Study Materials for Big Data Processing Tools

Total Page:16

File Type:pdf, Size:1020Kb

Study Materials for Big Data Processing Tools MASARYK UNIVERSITY FACULTY OF INFORMATICS Study materials for Big Data processing tools BACHELOR'S THESIS Martin Durkac Brno, Spring 2021 MASARYK UNIVERSITY FACULTY OF INFORMATICS Study materials for Big Data processing tools BACHELOR'S THESIS Martin Durkáč Brno, Spring 2021 This is where a copy of the official signed thesis assignment and a copy of the Statement of an Author is located in the printed version of the document. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Martin Durkäc Advisor: RNDr. Martin Macák i Acknowledgements I would like to thank my supervisor RNDr. Martin Macak for all the support and guidance. His constant feedback helped me to improve and finish it. I would also like to express my gratitude towards my colleagues at Greycortex for letting me use their resources to develop the practical part of the thesis. ii Abstract This thesis focuses on providing study materials for the Big Data sem• inar. The thesis is divided into six chapters plus a conclusion, where the first chapter introduces Big Data in general, four chapters contain information about Big Data processing tools and the sixth chapter describes study materials provided in this thesis. For each Big Data processing tool, the thesis contains a practical demonstration and an assignment for the seminar in the attachments. All the assignments are provided in both with and without solution forms. The four Big Data processing tools in this thesis are Apache Hadoop for the gen• eral batch processing, Apache Hive for SQL systems, Apache Spark Streaming for the stream processing, and GraphFrames package of the Apache Spark for graph processing. iii Keywords Big Data, Apache Hadoop, HDFS, YARN, MapReduce, Apache Hive, Apache Spark, Spark Streaming, GraphFrames iv Contents Introduction 2 1 Big data 3 2 Batch processing 5 2.1 Characteristics 5 2.2 Hadoop Distributed File System 5 2.3 Yet Another Resource Negotiator 6 2.4 Hadoop MapReduce 7 2.5 Application structure 8 2.5.1 Writable 9 2.5.2 Record Reader 10 2.5.3 Mapper 11 2.5.4 Reducer 12 2.5.5 Comparator 13 2.5.6 Partitioner 13 2.6 Apache Hadoop alternative 13 3 Structured data processing using SQL 15 3.1 Characteristics 15 3.2 Architecture 15 3.3 HiveServerl 17 3.4 Hive Metastore 17 3.5 Limitations 18 3.6 HiveQL 18 3.7 Apache Hive alternative 19 4 Stream processing 21 4.1 Apache Spark 22 4.2 Resilient Distributed Datasets 22 4.3 Spark Streaming 24 4.4 Apache Spark Streaming alternative 25 5 Graph processing 26 5.1 GraphFrames 26 5.2 DataFrameAPI 26 v 5.3 GraphFrames features 27 5.3.1 Motif finding 27 5.3.2 Breadth-first search 28 5.3.3 Subgraphs 28 5.3.4 Other built-in graph algorithms 28 5.4 GraphFrames alternative 29 6 Study materials 31 6.1 Tasks and demonstrations 31 6.2 Usage 32 7 Conclusion 33 A Attachments 34 Bibliography 35 vi List of Tables 2.1 Differences between Apache Hadoop and Apache Spark 14 3.1 Differences between SQL-92 standard and HiveQL 19 4.1 Examples of actions in Apache Spark 23 4.2 Examples of transformations in Apache Spark 23 List of Figures 2.1 Example distribution of HDFS blocks across a cluster with replication factor two. 6 2.2 MapReduce data flow 7 2.3 Example of the Apache Hadoop application structure 8 3.1 Apache Hive architecture 16 4.1 Apache Spark architecture with Spark Standalone cluster manager and HDFS storage 21 4.2 Spark Streaming usage of D-Streams 24 5.1 Apache Giraph architecture 29 Listings 2.1 Writable example 9 2.2 Record reader initialize method example 10 2.3 Record reader nextKeyValue method example 11 2.4 Record reader createRecordReader method example . 11 2.5 Reducer example 12 3.1 Word count query in Apache Hive 19 1 Introduction Today we are surrounded by Big Data in many forms and our daily interactions are affected by them. Big data are used in social media, medicine, IoT (Internet of Things), and many more areas [1]. They are here to stay and continuously growing bigger. Big data similar to other areas of computer science are continuously evolving and many IT workers, analysts and economists do not understand and cannot work with them. This is mainly because of their properties such as huge volume, great variety, and velocity [2]. The challenge of Big Data management is coping with all three of these properties in the most efficient way possible. The primary purpose of this thesis is to provide study materials for the most popular Big Data tools for each category of Big Data as described in [3]. These are Apache Hadoop for general purpose batch processing, Apache Hive for big SQL systems. For both streaming and graph processing, the thesis provides the materials about Apache Spark with its Spark Streaming library and GraphFrames package. Each of these chapters also contains a section about one or more alter• natives for a given Big Data tool, describing differences, advantages, and disadvantages in comparison. Study materials from the thesis explain and describe all of the Big Data tools mentioned above, including a tutorial for downloading, installation, and demonstration on a simple example. Furthermore, there are assignments on each Big Data tool with the solution provided. These tutorials are compatible with most of the Linux distributions. System requirements are mentioned in the setup part of the tutorials. The outcome of the thesis is to provide people with study materials about previously mentioned Big Data tools. The materials contain all the important information to start using these tools and improve skills in the Big Data field of computer science. The thesis is organized as follows. Chapter 1 introduces Big Data and processing concepts related to it. Apache Hadoop and its components are introduced and described in chapter 2. Chapter 3 contains information about Apache Hive. Chapters 4 and 5 describe Apache Spark Streaming and Apache Spark GraphFrames respectively. In chapter 6, the usage of the thesis and materials provided are explained. Chapter 7 concludes the thesis. 2 1 Big data This thesis is focused on describing options for working with Big Data using current Big Data processing platforms. Big Data is an idea of data exponentially growing in size, being in unstructured form coming from all the digital devices, computation systems, usage of the Internet, and other applications in people's daily life. As for 2012, then the number of Internet users was around 2.27 billion [3]. In 2021, the number of Internet users reached 4.66 billion [4] and is continuing to grow bigger. More Internet users result in a huge and increasing number of user-generated content such as hundreds of hours of videos uploaded on YouTube, hundreds of thousands of tweets on Twitter, and millions of Google searches happening every minute. Many companies are continuously gathering massive datasets containing information about customer interactions, product sales, and other information that may help improve their business. This is only a fraction of the new data that is being created. Big Data can be described using the multiple properties of Big Data. The number of properties is ranging from three to seven, depending on which definition is used. The most important properties describing Big Data are [3]: • Volume, • Variety, • Velocity. Volume property is linked with a huge amount of data that can be billions of rows and millions of columns. Variety of data is another challenge of Big Data, where no exact format of the data is defined. The data comes in different formats, data sources, and data structures. Velocity describes the trend, where most of the data have been created in the most recent years. Speed, which new data is being generated is increasing further and there is now a need to not only analyze already stored data but do real-time analysis on those enormous volumes of data. 3 i. BIG DATA Additionally, there are other definitions adding more properties de• scribing the Big Data [5]. These are other properties, that can describe Big Data: • Variability - the problem of the interpretation of data, which changes depending on the context, especially in areas such as language processing, • Visualization - the data is readable and accessible, • Veracity - the accuracy and trustworthiness of the data, since the incomplete data may render useless, • Value - the storage and analysis of the data would have no use if they cannot be turned into value. There are many ways to categorize Big Data tools. The thesis is focusing on Big Data tools and categories used for processing the Data. One of the ways to classify the Big Data processing tools and the way it is described in this thesis is into these four categories [3]: • Batch processing, • Structured data processing, • Stream processing, • Graph processing. 4 2 Batch processing Batch processing is the simplest way to handle unstructured data in very large volumes [6]. The data are being collected, stored, and then processed at once, which possibly takes a long time. Since the volumes are so large, the main principles of this type of processing are the possibility to run on low-cost unreliable commodity hardware yet being highly fault-tolerant, being highly scalable, and able to run in parallel in a cluster with multiple working nodes. This chapter contains information about the batch processing tool Apache Hadoop.
Recommended publications
  • An Enterprise Knowledge Network
    Fogbeam Labs Cut Through The Information Fog http://www.fogbeam.com An Enterprise Knowledge Network Knowledge exists in many forms inside your organization – ranging from tacit knowledge which exists only in the minds of the users who possess it, to codified knowledge stored in databases and document repositories. Unfortunately while knowledge exists throughout the organization, it is often not easy (if even possible) to locate, use, share, and reuse existing knowledge. This results in a situation often described as “the left hand doesn't know what the right hand is doing” and damages morale as employees spend their days frustrated and complaining that “nobody knows what is going on around here”. The obstacles that hinder access to existing knowledge can be cultural, geographical, social, and/or technological. And while no technological solution can guarantee perfect knowledge-sharing, tools drawn from big data, data mining / machine learning, deep learning, and artificial intelligence techniques can improve an organization's power to generate, capture, use, share and reuse knowledge. Using technologies developed as part of the semantic web initiative, and applying the principles of linked data within the enterprise, the Fogbeam Labs Enterprise Knowledge Network approach can help your firm integrate and aggregate knowledge which is spread across your existing enterprise applications, content repositories and Intranet. An Enterprise Knowledge Network enables your firm's capabilities to: • engage in high levels of knowledge transfer and
    [Show full text]
  • Return of Organization Exempt from Income
    OMB No. 1545-0047 Return of Organization Exempt From Income Tax Form 990 Under section 501(c), 527, or 4947(a)(1) of the Internal Revenue Code (except black lung benefit trust or private foundation) Open to Public Department of the Treasury Internal Revenue Service The organization may have to use a copy of this return to satisfy state reporting requirements. Inspection A For the 2011 calendar year, or tax year beginning 5/1/2011 , and ending 4/30/2012 B Check if applicable: C Name of organization The Apache Software Foundation D Employer identification number Address change Doing Business As 47-0825376 Name change Number and street (or P.O. box if mail is not delivered to street address) Room/suite E Telephone number Initial return 1901 Munsey Drive (909) 374-9776 Terminated City or town, state or country, and ZIP + 4 Amended return Forest Hill MD 21050-2747 G Gross receipts $ 554,439 Application pending F Name and address of principal officer: H(a) Is this a group return for affiliates? Yes X No Jim Jagielski 1901 Munsey Drive, Forest Hill, MD 21050-2747 H(b) Are all affiliates included? Yes No I Tax-exempt status: X 501(c)(3) 501(c) ( ) (insert no.) 4947(a)(1) or 527 If "No," attach a list. (see instructions) J Website: http://www.apache.org/ H(c) Group exemption number K Form of organization: X Corporation Trust Association Other L Year of formation: 1999 M State of legal domicile: MD Part I Summary 1 Briefly describe the organization's mission or most significant activities: to provide open source software to the public that we sponsor free of charge 2 Check this box if the organization discontinued its operations or disposed of more than 25% of its net assets.
    [Show full text]
  • Graft: a Debugging Tool for Apache Giraph
    Graft: A Debugging Tool For Apache Giraph Semih Salihoglu, Jaeho Shin, Vikesh Khanna, Ba Quan Truong, Jennifer Widom Stanford University {semih, jaeho.shin, vikesh, bqtruong, widom}@cs.stanford.edu ABSTRACT optional master.compute() function is executed by the Master We address the problem of debugging programs written for Pregel- task between supersteps. like systems. After interviewing Giraph and GPS users, we devel- We have tackled the challenge of debugging programs written oped Graft. Graft supports the debugging cycle that users typically for Pregel-like systems. Despite being a core component of pro- go through: (1) Users describe programmatically the set of vertices grammers’ development cycles, very little work has been done on they are interested in inspecting. During execution, Graft captures debugging in these systems. We interviewed several Giraph and the context information of these vertices across supersteps. (2) Us- GPS programmers (hereafter referred to as “users”) and studied vertex.compute() ing Graft’s GUI, users visualize how the values and messages of the how they currently debug their functions. captured vertices change from superstep to superstep,narrowing in We found that the following three steps were common across users: suspicious vertices and supersteps. (3) Users replay the exact lines (1) Users add print statements to their code to capture information of the vertex.compute() function that executed for the sus- about a select set of potentially “buggy” vertices, e.g., vertices that picious vertices and supersteps, by copying code that Graft gener- are assigned incorrect values, send incorrect messages, or throw ates into their development environments’ line-by-line debuggers.
    [Show full text]
  • Apache Giraph 3
    Other Distributed Frameworks Shannon Quinn Distinction 1. General Compute Engines – Hadoop 2. User-facing APIs – Cascading – Scalding Alternative Frameworks 1. Apache Mahout 2. Apache Giraph 3. GraphLab 4. Apache Storm 5. Apache Tez 6. Apache Flink Alternative Frameworks 1. Apache Mahout 2. Apache Giraph 3. GraphLab 4. Apache Storm 5. Apache Tez 6. Apache Flink Apache Mahout • A Tale of Two Frameworks 1. Distributed machine learning on Hadoop – 0.1 to 0.9 2. “Samsara” – New in 0.10+ Machine learning on Hadoop • Born out of the Apache Lucene project • Built on Hadoop (all in Java) • Pragmatic machine learning at scale 1: Recommendation 2: Classification 3: Clustering Other MapReduce algorithms • Dimensionality reduction – Lanczos – SSVD – LDA • Regression – Logistic – Linear – Random Forest • Evolutionary algorithms Mahout-Samsara • Programming “environment” for distributed machine learning • R-like syntax • Interactive shell (like Spark) • Under-the-hood algebraic optimizer • Engine-agnostic – Spark – H2O – Flink – ? Mahout-Samsara Mahout • 3 main components Engine-agnostic environment for Engine-specific Legacy MapReduce building scalable ML algorithms (Spark, algorithms algorithms H2O) (Samsara) Mahout • v0.10.0 released April 11 (as in, 5 days ago!) • 0.10.1 – More base linear algebra functionality • 0.11.0 – Compatible with Spark 1.3 • 1.0 – ? Mahout features by engine Mahout features by engine Mahout features by engine • No engine-agnostic clustering algorithms yet – Still the domain of legacy MapReduce • H2O and especially Flink
    [Show full text]
  • Chapter 2 Introduction to Big Data Technology
    Chapter 2 Introduction to Big data Technology Bilal Abu-Salih1, Pornpit Wongthongtham2 Dengya Zhu3 , Kit Yan Chan3 , Amit Rudra3 1The University of Jordan 2 The University of Western Australia 3 Curtin University Abstract: Big data is no more “all just hype” but widely applied in nearly all aspects of our business, governments, and organizations with the technology stack of AI. Its influences are far beyond a simple technique innovation but involves all rears in the world. This chapter will first have historical review of big data; followed by discussion of characteristics of big data, i.e. from the 3V’s to up 10V’s of big data. The chapter then introduces technology stacks for an organization to build a big data application, from infrastructure/platform/ecosystem to constructional units and components. Finally, we provide some big data online resources for reference. Keywords Big data, 3V of Big data, Cloud Computing, Data Lake, Enterprise Data Centre, PaaS, IaaS, SaaS, Hadoop, Spark, HBase, Information retrieval, Solr 2.1 Introduction The ability to exploit the ever-growing amounts of business-related data will al- low to comprehend what is emerging in the world. In this context, Big Data is one of the current major buzzwords [1]. Big Data (BD) is the technical term used in reference to the vast quantity of heterogeneous datasets which are created and spread rapidly, and for which the conventional techniques used to process, analyse, retrieve, store and visualise such massive sets of data are now unsuitable and inad- equate. This can be seen in many areas such as sensor-generated data, social media, uploading and downloading of digital media.
    [Show full text]
  • Harp: Collective Communication on Hadoop
    HHarp:arp: CollectiveCollective CommunicationCommunication onon HadooHadoopp Judy Qiu, Indiana University SA OutlineOutline • Machine Learning on Big Data • Big Data Tools • Iterative MapReduce model • MDS Demo • Harp SA MachineMachine LearningLearning onon BigBig DataData • Mahout on Hadoop • https://mahout.apache.org/ • MLlib on Spark • http://spark.apache.org/mllib/ • GraphLab Toolkits • http://graphlab.org/projects/toolkits.html • GraphLab Computer Vision Toolkit SA World Data DAG Model MapReduce Model Graph Model BSP/Collective Mode Hadoop MPI HaLoop Giraph Twister Hama or GraphLab ions/ ions/ Spark GraphX ning Harp Stratosphere Dryad/ Reef DryadLIN Q Pig/PigLatin Hive Query Tez Drill Shark MRQL S4 Storm or ming Samza Spark Streaming BigBig DataData ToolsTools forfor HPCHPC andand SupercomputingSupercomputing • MPI(Message Passing Interface, 1992) • Provide standardized function interfaces for communication between parallel processes. • Collective communication operations • Broadcast, Scatter, Gather, Reduce, Allgather, Allreduce, Reduce‐scatter. • Popular implementations • MPICH (2001) • OpenMPI (2004) • http://www.open‐mpi.org/ SA MapReduceMapReduce ModelModel Google MapReduce (2004) • Jeffrey Dean et al. MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004. Apache Hadoop (2005) • http://hadoop.apache.org/ • http://developer.yahoo.com/hadoop/tutorial/ Apache Hadoop 2.0 (2012) • Vinod Kumar Vavilapalli et al. Apache Hadoop YARN: Yet Another Resource Negotiator, SO 2013. • Separation between resource management and computation
    [Show full text]
  • Technology Overview
    Big Data Technology Overview Term Description See Also Big Data - the 5 Vs Everyone Must Volume, velocity and variety. And some expand the definition further to include veracity 3 Vs Know and value as well. 5 Vs of Big Data From Wikipedia, “Agile software development is a group of software development methods based on iterative and incremental development, where requirements and solutions evolve through collaboration between self-organizing, cross-functional teams. Agile The Agile Manifesto It promotes adaptive planning, evolutionary development and delivery, a time-boxed iterative approach, and encourages rapid and flexible response to change. It is a conceptual framework that promotes foreseen tight iterations throughout the development cycle.” A data serialization system. From Wikepedia, Avro Apache Avro “It is a remote procedure call and serialization framework developed within Apache's Hadoop project. It uses JSON for defining data types and protocols, and serializes data in a compact binary format.” BigInsights Enterprise Edition provides a spreadsheet-like data analysis tool to help Big Insights IBM Infosphere Biginsights organizations store, manage, and analyze big data. A scalable multi-master database with no single points of failure. Cassandra Apache Cassandra It provides scalability and high availability without compromising performance. Cloudera Inc. is an American-based software company that provides Apache Hadoop- Cloudera Cloudera based software, support and services, and training to business customers. Wikipedia - Data Science Data science The study of the generalizable extraction of knowledge from data IBM - Data Scientist Coursera Big Data Technology Overview Term Description See Also Distributed system developed at Google for interactively querying large datasets. Dremel Dremel It empowers business analysts and makes it easy for business users to access the data Google Research rather than having to rely on data engineers.
    [Show full text]
  • Improving the Performance of Graph Trans- Formation Execution in the BSP Model
    Improving the performance of graph trans- formation execution in the BSP model By improving a code generator for EMF Henshin Master of Science Thesis in Software Engineering FREDRIK EINARSSON Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering Gothenburg, Sweden, June 2015 Master’s thesis 2015:NN Improving the performance of graph transformation execution in the BSP model By improving a code generator for EMF Henshin FREDRIK EINARSSON Department of Computer Science and Engineering Division of Software Engineering Chalmers University of Technology Gothenburg, Sweden 2015 The Author grants to Chalmers University of Technology and University of Gothen- burg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agree- ment. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and Uni- versity of Gothenburg store the Work electronically and make it accessible on the Internet. Improving the performance of graph transformation execution
    [Show full text]
  • Code Smell Prediction Employing Machine Learning Meets Emerging Java Language Constructs"
    Appendix to the paper "Code smell prediction employing machine learning meets emerging Java language constructs" Hanna Grodzicka, Michał Kawa, Zofia Łakomiak, Arkadiusz Ziobrowski, Lech Madeyski (B) The Appendix includes two tables containing the dataset used in the paper "Code smell prediction employing machine learning meets emerging Java lan- guage constructs". The first table contains information about 792 projects selected for R package reproducer [Madeyski and Kitchenham(2019)]. Projects were the base dataset for cre- ating the dataset used in the study (Table I). The second table contains information about 281 projects filtered by Java version from build tool Maven (Table II) which were directly used in the paper. TABLE I: Base projects used to create the new dataset # Orgasation Project name GitHub link Commit hash Build tool Java version 1 adobe aem-core-wcm- www.github.com/adobe/ 1d1f1d70844c9e07cd694f028e87f85d926aba94 other or lack of unknown components aem-core-wcm-components 2 adobe S3Mock www.github.com/adobe/ 5aa299c2b6d0f0fd00f8d03fda560502270afb82 MAVEN 8 S3Mock 3 alexa alexa-skills- www.github.com/alexa/ bf1e9ccc50d1f3f8408f887f70197ee288fd4bd9 MAVEN 8 kit-sdk-for- alexa-skills-kit-sdk- java for-java 4 alibaba ARouter www.github.com/alibaba/ 93b328569bbdbf75e4aa87f0ecf48c69600591b2 GRADLE unknown ARouter 5 alibaba atlas www.github.com/alibaba/ e8c7b3f1ff14b2a1df64321c6992b796cae7d732 GRADLE unknown atlas 6 alibaba canal www.github.com/alibaba/ 08167c95c767fd3c9879584c0230820a8476a7a7 MAVEN 7 canal 7 alibaba cobar www.github.com/alibaba/
    [Show full text]
  • Hadoop Programming Options
    "Web Age Speaks!" Webinar Series Hadoop Programming Options Introduction Mikhail Vladimirov Director, Curriculum Architecture [email protected] Web Age Solutions Providing a broad spectrum of regular and customized training classes in programming, system administration and architecture to our clients across the world for over ten years ©WebAgeSolutions.com 2 Overview of Talk Hadoop Overview Hadoop Analytics Systems HDFS and MapReduce v1 & v2 (YARN) Hive Sqoop ©WebAgeSolutions.com 3 Hadoop Programming Options Hadoop Ecosystem Hadoop Hadoop is a distributed fault-tolerant computing platform written in Java Modeled after shared-nothing, massively parallel processing (MPP) system design Hadoop's design was influenced by ideas published in Google File System (GFS) and MapReduce white papers Hadoop can be used as a data hub, data warehouse or an analytic platform ©WebAgeSolutions.com 5 Hadoop Core Components The Hadoop project is made up of three main components: Common • Contains Hadoop infrastructure elements (interfaces with HDFS, system libraries, RPC connectors, Hadoop admin scripts, etc.) Hadoop Distributed File System • Hadoop Distributed File System (HDFS) running on clusters of commodity hardware built around the concept: load once and read many times MapReduce • A distributed data processing framework used as data analysis system ©WebAgeSolutions.com 6 Hadoop Simple Definition In a nutshell, Hadoop is a distributed computing framework that consists of: Reliable data storage (provided via HDFS) Analysis system
    [Show full text]
  • Outline of Machine Learning
    Outline of machine learning The following outline is provided as an overview of and topical guide to machine learning: Machine learning – subfield of computer science[1] (more particularly soft computing) that evolved from the study of pattern recognition and computational learning theory in artificial intelligence.[1] In 1959, Arthur Samuel defined machine learning as a "Field of study that gives computers the ability to learn without being explicitly programmed".[2] Machine learning explores the study and construction of algorithms that can learn from and make predictions on data.[3] Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions. Contents What type of thing is machine learning? Branches of machine learning Subfields of machine learning Cross-disciplinary fields involving machine learning Applications of machine learning Machine learning hardware Machine learning tools Machine learning frameworks Machine learning libraries Machine learning algorithms Machine learning methods Dimensionality reduction Ensemble learning Meta learning Reinforcement learning Supervised learning Unsupervised learning Semi-supervised learning Deep learning Other machine learning methods and problems Machine learning research History of machine learning Machine learning projects Machine learning organizations Machine learning conferences and workshops Machine learning publications
    [Show full text]
  • Bright Cluster Manager 8.0 Big Data Deployment Manual
    Bright Cluster Manager 8.0 Big Data Deployment Manual Revision: 97e18b7 Date: Wed Sep 29 2021 ©2017 Bright Computing, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by contract or by written permission of Bright Computing, Inc. Trademarks Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc. Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc. SUSE is a registered trademark of Novell, Inc. PGI is a registered trademark of NVIDIA Corporation. FLEXlm is a registered trademark of Flexera Software, Inc. ScaleMP is a registered trademark of ScaleMP, Inc. All other trademarks are the property of their respective owners. Rights and Restrictions All statements, specifications, recommendations, and technical information contained herein are current or planned as of the date of publication of this document. They are reliable as of the time of this writing and are presented without warranty of any kind, expressed or implied. Bright Computing, Inc. shall not be liable for technical or editorial errors or omissions which may occur in this document. Bright Computing, Inc. shall not be liable for any damages resulting from the use of this document. Limitation of Liability and Damages Pertaining to Bright Computing, Inc. The Bright Cluster Manager product principally consists of free software that is licensed by the Linux authors free of charge. Bright Computing, Inc. shall have no liability nor will Bright Computing, Inc. provide any warranty for the Bright Cluster Manager to the extent that is permitted by law.
    [Show full text]