Lower Carboniferous and Upper Permian Brachiopods from Nepal

Total Page:16

File Type:pdf, Size:1020Kb

Lower Carboniferous and Upper Permian Brachiopods from Nepal ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 5 JB. Geol. B. A. Sonderband 12 S 5—99 Wien, Juli 1966 Lower Carboniferous and Upper Permian Brachiopods from Nepal By J. B. WATEEHOTTSE*) With 16 plates Contents Page Abstract 5 Zusammenfassung 6 Introduction 7 Scope of present work 8 Acknowledgements 8 Permian Brachiopod Descriptions 8 Carboniferous Brachiopod Descriptions 66 Correlation of the faunas 81 Permian 81 Carboniferous 86 References 88 Plates Index 97 Abstract Twenty Permian and eight Carboniferous brachiopod species are described from the Upper Paleozoic beds of Nepal. Permian species are known from eleven fossil localities, and compare closely with Upper Permian Himalayan faunas from the Productus Shales, Chiticun 1, Kuling Shale, and Zewan beds of Kashmir, as well as the Upper Productus Limestone of the Salt *) New Zealand Geological Survey, Lower Hutt, New Zealand. ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 6 Range. The faunas are correlative with the Upper Permian Cyclolobus zone, generally presumed to come at the top of the Paleozoic succession, although possibly not as young as some Permian faunas of Japan and New Zealand. Two new genera are proposed, Multispinula with type species Strophalosia maxwelli WATBBHOUSB (1964 c), considered to include many species previously referred to Strophalosia, and Fusispirifer, with type species Spirifer nitiensis DIENER (1897 b). Newly named species are Ortho- tetes bisulcata, Anidanthus fusiformis, Costiferina alata, and Fusispirifer plicatus, and various other Upper Permian species are revised from exa­ mination of type material from the Salt Range and Himalaya, notably species of 'Strophalosia', Neospirifer moosakhailensis, N. ravana, Spiriferella rajah and S. tibetana. Lectotypes are designated for Strophalosia indica WAAGEN, S. lamellosa linearis REED, S. tenuispina WAAGEN, S. nodosa WAAGEN, Productus opuntia WAAGEN, Ruthenia purdoni castrensis REED, Productus indicus WAAGEN, Productus lineatus WAAGEN, Spirifer moosak­ hailensis DAVIDSON, S. ravana DIENER, S. nitiensis DIENER, S. byroensis GLATJERT, S. tibetanus DIENER, and Athyris subexpansa WAAGEN, these being species of particular relevance to the present study. Carboniferous brachiopods are known from three localities, and compare with species from the Syringothyris Limestone of Kashmir and Lipak beds of Kanaur and Spiti. They are probably Tournaisian. Newly named species and subspecies are Linoproductus pollex, Fusella mucronata, and Syringothyris curzoni glaber. Zusammenfassung Es werden zwanzig permische und acht karbone Brachiopodenarten aus dem Jungpaläozoikum der Tibet Zone von West Nepal beschrieben. Das Fossilmaterial wurde von Dr. G. FUCHS im Zuge der geologischen Aufnahme des unter dem Namen Dolpo bekannten Gebietes und im Dhaula Himal aufgesammelt. Diese Untersuchungen wurden im Rahmen der von der österreichischen Himalaya-Gesellschaft durchgeführten „österreichi­ schen Dhaula-Himal-Expedition 1963" vorgenommen. Ein vorläufiger Bericht (G. FUCHS 1964) gibt einen Überblick über den geologischen Auf­ bau des Gebietes, 1967 soll eine ausführliche Darstellung der Geologie dieses Raumes erscheinen. Von elf Fossilpunkten sind permische Arten bekannt. Sie stehen anderen oberpermischen Faunen des Himalaya, wie denen aus den Productus Schiefern, von Chiticun 1, den Kuling Schiefern und den Zewan Schichten Kashmirs sowie aus dem Oberen Productus Kalk und der Salt Range sehr nahe. Die Faunen entsprechen der Cyclo­ lobus Zone des Ober Perm, die allgemein als das jüngste Schichtglied der paläozoischen Abfolge betrachtet wird, obwohl möglicherweise gewisse permische Faunen Japans und Neuseelands noch jünger sind. Zwei neue Gattungen werden vorgeschlagen, Multispinula mit Strophalosia maxwelli WATERHOUSE (1964 c) als Typusart, sie enthält anscheinend viele Arten, die- bisher zu Strophalosia gezählt wurden, und Fusispirifer mit Spirifer nitiensis DIENER (1897 b) als Typusspezies. Neue Arten sind Orthotetes bisulcata, Anidanthus fusiformis, Costiferina alata und Fusispirifer plicatus. ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 7 Verschiedene andere oberpermische Arten wurden bei der Durchsicht des aus der Salt Range und dem Himalaya stammenden Typusmaterials revidiert, nämlich „Strophalosia", Neospirifer moosakhailensis, N. ravana, Spiriferella rajah und 8. tibetana. Lectotypen werden angegeben für Strophalosia indica WAAGEN, 8. lamellosa linearis REED, S. tenuispina WAAGEN, S. nodosa WAAGEN, Productus opuntia WAAGEN, Ruthenia purdoni castrensis REED, Productus indicus WAAGEN, Productus lineatus WAAGEN, Spirifer moosakhailensis DAVIDSON, S. ravana DIENER, S. nitiensis DIENER, S. byroensis GLAUBERT, 8, tibetanus DIENER und Athyris subexpansa WAAGEN, welche Arten für die vorliegende Arbeit von besonderer Bedeutung sind. Karbone Brachiopoden sind von drei Fossilpunkten bekannt, sie sind mit Arten aus dem Syringothyris Kalk von Kashmir und den Lipak Schichten von Kanaur und Spiti zu vergleichen. Ihr Alter ist wahrscheinlich Tournais. Neu bekannte Spezies und Subspezies sind Linoproductus pollex, Fusella mucronata und Syringothyris curzoni glaber. Introduction The brachiopods described in this report were collected from the Dolpo District of West Nepal by Dr. Gerhard R. FUCHS in 1963 *) (FUCHS, 1964). As shown in the list of localities (Table 3), three collections are of Carboni­ ferous species, preserved as rather small and broken specimens in calcareous mudstone. The material responds very well to leaching in hydrochloric acid, although some specimens proved to be filled internally with calcite. On the whole they indicate a Lower Carboniferous age, perhaps a little older than the correlation high in the Lower Carboniferous suggested on the basis of the corals after a preliminary examination by FLÜGEL (1964). The remainder of the brachiopods are Upper Permian, in conformity with the corals examined by FLÜGEL. AS outlined in FUCHS (1964) and Table 3, they come from a variety of lithologies, ranging from quartzose sandstone at the base of the Permian above the Lower Carboniferous, through non-calcareous to highly calcareous mudstones and coarse-grained limestones at the top of the succession, immediately below the Triassic. None of the faunas are particularly rich in terms of species, but individuals of some Productoid and Spiriferoid species are unusually large. Like other material collected from the Himalaya, most specimens are preserved as natural or partially leached moulds which show internal and external detail well, in contrast to the richer faunas of the Salt Range of West Pakistan, and also from Chiticun 1, in which the specimens are preserved chiefly as shells with fine surface detail often lost, and internal detail hidden. Only some of Nepal material has the shell intact. The detail thus preserved enables an enlarged understanding of several important species. A warning must however be sounded on one aspect of the preservation of the Nepal material. Most specimens are moderately to considerably distorted, as well as broken, and for this reason, the variation in dimensions given for the specimens should be treated with caution. *) G. FTJCHS was a member of the Dhaula-Himal-Expedition 1963 which was organized by the -Österreichische Himalaya-Gesellschaft. ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 8 Scope of the present work Before being presented with the task of describing the Nepal material I spent four weeks at the Geological Survey of India, Calcutta, examining type Permian and Carboniferous specimens from the Salt Range, Himalayas, Yunnan and Chitral. Valuable information on many of the types to which the Nepal species are referred was gained in this way, and is incorporated in the present work, together with observations on types of related forms, particularly from Madagascar and Indonesia. First hand examination of the Salt Range types in particular proves to be indispensable as some of the figures in the major works by WAAGEN and REED are highly misleading. The reader should be warned that examination at Calcutta had to be very rapid, and that only the types were seen, rather than fully representative collections, which give unduly restricted concepts of the species involved. Unfortunately the Nepal material was not to hand while I was working at Calcutta, but I have been able to compare the Nepal material with speci­ mens collected from various parts of Kashmir by Dr. FUCHS, and from the Salt Range collected by myself. Acknowledgements I am particularly grateful to Dr. G. FTJCHS for kindly giving me the oppor­ tunity of describing the Upper Palaeozoic brachiopods from Nepal, and to Dr. R. W. WILLETT and C. A. FLEMING, Director and Chief Palaeontologist of the New Zealand Geological Survey, for granting permission to conduct the study. Acknowledgements are due to the Chief Palaeontologist, Mr. M. V. A. SASTBY and Palaeontologist Mr. S. C. SHAH, Geological Survey of India, for their help in enabling me to examine the various Upper Paleozoic brachiopod types at Calcutta, and to Mr. FATMI, Pakistan Geological Survey, for guiding me through sections of the Salt Range. Prof. L. P. G. KONING, Geologisch Institut, Universität of Amsterdam; Dr. J. H. UBAGHS, Mineralogisch geologisch Museum, Technische Hogeschool, Delft; Prof. G. H. R. von KOENIGSWALD, Mineralogisch-Geologisch Instituut, Rijks Universitet, Utrecht, and Dr. H. K. EBBEN, Geologisch-Paläontologisches Institut und Museum, Rhein Friedrich-Wilhelms-Universität, Bonn, kindly assisted
Recommended publications
  • The Brachiopod Antiquatonia Coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States
    U.S. Department of the Interior U.S. Geological Survey The Brachiopod Antiquatonia coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States U.S. Geological Survey Professional Paper 1588 The Brachiopod Antiquatonia coloradoensis (Girty) from the Upper Morrowan and Atokan (Lower Middle Pennsylvanian) of the United States By Thomas W. Henry T OF EN TH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1588 TM E R I A N P T E E D R . I O S . R Taxonomic and biostratigraphic analysis of a widespread and U stratigraphically restricted, semireticulate productid brachiopod M 9 A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Interim Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Henry, Thomas W. The brachiopod Antiquatonia coloradoensis (Girty) from the upper Morrowan and Atokan (lower Middle Pennsylvanian) of the United States / by Thomas W. Henry. p. cm.—(U.S. Geological Survey professional paper ; 1588) Includes bibliographical references (p. – ). 1. Antiquatonia coloradoensis—United States. 2. Paleontology—Pennsylvanian. 3. Animals, Fossil—United States. I. Title. II. Series. QE797.S89H46 1988 564′.68—dc21 97–42005 CIP CONTENTS
    [Show full text]
  • Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
    Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian.
    [Show full text]
  • Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada
    :It k 'I! ' Paleozoic Rocks Antelope Valley Eureka and Nye Counties Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 Paleozoic Rocks of Antelope Valley Eureka and Nye Counties Nevada By CHARLES W. MERRIAM GEOLOGICAL SURVEY PROFESSIONAL PAPER 423 P,rinciples of stratigraphy applied in descriptive study of the Central Great Basin Paleozoic column UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Silurian system ____________________________________ _ Abstract------------------------------------------- 1 36 Introduction. _____________________________________ _ 2 General features-------------------------------- 36 Geologic setting ______________ ------ ___ --------- 2 Roberts Mountains formation ___________________ _ 37 History of investigation ________________________ _ 5 Lone Mountain dolomite ______ ---_-------------- 39 Purpose and scope _____________ -- ______ ------ --- 6 Devonian system ______________ ---- __ - _- ___ - _------- 41 Acknowledgments ______________________________ _ 6 General features _____________ - ___________ -_----- 41 Geologic structure as related to stratigraphy __________ _ 6 Western Helderberg age limestones of the Monitor Paleontologic studies ______ ..:. _______ ~ ________________ _ 9 · Range ______ - _.- ___ --------------------------- 42 The Paleozoic column at Antelope Valley
    [Show full text]
  • Distribution of the Middle Ordovician Copenhagen Formation and Its Trilobites in Nevada
    Distribution of the Middle Ordovician Copenhagen Formation and its Trilobites in Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 749 Distribution of the Middle Ordovician Copenhagen Formation and its Trilobites in Nevada By REUBEN JAMES ROSS, JR., and FREDERICK C. SHAW GEOLOGICAL SURVEY PROFESSIONAL PAPER 749 Descriptions of Middle Ordovician trilobites belonging to 21 genera contribute to correlations between similar strata in Nevada) California) and 0 klahoma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. lVIOR TON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 78-190301 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 70 cents (paper cover) Stock Number 2401-2109 CONTENTS Page Page Abstract ______________________________ -------------------------------------------------- 1 Descriptions of trilobites __________________________________________________ _ 14 Introduction ________________________________________________________________________ _ 1 Genus T1·iarth1·us Green, 1832 .... ------------------------------ 14 Previous investigations _____________________________________________ _ 1 Genus Carrickia Tripp, 1965 ____________________________________ _ 14 Acknowledgments-------------------------------------------------------· 1 Genus Hypodicranotus Whittington, 1952 _____________ _ 15 Geographic occurrences of the Copenhagen Genus Robergia Wiman, 1905·----------------------------------
    [Show full text]
  • Late Permian to Middle Triassic Palaeogeographic Differentiation of Key Ammonoid Groups: Evidence from the Former USSR Yuri D
    Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: evidence from the former USSR Yuri D. Zakharov1, Alexander M. Popov1 & Alexander S. Biakov2 1 Far-Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch), Stoletija Prospect 159, Vladivostok, RU-690022, Russia 2 North-East Interdisciplinary Scientific Research Institute, Russian Academy of Sciences (Far Eastern Branch), Portovaja 16, Magadan, RU-685000, Russia Keywords Abstract Ammonoids; palaeobiogeography; palaeoclimatology; Permian; Triassic. Palaeontological characteristics of the Upper Permian and upper Olenekian to lowermost Anisian sequences in the Tethys and the Boreal realm are reviewed Correspondence in the context of global correlation. Data from key Wuchiapingian and Chang- Yuri D. Zakharov, Far-Eastern Geological hsingian sections in Transcaucasia, Lower and Middle Triassic sections in the Institute, Russian Academy of Sciences (Far Verkhoyansk area, Arctic Siberia, the southern Far East (South Primorye and Eastern Branch), Vladivostok, RU-690022, Kitakami) and Mangyshlak (Kazakhstan) are examined. Dominant groups of Russia. E-mail: [email protected] ammonoids are shown for these different regions. Through correlation, it is doi:10.1111/j.1751-8369.2008.00079.x suggested that significant thermal maxima (recognized using geochemical, palaeozoogeographical and palaeoecological data) existed during the late Kun- gurian, early Wuchiapingian, latest Changhsingian, middle Olenekian and earliest Anisian periods. Successive expansions and reductions of the warm– temperate climatic zones into middle and high latitudes during the Late Permian and the Early and Middle Triassic are a result of strong climatic fluctuations. Prime Middle–Upper Permian, Lower and Middle Triassic Bajarunas (1936) (Mangyshlak and Kazakhstan), Popov sections in the former USSR and adjacent territories are (1939, 1958) (Russian northern Far East and Verkhoy- currently located in Transcaucasia (Ševyrev 1968; Kotljar ansk area) and Kiparisova (in Voinova et al.
    [Show full text]
  • Download Date 30/12/2018 22:47:41
    Stratigraphy and paleontology of the Naco Formation in the southern Dripping Spring Mountains, near Winkelman, Gila County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Reid, Alastair Milne, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/12/2018 22:47:41 Link to Item http://hdl.handle.net/10150/551821 STRATIGRAPHY AND PALEONTOLOGY OF THE NACO FORMATION IN THE SOUTHERN DRIPPING SPRING MOUNTAINS, NEARWINKELMAN, GILA COUNTY, ARIZONA by Ala stair M. Reid A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1966 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of require­ ments for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests of permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judg­ ment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Memorial to Brian Frederick Glenister
    Memorial to Brian Frederick Glenister (1928–2012) DESMOND COLLINS 501-437 Roncesvalles Avenue, Toronto, Ontario M6R 3B9, Canada GILBERT KLAPPER Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, USA W.W. NASSICHUK Geological Survey of Canada, 3303 33rd Street NW, Calgary, Alberta, T2L 2A7, Canada HOLMES SEMKEN Department of Geoscience, University of Iowa, Iowa City, Iowa 52242, USA CLAUDE SPINOSA Department of Geosciences, Boise State University, Boise, Idaho 83725 Brian F. Glenister, 83, a leading researcher on Paleozoic ammonoids, passed away on 7 June 2012 in Phoenix, Arizona. He was an influential member of the International Stratigraphic Commission and several of its subcommissions, led many seminars on Holocene lithofacies and molluscan biofacies in Florida Bay, and was an inspiring teacher for almost forty years at The University of Iowa in Iowa City. Brian was born in Albany, Western Australia on 28 September 1928 into a large family whose father died four years later. He was then raised by his eldest sister but also encouraged greatly in his studies by his mother. He attended the University of Western Australia in Perth, where he received a B.Sc., majoring in physics in 1948. Brian had taken an introductory geology course in order to fulfill requirements for the degree, and decided that he Brian Glenister at the Conklin Quarry in the liked it enough to switch to geology at the first opportunity, Middle Devonian Cedar Valley Limestone near so he took a postgraduate year of geology courses in Perth Iowa City, 1964, courtesy Desmond Collins. in 1949. In 1950, he enrolled in the M.Sc.
    [Show full text]
  • The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
    International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A.
    [Show full text]
  • A Thesis Submitted to the Faculty of The
    Stratigraphy and structure of the northeastern part of the Tucson Mountains Item Type text; Thesis-Reproduction (electronic) Authors Whitney, Richard Lee, 1929- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 02:05:00 Link to Item http://hdl.handle.net/10150/551280 STRATIGRAPHY AND STRUCTURE OF THE NORTHEASTERN PART OF THE TUCSON MOUNTAINS by Richard L. Whitney / Qy w 'r' -- - A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College UNIVERSITY OF ARIZONA 1957 j i j 9S7 52, This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the library. Brief quotations from this thesis are allowable with- out special permission, provided that accurate acknowledge­ ment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in their judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Shell Microstructures in Lopingian Brachiopods: Implications for Fabric Evolution and Calcification
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 123(3): 541-560. November 2017 SHELL MICROSTRUCTURES IN LOPINGIAN BRACHIOPODS: IMPLICATIONS FOR FABRIC EVOLUTION AND CALCIFICATION CLAUDIO GARBELLI State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, Jiangsu 210008, P.R. China. Dipartimento di Scienze della Terra A. Desio, Università di Milano, Via Mangiagalli 34, 20133 Milan, Italy. E-mail: [email protected] To cite this article: Garbelli C. (2017) - Shell microstructures in Lopingian brachiopods: implications for fabric evolution and calcification. Riv. It. Paleontol. Strat., 123(3): 541-560. Keywords: Rhynchonelliformea; Strophomenata; biomineralization; taxonomy; columnar layer. Abstract. The study of the shell microstructure of brachiopods is fundamental to understand their evolu- tionary history and their biomineralization process. Here, species of forty Lopingian brachiopods genera, represen- tative of twenty-seven different families, are investigated using the Scanning Electron Microscope. The investiga- ted specimens come from different paleogeographic localities in the Palaeotethys/Neotethys oceans. The studied brachiopods show a large variability of the shell fabric, which is mainly related to the organization of its structural units: laminae, fibers and columns, possibly crossed by pseudopunctae or punctae. For the Strophomenata, the laminar fabric of Productida is crossed by pseudopunctae with taleolae and the laminae are often organized in packages, with the blades oriented about perpendicular to each other; this feature is less evident in the laminar Or- thotetida, which bear pseudopunctae without taleoae. For the Rhynchonellata, fibrous fabrics are either impuctate in the Spiriferida, most Athyridida and Rhynchonellida, or with punctae, as observed in the Orthida, Terebratulida and in the Neoretziidae (Athyridida).
    [Show full text]
  • Palaeobiogeography of the Late Carboniferous Brachiopoda from Velebit Mt
    2016 | 69/2 | 177–185 | 10 Figs. | 2 Tabs. | www.geologia-croatica Journal of the Croatian Geological Survey and the Croatian Geological Society Palaeobiogeography of the Late Carboniferous brachiopoda from Velebit Mt. (Croatia) Mirko Japundžić1 and Jasenka Sremac2 1 Gruška 16, 10 000 Zagreb, Hrvatska; ([email protected]) 2 University of Zagreb, Department of Geology, Division of Geology and Paleontology, Horvatovac 102a, 10 000 Zagreb, Croatia; (corresponding author: [email protected]) doi: 10.4154/gc.2016.23 Abstract Article history: An abundant and diverse Late Carboniferous brachiopod fauna from Velebit Mt. (Croatia) com- Manuscript received September 30, 2015 prises 63 brachiopod taxa dominated by Productida and Spiriferida. The Spiriferinida, Athyridida, Revised manuscript accepted June 21, 2016 Orthotethida and Rhynchonellata are less common, while the Orthida, Dictyonellida and Tere- Available online June 29, 2016 bratulida occur in very small numbers. Brachiopods are mostly preserved as casts and moulds in shales, limestones and sandstones. Associated fusulinid foraminifera and calcareous algae Keywords: Brachiopoda, palaeobiogeography, indicate a Kasimovian to Gzhelian age for the brachiopod–bearing deposits. The global biogeo- palaeoecology, Late Carboniferous, Velebit Mt., graphic distribution of brachiopod taxa indicates the probable seaways and brachiopod migra- Croatia. tion routes, along the Euramerican shelves. 1. INTRODUCTION Brachiopods are common marine macrofossils in the Late Car- to 6 km wide, representing the core of an anticline, with a NW– boniferous sedimentary rocks of Velebit Mt. They have been col- SE strike (Fig. 1). They exhibit a variety of ancient environments lected since the beginning of the 19th century and stored in the varying from shoreline forests and swamps, through coastal and Croatian Natural History Museum.
    [Show full text]
  • Geology of the South Pavant Range, Millard and Sevier Counties, Utah
    GEOLOGY OF THE SOUTH PAVANT RANGE MILLARD AND SEVIER COUNTIES, UTAH A Thesis Submitted to the Faculty of the Department of Geology Brigham Young University In Partial Fulfillment of the Requirements for the Degree Naster of Science by Gary Wayne Crosby August 1959 ACKNOWLED GMENTS Drs. Lehi F. Hintze and Harold J. Bissell served in an advisory capacity to the author during the project of mapping and reporting the peology of the south end of the Pavant Range, and assisted in solving stratigraphic and structural problems both in the field and in the laboratory, Dr. J, Keit,h Rigby aided in fossil identifications, The staff of the American Sulfur and Refining Company at Sulfurdale, Utah made available information on the sulfur and fluorspar deposits in the area investigated, The townspeople of Kanosh gave friend] y assis-. tance in many ways. Mr. Boyd W. Bobo, Jr, helped in rncssuring stratigraphic sections. Dixie Lin Crosby, the author's :\rife, gave help and encouragement. The author is aware of the time and personal expense re- quired of those who aided and takes this opportunity to express his gratitude for their assistance; however the auttlc?r assumes full responsibility for the facts and conclusions given in t.his paper, TABLE OF CONTENTS ACKNOWLEDGI\iENTS ....................... i LIST OF ILLUSTRATlONS AND TABLES ..............iii ABSTRACT O... o.................~.... V INTKODUCTlON ........................ 1 Location and Accessibility ............... 1 Physical Reatures and Water Resources ......... 1 Climateandvegetation ................
    [Show full text]