inland Sea of Japan, the historical record of and new 14C ages in trenches and cores along fault zones. seismicity in the Puget Lowland is short, and backthrust scarps in the Seattle fault zone information about past large, surface-deforming restrict a large earthquake to 1040–910 cal yr INTRODUCTION earthquakes must come from paleoseismol- B.P. (2σ), an interval that includes the time of ogy. In this densely forested, heavily glaciated the M 7–7.5 Restoration Point earthquake. The seismic hazard of active convergent mar- region, the most successful paleoseismology A newly identifi ed surface-rupturing earth- gins derives not only from great earthquakes on studies begin with aeromagnetic mapping and quake along the Waterman Point backthrust the megathrust, but also from shallow faulting in seismic refl ection surveys to identify potentially dates to 940–380 cal yr B.P., bringing the num- the actively deforming forearc. Along the Cas- active fault zones, move to searches for fault or ber of earthquakes in the Seattle fault zone cadia margin, the cities of Seattle and Tacoma fold scarps and deformed shorelines on lidar in the past 3500 yr to 4 or 5. Whether scarps occupy the Puget Lowland, a structurally com- (light detection and ranging; i.e., airborne laser record earthquakes of moderate (M 5.5–6.0) plex, seismically active forearc trough between swath mapping) imagery, and follow up with or large (M 6.5–7.0) magnitude, backthrusts the Coast Range and the Cascade volcanic arc. studies of Holocene stratigraphy beneath scarps of the Seattle fault zone may slip during mod- Deformation of the lowland is caused by the and shorelines to date prehistoric earthquake erate to large earthquakes every few hundred clockwise motion of western Oregon, pushing deformation (Barnett et al., 2010; e.g., Blakely years for periods of 1000–2000 yr, and then northward and compressing western Washing- et al., 2002; Johnson et al., 2004a; Sherrod et al., not slip for periods of at least several thou- ton against slower moving Canada (Fig. 1A; 2004a, 2008; Kelsey et al., 2012). sands of years. Four new fault scarp trenches Wells and Simpson, 2001; McCaffrey et al., Paleoseismology has uncovered several in the Tacoma fault zone show evidence of late 2007). North-south shortening of the Puget aspects of fault and earthquake behavior in the Holocene folding and faulting about the time Lowland at ~4.4 mm/yr (McCaffrey et al., 2007) Seattle-Tacoma-Saddle Mountain fault systems. of a large earthquake or earthquakes inferred has produced thrust fault–bounded uplifts that 1. A very large earthquake is recorded by an from widespread coseismic subsidence ca. subdivide the lowland into four basins (Fig. 1B; uplifted marine terrace fi rst identifi ed at Res- 1000 cal yr B.P.; 12 ages from 8 sites in the Pratt et al., 1997; Brocher et al., 2001; Blakely toration Point on Bainbridge Island (Fig. 2A). Tacoma fault zone limit the earthquakes to et al., 2002). Much of the north- to northeast- The terrace, uplifted during an earthquake on 1050–980 cal yr B.P. Evidence is too sparse directed strain in the southern Puget Lowland the master-ramp thrust of the Seattle fault, can to determine whether a large earthquake was is accommodated by deformation in the Seattle be traced over tens of square kilometers on the closely predated or postdated by other earth- fault zone, the Tacoma fault zone, the Saddle fault hanging-wall block (Bucknam et al., 1992; quakes in the Tacoma basin, but the scarp Mountain deformation zone, and along the Sherrod et al., 2000; Kelsey et al., 2008; Figs. of the Tacoma fault was formed by multiple Olympia fault (Figs. 1B, 1C). 2A and 3). The Puget Lowland tectonic setting is similar 2. Surface-rupturing reverse faults are well *Email: [email protected] to that of southwest Japan, where the westward- documented in the hanging-wall blocks of the Geosphere; August 2014; v. 10; no. 4; p. 769–796; doi:10.1130/GES00967.1; 14 fi gures; 1 table; 1 supplemental fi le. Received 22 July 2013 ♦ Revision received 24 February 2014 ♦ Accepted 3 June 2014 ♦ Published online 24 June 2014 For permission to copy, contact [email protected] 769 © 2014 Geological Society of America Nelson et al. Seattle and Tacoma faults, as well as along Figure 1 (on following page). (A) Kinematic model of the Cascadia forearc (simplifi ed from faults of the Saddle Mountain deformation zone Wells et al., 1998; Wells and Simpson, 2001). Northward migration of the Oregon Coast (Fig. 1C; Witter et al., 2008; Blakely et al., 2009; Range squeezes western Washington against the North American plate, producing faults and this paper). In the central Seattle fault zone, the earthquakes in the Puget Lowland. Red lines are faults; black arrows show motions of tec- surface ruptures are on short, en echelon back- tonic blocks. (B) Tectonic setting of the Seattle and Tacoma fault zones and the Saddle Moun- thrusts (Nelson et al., 2003a), and their relation tain deformation zone in the southern Puget Lowland region (modifi ed from Blakely et al., to slip on the master thrust at depth is problem- 2009). The Puget Lowland occupies the area within the orange dashed line. Red and green atic (Kelsey et al., 2008). stipples indicate regions of uplift and sedimentary basins, respectively, as defi ned by gravity 3. Widespread evidence for surface-deform- anomalies. Holocene or suspected Holocene faults are shown in black. Faults in the Seattle ing earthquakes within ~100–200 yr of 1000 and Tacoma fault zones and the Saddle Mountain deformation zone are shown in red. Basins cal yr B.P. extends over at least 800 km2 (Buck- and regions of uplift: BB—Bellingham basin; EB—Everett basin; KA—Kingston arch; SB— nam et al., 1992; Sherrod, 2001) and probably Seattle basin; SU—Seattle uplift; DB—Dewatto basin; TB—Tacoma basin; OU—Olympia >4000 km2 (Blakely et al., 2009; Martin and uplift. Faults: BCF—Boulder Creek fault; LRF—Leech River fault; DMF—Devil’s Mountain Bourgeois, 2012) of the southern Puget Low- fault; SWIF—southern Whidbey Island fault; RMF—Rattlesnake Mountain fault; SMF— land. This includes the Seattle fault zone, the Saddle Mountain faults; CRF—Canyon River fault; FCF—Frigid Creek fault; WRF—White Tacoma fault zone and Tacoma basin, and the River fault; OF—Olympia fault. (C) Southern Puget Lowland showing the Seattle fault zone, Saddle Mountain deformation zone (Fig. 1C; Tacoma fault zone, Saddle Mountain deformation zone, Olympia fault, and related late Holo- Atwater and Moore, 1992; Bucknam et al., 1992; cene fault scarps (base from Finlayson, 2005). Faults (red lines) are inferred from evidence Bucknam and Biasi, 1994; Atwater, 1999; Sher- summarized by Brocher et al. (2004), Johnson et al. (2004b), Karel and Liberty (2008), Liberty rod et al., 2000; Hughes, 2005; Kelsey et al., and Pratt (2008), Witter et al. (2008), Blakely et al. (2009), Clement et al. (2010), and Tabor 2008; Blakely et al., 2009; Arcos, 2012). et al. (2011). Fault scarps (black lines) are as identifi ed on lidar (light detection and ranging) 4. Apparent quiescent intervals of 6000– imagery by many investigators (e.g., Harding and Berghoff, 2000; Haugerud and Harding, 8000 yr have been inferred for 2 faults marked 2001; Nelson et al., 2002; Haugerud et al., 2003; Sherrod et al., 2004a; Nelson et al., 2008; by short scarps of the central Seattle fault zone Witter et al., 2008; Blakely et al., 2009). Colored symbols mark sites with evidence of surface (Nelson et al., 2003a; this paper). The signifi - deformation (from Bucknam et al., 1992; Sherrod, 2001; Sherrod et al., 2004a; Tabor et al., cance of the apparent clustering of earthquakes 2011; Arcos, 2012): green (inverted triangles)—coseismic subsidence, purple (triangles)— on these faults in the late Holocene is unclear, coseismic uplift, blue (circle)—no movement. Faults marked by the Price Lake scarps include partly because the structural relation of the faults the Saddle Mountain East fault (SME) and Saddle Mountain West fault (SMW).
Recommended publications
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Denali Fault System of Southern Alaska an Interior Strikeslip
    TECTONICS, VOL. 12, NO. 5, PAGES 1195-1208, OCTOBER 1993 DENALl FAULT SYSTEM OF SOUTHERN 1974; Lanphere,1978; Stoutand Chase,1980]. Despitethis ALASKA: AN INTERIOR STRIKE.SLIP consensus,the tectonichistory of the DFS remainsrelatively STRUCTURE RESPONDING TO DEXTRAL unconstrained.Critical outcrops are rare, access is difficult,and AND SINISTRAL SHEAR COUPLING to this day muchof the regionis incompletelymapped at detailed scales. Grantz[1966] named or redefinedsix individualfault ThomasF. Redfieldand Paul G. Fitzgerald1 segmentscomprising the DFS. From west to eastthe Departmentof Geology,Arizona State University, segmentsare the Togiak/Tikchikfault, the Holitnafault, the Tempe Farewellfault, the Denali fault (subdividedinto the McKinley andHines Creek strands), the Shakwakfault, andthe Dalton fault (Figure 1). At its westernend, the DFS is mappednot as a singleentity but ratherappears to splayinto a complex, Abstract.The Denalifault system (DFS) extendsfor-1200 poorlyexposed set of crosscuttingfault patterns[Beikman, km, from southeastto southcentral Alaska. The DFS has 1980]. Somewhatmore orderly on its easternend, the DFS beengenerally regarded as a fight-lateralstrike-slip fault, along appearsto join forceswith the ChathamStrait fault. This which postlate Mesozoicoffsets of up to 400 km havebeen structurein turn is truncatedby the Fairweatherfault [Beikman, suggested.The offsethistory of the DFS is relatively 1980],the present-dayNorth American plate Pacific plate unconstrained,particularly at its westernend. For thisstudy boundary[Plafker
    [Show full text]
  • Paleoseismology of the North Anatolian Fault at Güzelköy
    Paleoseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara Mustapha Meghraoui, M. Ersen Aksoy, H Serdar Akyüz, Matthieu Ferry, Aynur Dikbaş, Erhan Altunel To cite this version: Mustapha Meghraoui, M. Ersen Aksoy, H Serdar Akyüz, Matthieu Ferry, Aynur Dikbaş, et al.. Pale- oseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 2012, 10.1029/2011GC003960. hal-01264190 HAL Id: hal-01264190 https://hal.archives-ouvertes.fr/hal-01264190 Submitted on 1 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Volume 13, Number 4 12 April 2012 Q04005, doi:10.1029/2011GC003960 ISSN: 1525-2027 Paleoseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara Mustapha Meghraoui Institut de Physique du Globe de Strasbourg (UMR 7516), F-67084 Strasbourg, France ([email protected]) M. Ersen Aksoy Institut de Physique du Globe de Strasbourg (UMR 7516), F-67084 Strasbourg, France Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, Turkey Now at Instituto Dom Luiz, Universidade de Lisboa, P-1750-129 Lisbon, Portugal H.
    [Show full text]
  • Earthquake Hazard
    SUB-SECTION 4G.2 PUYALLUP TRIBE ALL HAZARD MITIGATION PLAN EARTHQUAKE HAZARD Table of Contents TABLE OF CONTENTS ............................................................................................... 1 IDENTIFICATION DESCRIPTION ................................................................................ 2 DEFINITION ............................................................................................................. 2 TYPES .................................................................................................................... 2 SECONDARY HAZARDS: ................................................................................................ 3 PROFILE ................................................................................................................... 5 LOCATION AND EXTENT ............................................................................................... 5 VULNERABILITY ....................................................................................................... 15 IMPACTS ............................................................................................................... 16 RESOURCE DIRECTORY .......................................................................................... 24 REGIONAL ............................................................................................................. 24 NATIONAL ............................................................................................................. 24 ENDNOTES ............................................................................................................
    [Show full text]
  • Rupture in South-Central Alaska— the Denali Fault Earthquake of 2002
    REDUCING EARTHQUAKE LOSSES THROUGHOUT THE UNITED STATES Rupture in South-Central Alaska— ������� ��� The Denali Fault Earthquake of 2002 ��� �������� � � � � � � ��� ��������� �� ����� powerful magnitude 7.9 earth- ����� ����� ����� ���� �� ��� ������ quake struck Alaska on No- ����� ������������ ��� �������� ��������� A ��� ��� ���� � ���� ������ ������ � � � vember 3, 2002, rupturing the Earth’s � � �������� ��� �� ���� � � � � surface for 209 miles along the Susitna � ���������� ���� ������ ����� � � ����� � � ���������� Glacier, Denali, and Totschunda Faults. � � ����� � � � ��������� �� � � � � � Striking a sparsely populated region, � � � � � � � � � � � � � � � � it caused thousands of landslides but � � � � � � � � � � little structural damage and no deaths. � � � � � � � � � � � � � � � � Although the Denali Fault shifted about � �������� ������� � � ��� � � � � ������� � � 14 feet beneath the Trans-Alaska Oil ��������� �� � ����� � Pipeline, the pipeline did not break, � � ���� � � � � � � ������ � � � � � � � � �������� averting a major economic and envi- � � ���� � ��������� �� � ronmental disaster. This was largely � � � � � � � the result of stringent design specifica- � � � � � � � � tions based on geologic studies done ������������ ��� �������� � � � � � � � by the U.S. Geological Survey (USGS) � �� ��� ���������� � � � and others 30 years earlier. Studies of � � � � � � � � � � �� ����� � � ���������� � � � ���� the Denali Fault and the 2002 earth- � quake will provide information vital to The November 3, 2002, magnitude
    [Show full text]
  • Geologic Mapping and the Trans-Alaska Pipeline Using Geologic Maps to Protect Infrastructure and the Environment
    Case Study Geologic Mapping and the Trans-Alaska Pipeline Using geologic maps to protect infrastructure and the environment Overview The 800-mile-long Trans-Alaska Pipeline, which starts at examining the fault closely and analyzing its rate of Prudhoe Bay on Alaska’s North Slope, can carry 2 million movement, geologists determined that the area around barrels of oil per day south to the port of Valdez for export, the pipeline crossing—had the potential to generate a equal to roughly 10% of the daily consumption in the United very significant earthquake greater than magnitude 8. States in 2017. The pipeline crosses the Denali fault some 90 miles south of Fairbanks. A major earthquake along the fault could cause the pipeline to rupture, spilling crude oil into the surrounding environment. Denali Fault Trace In 2002, a magnitude 7.9 earthquake struck the Denali fault, one of the largest earthquakes ever recorded in North America, which caused violent shaking and large ground movement where the pipeline crossed the fault. However, the pipeline did not spill a drop of oil, and only saw a 3-day shutdown for inspections. Geologic mapping of the pipeline area prior to its construction allowed geologists and engineers to identify and plan for earthquake hazards in the pipeline design, which mitigated damage to pipeline infrastructure and helped prevent a potentially major oil spill during the 2002 earthquake. Geologic Mapping The Trans-Alaska Pipeline after the 2002 earthquake on the Denali Mapping the bedrock geology along the 1,000-mile-long fault. The fault rupture occurred between the second and third Denali fault revealed information on past movement on the beams fault and the likely direction of motion on the fault in future Image credit: Tim Dawson, U.S.
    [Show full text]
  • Active and Potentially Active Faults in Or Near the Alaska Highway Corridor, Dot Lake to Tetlin Junction, Alaska
    Division of Geological & Geophysical Surveys PRELIMINARY INTERPRETIVE REPORT 2010-1 ACTIVE AND POTENTIALLY ACTIVE FAULTS IN OR NEAR THE ALASKA HIGHWAY CORRIDOR, DOT LAKE TO TETLIN JUNCTION, ALASKA by Gary A. Carver, Sean P. Bemis, Diana N. Solie, Sammy R. Castonguay, and Kyle E. Obermiller September 2010 THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS. Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 3354 College Rd. Fairbanks, Alaska 99709-3707 $4.00 CONTENTS Abstract ............................................................................................................................................................ 1 Introduction ....................................................................................................................................................... 1 Seismotectonic setting of the Tanana River valley region of Alaska ................................................................ 3 2008 fi eld studies .............................................................................................................................................. 5 Field and analytical methods ............................................................................................................................ 5 Dot “T” Johnson fault ....................................................................................................................................... 7 Robertson
    [Show full text]
  • Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 9-8-2017 Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching Kristofer Tyler Hornsby Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Geomorphology Commons Let us know how access to this document benefits ou.y Recommended Citation Hornsby, Kristofer Tyler, "Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching" (2017). Dissertations and Theses. Paper 3890. https://doi.org/10.15760/etd.5778 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching by Kristofer Tyler Hornsby A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science In Geology Thesis Committee: Ashley R. Streig, Chair Scott E.K. Bennett Adam M. Booth Portland State University 2017 ABSTRACT The Meers Fault (Oklahoma) is one of few seismogenic structures with Holocene surface expression in the stable continental region of North America. Only the ~37 km- long southeastern section of the ~55 km long Meers Fault is interpreted to be Holocene- active. The ~17 km-long northwestern section is considered to be Quaternary-active (pre- Holocene); however, its low-relief geomorphic expression and anthropogenic alteration have presented difficulties in evaluating the fault length and style of Holocene deformation.
    [Show full text]
  • Study of Recent Tsunamis Sheds Light on Earthquakes
    Eos, Vol. 75, No. 1, January 4, 1994 resentative Peter Webb, will be held at the than 10 m, and a total of about 1500 people an important calibration to quantify such Byrd Polar Research Center at The Ohio were killed. Field surveys were made for geological studies. State University, March 6-7, 1994, to gauge these tsunamis and reported in Eos [Satake Coastal behavior of tsunamis needs to be the U.S. community's breadth of interest and et al., 1993; Yeh et al., 1993; Hokkaido Tsu­ examined in more detail. For example, the to discuss the submission of proposals for nami Survey Team, 1993]. The survey teams, field survey of the Hokkaido tsunami re­ the June 1, 1994, U.S. Antarctic Program typically consisting of scientists and engi­ vealed that the maximum run-up height was deadline. Persons interested in attending this neers from various fields, documented the 30 m in a small valley on Okushiri Island, workshop or in receiving further information behavior of the tsunamis in detail. Tsunami but 20 m or less a short distance away; the on the Cape Roberts Project should contact survey data are used for various types of re­ run-up height varies significantly with local Peter Webb. search, ranging from coastal behavior of tsu­ topography. Three-dimensional run-up pro- A project prospectus, Antarctic Strati- namis to past and future earthquakes. cecsses are currently being modeled by the­ graphic Drilling, Cape Roberts Project, Work­ Most tsunamis are caused by shallow oretical, numerical, and experimental meth­ shop Report, can be obtained from the rep­ submarine earthquakes.
    [Show full text]
  • Magnitude Limits of Subduction Zone Earthquakes
    Magnitude Limits of Subduction Zone Earthquakes Rong, Y., Jackson, D. D., Magistrale, H., Goldfinger, C. (2014). Magnitude Limits of Subduction Zone Earthquakes. Bulletin of the Seismological Society of America, 104(5), 2359-2377. doi:10.1785/0120130287 10.1785/0120130287 Seismological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Bulletin of the Seismological Society of America This copy is for distribution only by the authors of the article and their institutions in accordance with the Open Access Policy of the Seismological Society of America. For more information see the publications section of the SSA website at www.seismosoc.org THE SEISMOLOGICAL SOCIETY OF AMERICA 400 Evelyn Ave., Suite 201 Albany, CA 94706-1375 (510) 525-5474; FAX (510) 525-7204 www.seismosoc.org Bulletin of the Seismological Society of America, Vol. 104, No. 5, pp. 2359–2377, October 2014, doi: 10.1785/0120130287 Magnitude Limits of Subduction Zone Earthquakes by Yufang Rong, David D. Jackson, Harold Magistrale, and Chris Goldfinger Abstract Maximum earthquake magnitude (mx) is a critical parameter in seismic hazard and risk analysis. However, some recent large earthquakes have shown that most of the existing methods for estimating mx are inadequate. Moreover, mx itself is ill-defined because its meaning largely depends on the context, and it usually cannot be inferred using existing data without associating it with a time interval. In this study, we use probable maximum earthquake magnitude within a time period of interest, m T m m T p , to replace x. The term p contains not only the information of magnitude m T limit but also the occurrence rate of the extreme events.
    [Show full text]
  • Water Supply Forum Resiliency Project, Water Quality Assessment
    Water Supply Forum Regional Water Supply Resiliency Project Water Quality Resiliency Assessment Technical Memorandum Snohomish, King, and Pierce Counties, Washington May 6, 2016 This page is intentionally left blank. Water Quality Resiliency Assessment Contents 1.0 Introduction ............................................................................................................ 1 1.1 Description of Risk ....................................................................................................... 1 1.2 Objectives .................................................................................................................... 1 2.0 Methodology .......................................................................................................... 1 2.1 Multibarrier Approach ................................................................................................... 1 2.2 Risk Event Prioritization ............................................................................................... 3 3.0 Results .................................................................................................................. 4 3.1 Risk Event Prioritization ............................................................................................... 4 3.2 Mitigation Measures ..................................................................................................... 6 4.0 Detailed Review of Risk Events ........................................................................... 11 4.1 Wildfire ........................................................................................................................11
    [Show full text]
  • Long-Term Perspectives on Giant Earthquakes and Tsunamis at Subduction Zones∗
    ANRV309-EA35-12 ARI 20 March 2007 15:19 Long-Term Perspectives on Giant Earthquakes and Tsunamis at Subduction Zones∗ Kenji Satake1 and Brian F. Atwater2 1Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8567, Japan; email: [email protected] 2U.S. Geological Survey at University of Washington, Seattle, Washington 98195-1310; email: [email protected] Annu. Rev. Earth Planet. Sci. 2007. 35:349–74 Key Words First published online as a Review in Advance on paleoseismology, earthquake recurrence, earthquake forecasting, January 17, 2007 Sumatra, Chile, Cascadia, Hokkaido The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract by Brian Atwater on 05/14/07. For personal use only. This article’s doi: Histories of earthquakes and tsunamis, inferred from geological ev- 10.1146/annurev.earth.35.031306.140302 idence, aid in anticipating future catastrophes. This natural warn- Copyright c 2007 by Annual Reviews. ! ing system now influences building codes and tsunami planning in All rights reserved the United States, Canada, and Japan, particularly where geology 0084-6597/07/0530-0349$20.00 demonstrates the past occurrence of earthquakes and tsunamis larger Annu. Rev. Earth Planet. Sci. 2007.35:349-374. Downloaded from arjournals.annualreviews.org ∗The U.S. Government has the right to retain a than those known from written and instrumental records. Under fa- nonexclusive, royalty-free license in and to any vorable circumstances, paleoseismology can thus provide long-term copyright covering this paper. advisories of unusually large tsunamis. The extraordinary Indian Ocean tsunami of 2004 resulted from a fault rupture more than 1000 km in length that included and dwarfed fault patches that had broken historically during lesser shocks.
    [Show full text]