Permian Palynostratigraphy: a Global Overview

Total Page:16

File Type:pdf, Size:1020Kb

Permian Palynostratigraphy: a Global Overview Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 Permian palynostratigraphy: a global overview MICHAEL H. STEPHENSON British Geological Survey, Keyworth, Nottingham NG12 5GG, UK [email protected] Abstract: Permian palynostratigraphic schemes are used primarily to correlate coal- and hydro- carbon-bearing rocks within basins and between basins, sometimes at high levels of biostrati- graphic resolution. Up to now, their main shortcoming has been the lack of correlation with schemes outside the basins, coalfields and hydrocarbon fields that they serve, and chiefly a lack of correlation with the international Permian scale. This is partly because of phytogeographical provinciality from the Guadalupian onwards, making correlation between regional palynostrati- graphic schemes difficult. However, local high-resolution palynostratigraphic schemes for regions are now being linked either by assemblage-level quantitative taxonomic comparison or by the use of single well-characterized palynological taxa that occur across Permian phytogeographical provinces. Such taxa include: Scutasporites spp., Vittatina spp., Weylandites spp., Lueckisporites virkkiae, Otynisporites eotriassicus and Converrucosisporites confluens. These palynological cor- relations are being facilitated and supplemented with radiometric, magnetostratigraphic, indepen- dent faunal and strontium isotopic dating. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license Palynostratigraphy is the use of palynomorphs important biostratigraphic markers for the Permian (defined as organic-walled microfossils 5–500 mm of Gondwana and include several hundred species. in diameter) in correlating and assigning relative It is estimated that by the Lopingian about 60% of ages to rock strata. As such, it is a branch of biostra- the world’s flora consisted of seed plants (Gradstein tigraphy and follows the rules of biostratigraphic & Kerp 2012). practice: for example, those set out by Rawson These large-scale evolutionary changes in plants, et al. (2002). filtered by local and regional effects, are responsible The Permian, falling between 252.2 and 298.9 Ma, for the palynological succession that provides was a period of intense change in which the giant opportunities for subdivision on which palynostrati- continent of Pangea as a whole moved north, and graphic schemes are built. However, the pro- in which, through the early part of the Period, a tran- nounced phytogeographical differentiation of the sition from icehouse to greenhouse conditions occur- Permian has a powerful effect on palynostratigra- red (e.g. Fielding et al. 2008), alongside the decline phy, such that schemes differ considerably across in coal swamps and the establishment of widespread Pangea and correlation between schemes is even evaporite deposits (Henderson et al. 2012). The end now tentative or incomplete. In the Gondwana phy- of the Period saw a major extinction of fauna such as togeographical province, for example, it is difficult fusulinacean foraminifers, trilobites, rugose and tab- to correlate to the standard Permian stages; and ulate corals, blastoids, acanthodians, placoderms, the Carboniferous–Permian and Permian–Triassic and pelycosaurs; a dramatic reduction in bryozoans, boundaries are not precisely correlateable into brachiopods, ammonoids, sharks, bony fish, cri- Gondwana basins using palynology (Stephenson noids, eurypterids, ostracodes and echinoderms 2008a). (Henderson et al. 2012); and, although many coni- Until recently, progress in correlation was ham- fers (e.g. glossopterids, cordaites) became extinct pered by the lack of fundamental stratigraphic stan- at the end of the Permian, there is no evidence of dards such as stage Global Stratigraphic Sections major extinction in the plants (Gradstein & Kerp and Points (GSSPs); however, since 1997 (Jin 2012). Amongst the most important changes in et al. 1997; Henderson et al. 2012) a number of land plants is the replacement, near the end of the GSSPs have been established within the Pennsylva- Carboniferous, of arborescent lycophytes by arbo- nian–Permian succession, the most important of rescent tree ferns; arborescent lycophytes only which is the basal Permian GSSP at Aidaralash persisted into the Guadalupian in China. The arbo- Creek in the southern Urals (Jin et al. 1997; Hender- rescent horsetails also declined by the end of the Car- son et al. 2012), and the basal Triassic GSSP at boniferous. In the Permian, a great variety of new Meishan section D, Changxing County, Zhejiang seed plant groups appeared such as cycads, ginkgos, Province, South China (Yin et al. 2001). Since voltzialean conifers and glossopterids. The latter are these developments, there have also been other From:Lucas,S.G.&Shen, S. Z. (eds) 2018. The Permian Timescale. Geological Society, London, Special Publications, 450, 321–347. First published online December 8, 2016, https://doi.org/10.1144/SP450.2 # 2018 The Author(s). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 322 M. H. STEPHENSON advances contributing to the precision and utility of The approach taken in this paper is to sur- palynological biostratigraphy in this interval, vey the palynostratigraphic schemes in the main including radiometric and faunal dating of palyno- phytogeographic provinces and then to attempt logical biozones, and limited high-resolution corre- synthesis; and so the focus is on palynostratigraphy lation between continents using a well-defined not taxonomy. Given the plethora of palynological palynological species. literature on this interval, the review is necessarily Palynological research in the Permian is exten- selective. Most recent published palynostratigraphic sive, being partly driven by exploration for coal (e.g. schemes (e.g. since 2000) have emanated from in India and Australia), and oil and gas (e.g. in the South American and Middle Eastern basins. In Middle East, South America, Australia and the the following account, age assignments related to Barents Sea), but has tended to be regional or local these and other schemes reflect those of the original in focus (see Truswell 1980). A number of authors authors but may not necessarily use modern chrono- (Bharadwaj 1969; Kemp 1975; Bharadwaj & Sri- stratigraphic nomenclature, thus a variety of strati- vastava 1977; Balme 1980; Truswell 1980; Utting & graphic stage and other nomenclature is used in Piasecki 1995; Warrington 1996; Price 1997; Play- this paper. For the convenience of the reader, a ford & Dino 2005; Azcuy et al. 2007; Stephenson chart showing correlations of the main chronostrati- 2008a) have attempted to summarize the research or graphic subdivisions used internationally is shown to correlate the main biozones across regions, but in Figure 1. correlation has been tentative. Among the difficul- Permian palynostratigraphic schemes use pollen ties acknowledged by these previous reviewers are and spores almost exclusively. While it is recog- disparate stratigraphic and taxonomic methods nized that marine palynomorphs (acritarchs) may practised in different parts of the world, and differ- be present in Permian rocks, no study has sought ent standards of documentation of palynological data. to produce a palynostratigraphy based purely on StandardRussia Tethys Western Europe China North America Changhsingian ? Changhsingian 254.2 Dorashamian Thuringian ? Wuchiapingian Wuchiapingian ? Dzhulfian Lopingian Late Permian 259.8 Ochoan Capitanian Capitanian Tatarian Midian 265.1 Saxonian Maokouian Wordian Wordian Guadalupian Middle Permian 268.8 Murghabian ? Roadian Kazanian Roadian 272.3 Ufimian Kubergandian Rotliegend Kungurian Kungurian Leonardian Bolorian 279.3 Luodianian Arnskian Arnskian Yakhtashinian Autunian 290.1 Wolfcampian Early Permian Cisuralian Sakmarian Sakmarian Sakmarian 295.5 Chuanshanian Asselian Asselian Asselian 298.9 Fig. 1. Chronostratigraphy of the Permian, modified after Henderson et al. (2012). Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 PERMIAN PALYNOSTRATIGRAPHY 323 Permian acritarchs, although they may show future plant macrofossils differently (Utting & Piasecki potential (e.g. Lei et al. 2013). 1995). Balme (1970), Sullivan (1965), Turnau The range of morphology seen in palynomorphs (1978) and Van der Zwan (1981) surveyed the haz- in the Permian is illustrated simply in Figure 2. ards of the reconstruction of palaeophytogeograph- To improve readability, names of authors of taxa ical provinces by palynology. The value of pollen are excluded from the main text of the paper, but and spore taxa as indices of low-rank plant taxa is the main taxa and their authorship are listed in limited because the plant affinities of most Palaeo- Appendix A. zoic spore and pollen genera and species are unknown, and because botanical and palynological taxonomy are independent of one another. Despite Phytogeography of the Permian this, the broad palynological characteristics of a region at a certain time are thought to be representa- Phytogeographical provinciality makes correlation tive of the high-rank palaeobotanical characteristics difficult because it tends to reduce the number of of that region (Utting & Piasecki 1995). taxa in common between assemblages in different In broad terms, there was a gradual diversifica- provinces. In general, it seems reasonable to expect tion of phytogeographical provinces from relatively
Recommended publications
  • Late Permian to Middle Triassic Palaeogeographic Differentiation of Key Ammonoid Groups: Evidence from the Former USSR Yuri D
    Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: evidence from the former USSR Yuri D. Zakharov1, Alexander M. Popov1 & Alexander S. Biakov2 1 Far-Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch), Stoletija Prospect 159, Vladivostok, RU-690022, Russia 2 North-East Interdisciplinary Scientific Research Institute, Russian Academy of Sciences (Far Eastern Branch), Portovaja 16, Magadan, RU-685000, Russia Keywords Abstract Ammonoids; palaeobiogeography; palaeoclimatology; Permian; Triassic. Palaeontological characteristics of the Upper Permian and upper Olenekian to lowermost Anisian sequences in the Tethys and the Boreal realm are reviewed Correspondence in the context of global correlation. Data from key Wuchiapingian and Chang- Yuri D. Zakharov, Far-Eastern Geological hsingian sections in Transcaucasia, Lower and Middle Triassic sections in the Institute, Russian Academy of Sciences (Far Verkhoyansk area, Arctic Siberia, the southern Far East (South Primorye and Eastern Branch), Vladivostok, RU-690022, Kitakami) and Mangyshlak (Kazakhstan) are examined. Dominant groups of Russia. E-mail: [email protected] ammonoids are shown for these different regions. Through correlation, it is doi:10.1111/j.1751-8369.2008.00079.x suggested that significant thermal maxima (recognized using geochemical, palaeozoogeographical and palaeoecological data) existed during the late Kun- gurian, early Wuchiapingian, latest Changhsingian, middle Olenekian and earliest Anisian periods. Successive expansions and reductions of the warm– temperate climatic zones into middle and high latitudes during the Late Permian and the Early and Middle Triassic are a result of strong climatic fluctuations. Prime Middle–Upper Permian, Lower and Middle Triassic Bajarunas (1936) (Mangyshlak and Kazakhstan), Popov sections in the former USSR and adjacent territories are (1939, 1958) (Russian northern Far East and Verkhoy- currently located in Transcaucasia (Ševyrev 1968; Kotljar ansk area) and Kiparisova (in Voinova et al.
    [Show full text]
  • Memorial to Brian Frederick Glenister
    Memorial to Brian Frederick Glenister (1928–2012) DESMOND COLLINS 501-437 Roncesvalles Avenue, Toronto, Ontario M6R 3B9, Canada GILBERT KLAPPER Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, USA W.W. NASSICHUK Geological Survey of Canada, 3303 33rd Street NW, Calgary, Alberta, T2L 2A7, Canada HOLMES SEMKEN Department of Geoscience, University of Iowa, Iowa City, Iowa 52242, USA CLAUDE SPINOSA Department of Geosciences, Boise State University, Boise, Idaho 83725 Brian F. Glenister, 83, a leading researcher on Paleozoic ammonoids, passed away on 7 June 2012 in Phoenix, Arizona. He was an influential member of the International Stratigraphic Commission and several of its subcommissions, led many seminars on Holocene lithofacies and molluscan biofacies in Florida Bay, and was an inspiring teacher for almost forty years at The University of Iowa in Iowa City. Brian was born in Albany, Western Australia on 28 September 1928 into a large family whose father died four years later. He was then raised by his eldest sister but also encouraged greatly in his studies by his mother. He attended the University of Western Australia in Perth, where he received a B.Sc., majoring in physics in 1948. Brian had taken an introductory geology course in order to fulfill requirements for the degree, and decided that he Brian Glenister at the Conklin Quarry in the liked it enough to switch to geology at the first opportunity, Middle Devonian Cedar Valley Limestone near so he took a postgraduate year of geology courses in Perth Iowa City, 1964, courtesy Desmond Collins. in 1949. In 1950, he enrolled in the M.Sc.
    [Show full text]
  • Observations on the Geology of Southern New Brunswick, Made During the Summer of 1864
    A*SS'^A*SSS*A**^ AS s+S+Jfr <f»AV AAAS AO OBSERVATIONS ' QUEEN'S y>m GEOLOGY OP SOUTHERN R1W BRUNSWICK, ADE PRINCIPALLY DURING THE SUMMER OF 1S64 BY PROF. L. W. BAI'LEY, MESSRS. GEO. F. MATTHEW AND C. F. HARTT, PREPARED AND ARRANGED, WITH- A GEOLOGICAL MAP, BY L. ¥. BAILEY, A. M. PROFESSOR OF CHEMISTRY, &C. IN THE UNIVERSITY OF NEAV BRUNSWICK, PATRON OF THE BOSTON NATURAL HISTORY SOCIETY, AND CORRESPONDING MEMBER OF- THS NATURAL HISTORY SOCIETY OF MONTREAL. PRINTED BY ORDER OF THE HOUSE OF ASSEMBLY. FREDERICTON. G. E. FEXETY, PRINTER TO THE QUEEN'S MOST EXCELLENT MAJESTY. 1865. i////<///^///^/«/// FRQK ) ptaija! |istorg £oqi<;tg OF BRUNSWICK. m , NEW The EDITF COLLECTl f Queen's L JAL MAP 'HE iNGS QUEENS, AND ALBERT; J& EXTENT OF EACH FORMATION, FROM THE CARBONIFEROUS BASIH TO THE COAST. .W.BAILEY ANO Mr. G. F. MATTH E W, 1804. OBSERVATIONS ON THE GEOLOGY Off SOUTHERN NIW BRUNSWICK, MADE PRINCIPALLY DURING THE SUMMER OF 1864 BY PROF. L. W. BAILEY MESSRS. GEO. F. MATTHEW AND C. F. HARTT, PREPARED AND ARRANGED, WITH A GEOLOGICAL MAP, BY L. W. BAILEY, A.M. PROFESSOR OF CHEMISTRY, &C. IN THE UNIVERSITY OF NEW BRUNSWICK, PATRON OF THE BOSTON NATURAL HISTORY SOCIETY, AND CORRESPONDING MEMBER OF THE NATURAL HISTORY SOCIETY OF MONTREAL. PRINTED BY ORDER OF THE HOUSE OF ASSEMBLY. FREDERICTOtf. G. E. FENETY, PRINTER TO THE QUEEN'S MOST EXCELLENT MAJESTY, fsoto - Bi V : I. diversity of New Brunswick, Frcderlctoii, February, 1865. Sir, I have the honor to transmit herewith, to be laid before His Excellency the Lieutenant Governor and the Legislature, a Report of Observations on the Geology of Southern New Brunswick, made during the Summer of 1864, 1 have the honor to be, Sir, Your obedient servant, L.
    [Show full text]
  • The Geology of the Pin Valley in Spiti, H. P., India
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Jahrbuch der Geologischen Bundesanstalt Jahr/Year: 1981 Band/Volume: 124 Autor(en)/Author(s): Fuchs Gerhard Artikel/Article: The Geology of the Pin valley in Spiti, H.P., India 325-352 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at Jahrb. Geol. B.-A. ISSN 0016-7800 Band 124, Heft 2 S. 325-359 Wien,Juni 1982 The Geology of the Pin valley in Spiti, H. P., India BY G. FUCHS*) With 21 Figures and 3 Plates (= Beilagen 4, 5, 6) Himalaya Spiti S Stratigraphie -| Paläozoikum J!» Mesozoikum <^ Tektonik CONTENTS Abstract 326 Zusammenfassung 326 1. Preface 326 2. Stratigraphy 327 2.1 The Haimanta Formation and Parahio Series 327 2.2 The Ordovician-Silurian 332 2.3 The Muth Quartzite 337 2.4 The Lipak Formation 338 2.5 The Kuling Formation 341 2.6 The Triassic-Jurassic 345 2.6.1 The Scytho-Anisian 346 2.6.2 The Daonella Shale 346 2.6.3 The Daonella- and Halobia Limestone 346 2.6.4 The Grey Beds 346 2.6.5 The Tropites Limestone 347 2.6.6 Thejuvavites- and Monotis Shales 347 2.6.7 The Quartzite Series and Kioto Limestone 349 2.6.8 The Dogger 350 2.6.9 The Spiti Shale 351 • 2.7 The Giumal Sandstone 351 3. Tectonics 351 3.1 The Baldar Syncline 351 3.2 The Muth Syncline 352 3.3 The Pakchung Anticline 352 3.4 The Mikin Syncline 352 3.5 The Gungri Anticline 352 3.6 The Ghungma Syncline 354 3.7 The Chhidang Anticline 354 3.8 The Tanjangkari Syncline 354 3.9 The Lingti Anticline 355 4.
    [Show full text]
  • The Student's Elements of Geology
    The Student's Elements of Geology Sir Charles Lyell The Student's Elements of Geology Table of Contents The Student's Elements of Geology.........................................................................................................................1 Sir Charles Lyell............................................................................................................................................1 PREFACE......................................................................................................................................................2 CHAPTER I. ON THE DIFFERENT CLASSES OF ROCKS.....................................................................2 CHAPTER II. AQUEOUS ROCKS. THEIR COMPOSITION AND FORMS OF STRATIFICATION......................................................................................................................................8 CHAPTER III. ARRANGEMENT OF FOSSILS IN STRATA. FRESH−WATER AND MARINE FOSSILS.....................................................................................................................................................14 CHAPTER IV. CONSOLIDATION OF STRATA AND PETRIFACTION OF FOSSILS.......................21 CHAPTER V. ELEVATION OF STRATA ABOVE THE SEA. HORIZONTAL AND INCLINED STRATIFICATION....................................................................................................................................27 CHAPTER VI. DENUDATION..................................................................................................................40
    [Show full text]
  • Carboniferous Fossils from Siam
    Carboniferous Fossils from Siam. 113 Walker collection at Cambridge, with notes on certain of these, and for the loan of specimens ; to Mr. T. H. Withers for his report on the Upper Greensand cirripedes ; to Dr. B. Pope Bartlett for reporting on rock-specimens and fossils of Upper Greensand and Cenomanian age submitted for his opinion; and to our colleagues Mr. C. B. Wedd, for many helpful criticisms, and Mr. W. Manson, for the skill and care with which he has prepared the drawings for our illustrations. Carboniferous Fossils from Siam. By P. E. COWPER EEED, M.A., Sc.D., F.G.S. (PLATE II.) ' Introduction. TN 1899 the. Cambridge Exploring Expedition to the Malay •*- Provinces of Lower Siam collected a few fossils and many rock-specimens at a place named Kuan Lin Soh, in the Patalung district. A small broken image of Buddha from the temple of Bah Nah containing some similar fossils was considered to have been quarried from the same beds, and it was believed that these specimens represented strata of Cretaceous age.2 In the following year a brief report on the same material was made by the late Professor T. McK. Hughes,3 and he was led to regard the fauna as indicating the highest beds of the Carboniferous or the Permo-Carboniferous, basing his conclusions on the following rough determination of the fossils : " Proetus sp., encrinite stems and arms, several species of lamellibranchs and brachiopods, including at least one species of Chonetes, Pleurotomaria sp., and a cephalopod with horse-shoe lobes." Special attention was paid to the litho- logical characters of the rocks in which the fossils occurred, and two types were recognized by Professor Hughes : (1) a grit of varying coarseness without determinable fossils, and (2) a very fine rock composed almost entirely of silica, with practically no lime, but some alumina.
    [Show full text]
  • Miros£Aw Syniawa
    Biograficzny s³ownik przyrodników œl¹skich tom 1 MIROS£AW SYNIAWA Biograficzny s³ownik przyrodników œl¹skich tom 1 CENTRUM DZIEDZICTWA PRZYRODY GÓRNEGO ŒL¥SKA A Copyrigth © by Centrum Dziedzictwa Przyrody Górnego Śląska Wydawca: Centrum Dziedzictwa Przyrody Górnego Śląska Katowice 2006 Redaktor: Jerzy B. Parusel Okładka: Joanna Chwoła, Mirosław Syniawa Realizacja poligraficzna: Verso Nakład: 500 egzemplarzy ISBN 83906910−7−8 5 A WSTĘP Koncepcja tego słownika narodziła się wraz z początkiem współpracy jego autora z Centrum Dziedzictwa Przyrody Górnego Śląska i pierwszymi biografiami śląskich przyrodników, jakie pisał do kwartalnika „Przyroda Górnego Śląska”. Chcąc zmierzyć się z zadaniem kompilacji tego rodzaju słownika, autor miał dość mgliste wyobrażenie na temat rozmiarów czekającej go pracy i ilości materiałów, jakie trzeba będzie zgro− madzić i opracować. Świadomość ogromu pracy, jaka go czeka, wzrastała jednak, w miarę jak zbliżał się do końca pracy nad częścią pierwszą, która ostatecznie ukazała się w roku 2000 jako trzeci tom publikowanej przez Centrum serii „Materiały Opracowania”. Udało się w niej na 252 stronach zmieścić pierwszą setkę biogramów. Ponieważ zawierającej kolejne 100 biografii części drugiej, nad którą pracę autor ukończył w roku 2004, nie udało się wydać w ramach wspomnianej serii, należało poszukać innej drogi, by udostępnić czytelnikom opra− cowany materiał. Jednocześnie pojawiła się też potrzeba zarówno wznowienia pierwszej części, której niewielki nakład został w krótkim czasie wyczerpany, jak i skorygowania błędów, które się w niej pojawiły i wprowadzenia uzupełnień opartych na materiałach źródłowych, jakie udało się autorowi zgromadzić od czasu jej wydania. Opracowany materiał postanowił on ponadto uzupełnić biogramami, które nie weszły do obu ukończonych już części, i biogramami, które powstały po ukończeniu części drugiej.
    [Show full text]
  • Lower Carboniferous and Upper Permian Brachiopods from Nepal
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 5 JB. Geol. B. A. Sonderband 12 S 5—99 Wien, Juli 1966 Lower Carboniferous and Upper Permian Brachiopods from Nepal By J. B. WATEEHOTTSE*) With 16 plates Contents Page Abstract 5 Zusammenfassung 6 Introduction 7 Scope of present work 8 Acknowledgements 8 Permian Brachiopod Descriptions 8 Carboniferous Brachiopod Descriptions 66 Correlation of the faunas 81 Permian 81 Carboniferous 86 References 88 Plates Index 97 Abstract Twenty Permian and eight Carboniferous brachiopod species are described from the Upper Paleozoic beds of Nepal. Permian species are known from eleven fossil localities, and compare closely with Upper Permian Himalayan faunas from the Productus Shales, Chiticun 1, Kuling Shale, and Zewan beds of Kashmir, as well as the Upper Productus Limestone of the Salt *) New Zealand Geological Survey, Lower Hutt, New Zealand. ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 6 Range. The faunas are correlative with the Upper Permian Cyclolobus zone, generally presumed to come at the top of the Paleozoic succession, although possibly not as young as some Permian faunas of Japan and New Zealand. Two new genera are proposed, Multispinula with type species Strophalosia maxwelli WATBBHOUSB (1964 c), considered to include many species previously referred to Strophalosia, and Fusispirifer, with type species Spirifer nitiensis DIENER (1897 b). Newly named species are Ortho- tetes bisulcata, Anidanthus fusiformis, Costiferina alata, and Fusispirifer plicatus, and various other Upper Permian species are revised from exa­ mination of type material from the Salt Range and Himalaya, notably species of 'Strophalosia', Neospirifer moosakhailensis, N. ravana, Spiriferella rajah and S.
    [Show full text]
  • (EARLY PERMIAN) FLORA from TREGIOVO-LE FRAINE in the VAL DI NON (TRENTINO, NORTHERN ITALY) Additional and Revised Edition 2013 by MICHAEL WACHTLER
    THE LATEST ARTINSKIAN/KUNGURIAN (EARLY PERMIAN) FLORA FROM TREGIOVO-LE FRAINE IN THE VAL DI NON (TRENTINO, NORTHERN ITALY) Additional and revised edition 2013 by MICHAEL WACHTLER Thomas Perner and Michael Wachtler: Permian Fossil plants from Europe 81 THE LATEST ARTINSKIAN/KUNGURIAN (EARLY PERMIAN) FLORA FROM TREGIOVO-LE FRAINE IN THE VAL DI NON (TRENTINO, NORTHERN ITALY) Additional and revised edition 2013 by Michael Wachtler P. P. Rainerstrasse 11, 39038 Innichen, Italy; E-mail: [email protected] Abstract The description of the latest Artinskian/Kungurian Permian flora from Tregiovo-Le Fraine (Val di Non, Trentino, Northern Italy), initiated in 2012, will be extended. Mainly, we have to do this with a conifer-dominated flora accompanied by other variegated plants, some also with autochthonous traits. The conifer Ortiseia daberi n. sp., due to different seed-scales and leaves, now displaces Ortiseia leonardii, a principally Upper Permian character conifer. Other widespread conifers are Cassinisia ambrosii, Trentia treneri, Albertia scopolii and Walchia viallii nov. comb. Some were also found in connection with leaves and fructifications, which enhances the potential for identification. The ovuliferous organ Peltaspermum meyeri n. sp., belonging to the group of Peltaspermales, found in straight connection with Lepidopteris foliage indeed is the dominating seed fern. However, Autunia conferta is also present. Scolecopteris sp. and Ozolia franei amplifies the number of species but are too poorly preserved to define further evaluations. The ferns are represented mainly by Sphenopteris suessi, described just in 1869 by H. B. GEINITZ from the mainly coeval and contiguous Collio Formation. The Ginkgophyta Baiera pohli n. sp., based on a very rudimentary leaf-organisation, differs essentially from the well-known Upper Permian Sphenobaiera digitata.
    [Show full text]
  • Palynology of the Cyclolobus Walkeri Bed
    PALYNOLOGY OF THE CYCLOLOBUS WALKERI BED, GUNGRI FORMATION (LATE PERMIAN), SPITI VALLEY 141 Journal of the Palaeontological Society of India ISSN 0552-9360 Volume 63(2), December 31, 2018: 141-154 PALYNOLOGY OF THE CYCLOLOBUS WALKERI BED, GUNGRI FORMATION (LATE PERMIAN), SPITI VALLEY, NORTHWEST HIMALAYA, INDIA RAM-AWATAR1*, RAJNI TEWARI1, SAURABH GAUTAM2, SHREERUP GOSWAMI3, MICHAEL BROOKFIELD4, 1 5 DEEPA AGNIHOTRI and JEREMY WILLIAMS 1 BIRBAL SAHNI INSTITUTE OF PALAEOSCIENCES, 53 UNIVERSITY ROAD, LUCKNOW- 226007 (U.P.), INDIA 2 FAKIR MOHAN UNIVERSITY, VYASA VIHAR, NUAPADHI, BALASORE -756019, (ODISHA), INDIA 3 P.G. DEPARTMENT OF EARTH SCIENCES, SAMBALPUR UNIVERSITY, JYOTI VIHAR, BURLA, SAMBALPUR- 768019, (ODISHA), INDIA 4 SCHOOL FOR ENVIRONMENT, UNIVERSITY OF MASSACHUSETTS AT BOSTON, 100 MORRISSEY BLVD, BOSTON, MA 02125, USA 5 DEPARTMENT OF GEOLOGY, KENT STATE UNIVERSITY, KENT, OHIO, USA *Corresponding author e-mail: [email protected] ABSTRACT A diverse palynomorph assemblage has been recorded for the first time from the ammonoid Cyclolobus walkeri bearing top bed of the Gungri Formation, Lingti Road Section, Spiti Valley. The palynoassemblage reveals the dominance of striate bisaccate pollen grains chiefly Faunipollenites perexiguus, Striatopodocarpites magnificus, Crescentipollenites fuscus, Densipollenites magnicorpus along with some early Triassic palynomorphs like Lunatisporites pellucidus, Playfordiaspora cancellosa, Satsangisaccites nidpurensis and Chordasporites australiensis. The assemblage indicates a late Permian (Changhsingian)
    [Show full text]
  • The Permian Timescale: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on October 2, 2021 The Permian timescale: an introduction SPENCER G. LUCAS1* & SHU-ZHONG SHEN2 1New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, NM 87104-1375, USA 2State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, Jiangsu 210008, China *Correspondence: [email protected] Abstract: The Permian timescale has developed over about two centuries of research to the current chronostratigraphic scale advocated by the Subcommission on Permian Stratigraphy of three series and nine stages: Cisuralian (lower Permian) – Asselian, Sakmarian, Artinskian, Kun- gurian; Guadalupian (middle Permian) – Roadian, Wordian, Capitanian; and Lopingian (upper Permian) – Wuchiapingian and Changhsingian. The boundaries of the Permian System are defined by global stratotype sections and points (GSSPs) and the numerical ages of those boundaries appear to be determined with a precision better than 1‰. Nevertheless, much work remains to be done to refine the Permian timescale. Precise numerical age control within the Permian is very uneven and a global polarity timescale for the Permian is far from established. Chronostratigraphic definitions of three of the nine Permian stages remain unfinished and various issues of marine biostratigraphy are still unresolved. In the non-marine Permian realm, much progress has been made in correlation, especially using palynomorphs, megafossil plants, conchostracans and both the footprints and bones of tetrapods (amphibians and reptiles), but many problems of correlation remain, especially the cross-correlation of non-marine and marine chronologies. The further development of a Perm- ian chronostratigraphic scale faces various problems, including those of stability and priority of nomenclature and concepts, disagreements over changing taxonomy, ammonoid v.
    [Show full text]
  • A Problematical Plant from the Lower Permian of Texas
    Russellites, New Genus a Problematical Plant From the Lower Permian of Texas GEOLOGICAL SURVEY PROFESSIONAL PAPER 593-I Russellites, New Genus a Problematical Plant From the Lower Permian of Texas By SERGIUS H. MAMAY CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 593-1 A discussion of the taxonomic relationships and paleogeographic significance of a potentially important guide fossil UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 -Price 35 cents (paper cover) CONTENTS Page Page Abstract__ _ _ _ _ __ __ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ __ __ _ __ __ _ __ _ __ _ I 1 Taxonomy_________________________________________ I 8 Introduction_______________________________________ 1 Discussion_________________________________________ 9 Acknowledgments___________________________________ 1 Morphology of Russellites________________________ 9 LocalitY------------------------------------------- 2 Systematic position_ _ _ _ _ _ _ __ __ __ __ __ _ _ _ _ _ _ _ _ _ __ _ 10 Stratigraphy_______________________________________ 2 Geologic and geographic distribution of Russellites_ _ 11 History of Tingia_ __ __ _ _ _ __ _ _ __ __ __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ 3 Evolutionary and paleofloristic implications________ 12 The Texas material-basis for redefinition______________ 3 References cited____________________________________ 13 Description of the ''Emily Irish'' materiaL______________ 5 Index_____________________________________________ 15 Comparisons_______________________________________ 8 ILLUSTRATIONS [Plates follow index) PLATES 1-3. Compressions of Russellites taeniata. III CONTRIBUTIONS TO PALEONTOLOGY RUSSELLITES, NEW GENUS, A PROBLEMATICAL PLANT FROM THE LOWER PERMIAN OF TEXAS By SERGIUS H.
    [Show full text]