Waves of the Electromagnetic Spectrum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Violet-Green Swallow
Breeding Habitat Use Profile Habitats Used in Arizona Primary: Montane Riparian Secondary: Montane Forests, locally Upper Sonoran Desert Key Habitat Parameters Plant Composition Most montane forest types, often with some element of riparian, wetland, open water or 8 other moist habitat types Plant Density and Unknown Size Violet-green Swallow, photo by ©George Andrejko Microhabitat Snags, live trees, or cliffs for nesting, mesic Features areas with high insect productivity for forag- Conservation Profile ing 8; in wooded landscapes, often noted foraging and nesting near forest clearings Species Concerns and edges. Climate Change (Droughts) Increasing Fire Frequency Landscape Largely unknown, but must include some Timber Harvesting Practices old-growth forests or cliffs Conservation Status Lists Elevation Range in Arizona USFWS 1 No 3,200 – 10,500 feet, locally to 1,200 feet 9 AZGFD 2 No Density Estimate DoD 3 No Territory Size: Unknown BLM 4 No Density: Unknown, sometimes occurs in loose colonies 8 PIF Watch List 5b No PIF Regional Concern 5a No Migratory Bird Treaty Act Natural History Profile Covered Seasonal Distribution in Arizona PIF Breeding Population Size Estimates 6 Breeding April – early August, desert nesting may Arizona 710,000 ◑ begin in March 9 Global 7,200,000 ◑ Migration February – April; August – mid-October 9 9.93% Percent in Arizona Winter Rare, very small numbers 5b PIF Population Goal Nest and Nesting Habits Maintain 8 Type of Nest Cavity or crevice Trends in Arizona Nest Substrate Tree, rock, or cliff; also artificial -
Rainbow Phytochemicals
Yellow and Orange Yellow and orange produce contains carotenoids and bioflavonoids, antioxidants that protect against heart disease and cancer, promote healthy vision and a strong immune system. Acorn Squash Cantaloupe Carrots Apricots Golden Raisins Butternut Squash Grapefruit Lemon Mangoes Nectarines Oranges Papayas Peaches Persimmons Pineapples Tangerines Pumpkin Rutabagas Spaghetti Summer Sweet Yams Yellow beets Yellow Tomatoes Squash Squash Potatoes Delicata Kabocha Yukon Gold Yellow Bell Squash Squash Potatoes Peppers Green Green produce contains varying amounts of phytochemicals such as flavonoids, carotenoids, lutein, zeaxanthin, and indoles, all of which are associated with vision health, promoting strong bones and teeth, and a lower risk of developing certain cancers. Arugula Artichokes Asparagus Broccoli Basil Beet Greens Brussels Bok Choy Green Beans Collard Greens Celery Chinese Cabbage Sprouts Green Dandelion Endive Green Onion Green Grapes Cucumbers Cabbage Greens Green Bell Green Peas Green Apples Kiwi Honeydew Melon Peppers Kale Leeks Limes Leafy Greens Oka Lettuce Mustard Snow and Parsley Romaine Lettuce Swiss Chard Watercress Greens Snap Peas Spinach Zucchini Purple/Blue These fruits and vegetables contain varying amounts of health promoting phytochemicals such as anthocyanins, resveratrol, flavonols, ellagic acid, and phenolics, which are associated with improved blood vessel health, reduced risk of some cancers, urinary tract health, memory function and healthy aging. Beets Blackberries Black Grapes Blueberries Blackcurrants Concord Grapes Dried Concord Grape Dried Plums Elderberries Purple Figs Purple Grapes Blueberries juice Purple Purple Purple Belgian Plums Purple Carrots Eggplant Cabbage Cauliflower Endive Purple- Purple Bell fleshed Raisins Peppers potatoes Red Red fruits and vegetables contain phytochemicals such as iycopene, anthocyanins, resveratrol and flavonols, which are associated with heart health, memory function, urinary tract health, and a lower risk of some cancers, including prostate cancer. -
Color Mixing Ratios
Colour Mixing: Ratios Color Theory with Tracy Moreau Learn more at DecoArt’s Art For Everyone Learning Center www.tracymoreau.net Primary Colours In painting, the three primary colours are yellow, red, and blue. These colors cannot be created by mixing other colours. They are called primary because all other colours are derived from them. Mixing Primary Colours Creates Secondary Colours If you combine two primary colours you get a secondary colour. For example, red and blue make violet, yellow and red make orange, and blue and yellow make green. If you mix all of the primary colours together you get black. The Mixing Ratio for Primary Colours To get orange, you mix the primary colours red and yellow. The mixing ratio of these two colours determines which shade of orange you will get after mixing. For example, if you use more red than yellow you will get a reddish-orange. If you add more yellow than red you will get a yellowish-orange. Experiment with the shades you have to see what you can create. Try out different combinations and mixing ratios and keep a written record of your results so that you can mix the colours again for future paintings. www.tracymoreau.net Tertiary Colours By mixing a primary and a secondary colour or two secondary colours you get a tertiary colour. Tertiary colours such as blue-lilac, yellow-green, green-blue, orange-yellow, red-orange, and violet-red are all created by combining a primary and a secondary colour. The Mixing Ratios of Light and Dark Colours If you want to darken a colour, you only need to add a small amount of black or another dark colour. -
Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC
Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC Introduction Why does the color of a copper chloride solution appear blue? As the white light hits the paint, which colors does the solution absorb and which colors does it transmit? In this activity students will observe the basic principles of absorption spectroscopy based on absorbance and transmittance of visible light. Concepts • Spectroscopy • Visible light spectrum • Absorbance and transmittance • Quantized electron energy levels Background The visible light spectrum (380−750 nm) is the light we are able to see. This spectrum is often referred to as “ROY G BIV” as a mnemonic device for the order of colors it produces. Violet has the shortest wavelength (about 400 nm) and red has the longest wavelength (about 650–700 nm). Many common chemical solutions can be used as filters to demonstrate the principles of absorption and transmittance of visible light in the electromagnetic spectrum. For example, copper(II) chloride (blue), ammonium dichromate (orange), iron(III) chloride (yellow), and potassium permanganate (red) are all different colors because they absorb different wave- lengths of visible light. In this demonstration, students will observe the principles of absorption spectroscopy using a variety of different colored solutions. Food coloring will be substituted for the orange and yellow chemical solutions mentioned above. Rare earth metal solutions, erbium and praseodymium chloride, will be used to illustrate line absorption spectra. Materials Copper(II) chloride solution, 1 M, 85 mL Diffraction grating, holographic, 14 cm × 14 cm Erbium chloride solution, 0.1 M, 50 mL Microchemistry solution bottle, 50 mL, 6 Potassium permanganate solution (KMnO4), 0.001 M, 275 mL Overhead projector and screen Praseodymium chloride solution, 0.1 M, 50 mL Red food dye Water, deionized Stir rod, glass Beaker, 250-mL Tape Black construction paper, 12 × 18, 2 sheets Yellow food dye Colored pencils Safety Precautions Copper(II) chloride solution is toxic by ingestion and inhalation. -
Monochromatic: Red Orange Yellow Green Blue Violet Complementary
Monochromatic: Split Complementary: Red Red, Yellow-Green, Blue-Green Orange Red-Orange, Green, Blue Yellow Orange, Blue-Green, Blue-Violet Green Yellow-Orange, Blue, Violet Blue Yellow, Blue-Violet, Red-Violet Violet Yellow-Green, Violet, Red Green, Red-Violet, Red-Orange Complementary: Blue-Green, Red, Orange Red & Green Blue, Red-Orange, Yellow-Orange Red-Orange & Blue-Green Blue-Violet, Orange, Yellow Orange & Blue Violet, Yellow-Orange, Yellow-Green Yellow-Orange & Blue-Violet Red-Violet, Yellow, Green Yellow & Violet Yellow-Green & Red-Violet Tetradic: Red, Yellow, Green, Violet Triadic: Red, Yellow-Orange, Green, Blue-Violet Red, Yellow, Blue Red-Orange, Blue-Green, Yellow-Orange, Blue- Red-Orange, Yellow-Green, Blue-Violet Violet Orange, Green, Violet Red-Orange, Blue-Green, Yellow, Violet Yellow-Orange, Blue-Green, Red-Violet Orange, Blue, Green, Red Orange, Blue, Yellow-Green, Red-Violet Analogous: Yellow-Orange, Blue-Violet, Green, Red Red, Red Orange, Orange Yellow, Violet, Blue, Orange Red-Orange, Orange, Yellow-Orange Yellow-Green, Red-Violet, Blue-Green, Red- Orange, Yellow-Orange, Yellow Orange Yellow-Orange, Yellow, Yellow-Green Yellow, Yellow-Green, Green Yellow-Green, Green, Blue-Green Green, Blue-Green, Blue Blue-Green, Blue, Blue-Violet Blue, Blue-Violet, Violet Blue-Violet, Violet, Red-Violet Violet, Red-Violet, Red Red-Violet, Red, Red-Orange . -
A Visual Guide to Identifying Cats
A Visual Guide to Identifying Cats When cats have similar colors and patterns, like two gray tabbies, it can seem impossible to tell them apart! That is, until you take note of even the smallest details in their appearance. Knowledge is power, whether you’re an animal control officer or animal Coat Length shelter employee who needs to identify cats regularly, or you want to identify your own cat. This guide covers cats’ traits from their overall looks, like coat pattern, to their tiniest features, like whisker color. Let’s use our office cats as examples: • Oliver (left): neutered male, shorthair, solid black, pale green eyes, black Hairless whiskers, a black nose, and black Hairless cats have no fur. paw pads. • Charles (right): neutered male, shorthair, brown mackerel tabby with spots toward his rear, yellow-green eyes, white whiskers with some black at the roots, a pink-brown nose, and black paw pads. Shorthair Shorthair cats have short fur across As you go through this guide, remember that certain patterns and markings the entire body. originated with specific breeds. However, these traits now appear in many cats because of random mating. This guide covers the following features: Coat Length ...............................................................................................3 Medium hair Coat Color ...................................................................................................4 Medium hair cats have longer fur around the mane, tail, and/or rear. Coat Patterns ..............................................................................................6 -
The Electromagnetic Spectrum
The Electromagnetic Spectrum Wavelength/frequency/energy MAP TAP 2003-2004 The Electromagnetic Spectrum 1 Teacher Page • Content: Physical Science—The Electromagnetic Spectrum • Grade Level: High School • Creator: Dorothy Walk • Curriculum Objectives: SC 1; Intro Phys/Chem IV.A (waves) MAP TAP 2003-2004 The Electromagnetic Spectrum 2 MAP TAP 2003-2004 The Electromagnetic Spectrum 3 What is it? • The electromagnetic spectrum is the complete spectrum or continuum of light including radio waves, infrared, visible light, ultraviolet light, X- rays and gamma rays • An electromagnetic wave consists of electric and magnetic fields which vibrates thus making waves. MAP TAP 2003-2004 The Electromagnetic Spectrum 4 Waves • Properties of waves include speed, frequency and wavelength • Speed (s), frequency (f) and wavelength (l) are related in the formula l x f = s • All light travels at a speed of 3 s 108 m/s in a vacuum MAP TAP 2003-2004 The Electromagnetic Spectrum 5 Wavelength, Frequency and Energy • Since all light travels at the same speed, wavelength and frequency have an indirect relationship. • Light with a short wavelength will have a high frequency and light with a long wavelength will have a low frequency. • Light with short wavelengths has high energy and long wavelength has low energy MAP TAP 2003-2004 The Electromagnetic Spectrum 6 MAP TAP 2003-2004 The Electromagnetic Spectrum 7 Radio waves • Low energy waves with long wavelengths • Includes FM, AM, radar and TV waves • Wavelengths of 10-1m and longer • Low frequency • Used in many -
Including Far Red in an LED Lighting Spectrum
technically speaking BY ERIK RUNKLE Including Far Red in an LED Lighting Spectrum Far red (FR) is a one of the radiation (or light) wavebands larger leaves can be desired for other crops. that regulates plant growth and development. Many people We have learned that blue light (and to a smaller extent, consider FR as radiation with wavelengths between 700 and total light intensity) can influence the effects of FR. When the 800 nm, although 700 to 750 nm is, by far, the most active. intensity of blue light is high, adding FR only slightly increases By definition, FR is just outside the photosynthetically active extension growth. Therefore, the utility of including FR in an radiation (PAR) waveband, but it can directly and indirectly indoor lighting spectrum is greater under lower intensities increase growth. In addition, it can accelerate of blue light. One compelling reason to deliver at least some flowering of some crops, especially long-day plants, FR light indoors is to induce early flowering of young plants, which are those that flower when the nights are short. especially long-day plants. As we learn more about the effects of FR on plants, growers sometimes wonder, is it beneficial to include FR in a light-emitting diode (LED) spectrum? "As the DLI increases, Not surprisingly, the answer is, it depends on the application and crop. In the May 2016 issue of GPN, I wrote about the the utility of FR in effects of FR on plant growth and flowering (https:// bit.ly/2YkxHCO). Briefly, leaf size and stem length photoperiodic lighting increase as the intensity of FR increases, although the magnitude depends on the crop and other characteristics of the light environment. -
Violet Red Bile Agar M049
Violet Red Bile Agar M049 Violet Red Bile Agar is selective medium used for the isolation, detection and enumeration of coli-aerogenes bacteria in water, milk, other dairy food products and also from clinical samples. Composition** Ingredients Gms / Litre Peptic digest of animal tissue 7.000 Yeast extract 3.000 Sodium chloride 5.000 Bile salts mixture 1.500 Lactose 10.000 Neutral red 0.030 Crystal violet 0.002 Agar 15.000 Final pH ( at 25°C) 7.4±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 41.53 grams in 1000 ml distilled water. Heat with stirring to boiling to dissolve the medium completely. DO NOT AUTOCLAVE. Cool to 45°C and pour into sterile Petri plates containing the inoculum. If desired, the medium can be sterilized by autoclaving at 15 lbs pressure at 15lbs pressure (121°C) for 15 minutes. Principle And Interpretation The coliform group consists of several genera of bacteria belonging to the family Enterobacteriaceae . The historical definition of this group has been based on the method used for detection i.e. lactose fermentation. This group is defined as all aerobic and facultative anaerobic, gram-negative, non-spore-forming rod shaped bacteria that ferment lactose with gas and acid formation within 48 hour at 35°C (1, 2). Examination of foods, ingredients and raw materials, for the presence of marker groups such as coliforms is the one of the common tests. Violet Red Bile Agar, a modification of MacConkeys original formulation (3) is used for the enumeration of coli-aerogenes bacterial group. -
Electromagnetic Spectrum
Electromagnetic Spectrum Why do some things have colors? What makes color? Why do fast food restaurants use red lights to keep food warm? Why don’t they use green or blue light? Why do X-rays pass through the body and let us see through the body? What has the radio to do with radiation? What are the night vision devices that the army uses in night time fighting? To find the answers to these questions we have to examine the electromagnetic spectrum. FASTER THAN A SPEEDING BULLET MORE POWERFUL THAN A LOCOMOTIVE These words were used to introduce a fictional superhero named Superman. These same words can be used to help describe Electromagnetic Radiation. Electromagnetic Radiation is like a two member team racing together at incredible speeds across the vast regions of space or flying from the clutches of a tiny atom. They travel together in packages called photons. Moving along as a wave with frequency and wavelength they travel at the velocity of 186,000 miles per second (300,000,000 meters per second) in a vacuum. The photons are so tiny they cannot be seen even with powerful microscopes. If the photon encounters any charged particles along its journey it pushes and pulls them at the same frequency that the wave had when it started. The waves can circle the earth more than seven times in one second! If the waves are arranged in order of their wavelength and frequency the waves form the Electromagnetic Spectrum. They are described as electromagnetic because they are both electric and magnetic in nature. -
Resonance Enhancement of Raman Spectroscopy: Friend Or Foe?
www.spectroscopyonline.com ® Electronically reprinted from June 2013 Volume 28 Number 6 Molecular Spectroscopy Workbench Resonance Enhancement of Raman Spectroscopy: Friend or Foe? The presence of electronic transitions in the visible part of the spectrum can provide enor- mous enhancement of the Raman signals, if these electronic states are not luminescent. In some cases, the signals can increase by as much as six orders of magnitude. How much of an enhancement is possible depends on several factors, such as the width of the excited state, the proximity of the laser to that state, and the enhancement mechanism. The good part of this phenomenon is the increased sensitivity, but the downside is the nonlinearity of the signal, making it difficult to exploit for analytical purposes. Several systems exhibiting enhancement, such as carotenoids and hemeproteins, are discussed here. Fran Adar he physical basis for the Raman effect is the vibra- bound will be more easily modulated. So, because tional modulation of the electronic polarizability. electrons are more loosely bound than electrons, the T In a given molecule, the electronic distribution is polarizability of any unsaturated chemical functional determined by the atoms of the molecule and the electrons group will be larger than that of a chemically saturated that bind them together. When the molecule is exposed to group. Figure 1 shows the spectra of stearic acid (18:0) and electromagnetic radiation in the visible part of the spec- oleic acid (18:1). These two free fatty acids are both con- trum (in our case, the laser photons), its electronic dis- structed from a chain of 18 carbon atoms, in one case fully tribution will respond to the electric field of the photons. -
W Aves SCIENCE: Electromagnetic Spectrum
Keyword Definition Key facts to remember: electromagneti A group of waves that all travel at the same speed in All EM (electromagnetic) waves are transverse waves. c waves a vacuum, and are all transverse. frequency The number of vibrations (or the number of waves) Al l EM waves travel at the same speed (velocity) through a vacuum per second. One hertz (Hz) is one wave per second. (space) at 300 million m/s. infrared (IR) EM radiation that has a longer wavelength than EM waves are grouped based on their wavelengths and frequency. visible. We can feel infrared radiation as warmth. There are 7 basic EM waves. Radio waves, microwaves, infrared, visible light, UV, Xrays , gamma waves. SCIENCE: Waves interface The boundary between two materials. KS4 : AutumnKS4 Term KS4 : AutumnKS4 Term Our eyes can only detect a small part of this spectrum –visible light. refraction The change in direction when a wave goes from one medium to another. Different colours of light have different wavelengths from longest to transverse A wave in which the vibrations are at right angles to shortest: red, orange, yellow, green, blue, indigo, violet. (ROYGBIV) wave the direction the wave is travelling. or pneumonic; Richard Of York Gave Battle In Vain) ultraviolet (UV) EM radiation that has a shorter wavelength than visible light. Used to detect forged bank notes. vacuum A place where there is no matter at all. visible light Electromagnetic waves that can be detected by the human eye. gamma rays Electromagnetic radiation with the shortest SCIENCE: Electromagnetic Spectrum Electromagnetic SCIENCE: wavelengths and highest frequencies.