<<

TurkishJournalofEarthSciences (TurkishJ.EarthSci.),Vol.10, 2001,pp.35-49. Copyright©TÜB‹TAK

Stratigraphy,andDepositionalEnvironment oftheCelestine-bearingGypsiferousFormationsofthe TertiaryUlafl-SivasBasin,East-CentralAnatolia(Turkey)

ERDO⁄ANTEK‹N

AnkaraUniversity,FacultyofScience,DepartmentofGeologicalEngineering, TR-06100Tando¤an,Ankara-TURKEY(e-mail:[email protected])

Abstract: Celestine-bearingevaporitemineralizationiswidespreadintheTertiaryevaporiticunitsoftheUlafl-Sivas Basin,east-centralAnatolia.Theoldestdepositionofgypsum,whichisoflaminatedcharacter,occurredina shallowinner-lagoonalenvironmentorindepressionsduringLateEoceneregression.Thickgypsumandoverlying bedscomposedofalternatingbedded,nodulargypsumanddevelopedincoastalsabkhasandabandoned channelswithinameander-rivercomplexduringOligocenetime.Thelastoccurrenceofevaporiticunits,namely massiveandbeddedgypsumalternatingwithandfossiliferouslimestones,resultedfromlimitedofanEarlyMioceneseaalongthesouthernmarginoftheSivasTertiaryBasin. ThecelestinedepositsarepredominantlyfoundwithinthegypsumbedsthroughouttheTertiarybasinandin subordinateamountsinthelimestonesoftheuppermostEoceneandasopen-spacefillingsingypsum,andas nodulesinthesomeoftheOligocenefluvialsandstone,claystonesandmassivegypsums.Large-scalelensesof celestineoccurwithinEarlyMiocenemassivegypsums.Thecelestinesampleswerestudiedbyscanningelectron microscopy(SEM),oremicroscopy,andelectron-microprobe(EMP),fluid-inclusion,selectedtrace-element(XRF) 18O/16O, 34S/32Sand 87Sr/86Srisotopegeochemistry.Fieldobservationsandanalyticalresultsindicatethatthe celestinedidnotdevelopviaprimarysedimentaryprocesses.Rather,high-temperatureconditionsprevailedduring late-diageneticorepigeneticcelestineformation.

KeyWords: Celestine,Gypsum,Geochemistry,Uluk›flla-SivasBasin,East-CentralAnatolia

TersiyerUlafl-SivasHavzas›ndaSölestiniçerenJipsliFormasyonlar›nStratigrafisi, Jeokimyas›veÇökelmeOrtamlar›,Do¤u-OrtaAnadolu(Türkiye)

Özet: Do¤u-OrtaAnadolubölgesindeyeralanTersiyeryafll›Sivas-Ulaflevaporithavzas›ndayayg›nolaraksölestin içerenevaporitoluflumlar›bulunmaktad›r.Bunlarbafll›caüçzonaayr›labilir. BirincisiGeçEosenyafll›velaminal›birkaraktersergileyenjipslerdir.ButipjipslerEosensonundakiregresyona ba¤l›olarakoluflans›¤karakterliiçlagünlerdemineralleflmifllerdir.Bunlar›üzerleyenikincijipszonuiseOligosen yafll›d›rvebafll›caikitipfasiyessergilemektedir.Bunlarkal›nvemasifkarakterlijipsfasiyesiilekumtafl›aratabakal› nodülerjipsfasiyesidir.Oligosen’inbirincitipfasiyesis›¤sahilsabkhalar›nda,ikincitipfasiyesiisemenderesli akarsular›nterkedilmiflkanallar›içerisindeoluflmufllard›r.HavzadakiüçüncüvesonevaporitzonuiseErken Miyosenyafll›masifvetabakal›jipslerdir.Bunlar›ntabakal›olanlar›fosillikireçtafllar›vekumtafllar›ileyeryerara tabakal›d›rlar.Bölgedekibuengençevaporitmineralleflmesi,SivasTersiyerhavzas›n›nÜstMiyosenbafl›nda güneydengelens›n›rl›birdenizeltransgresyonunürünüdür. BuüçevaporitzonundakisölestinmineralleflmeleriiseSivas-UlaflTersiyerbasenindeoldukçayayg›nd›r. SölestinlerhavzadaenüstEosenyafll›kireçtafllar›vejipsleriçerisindeçatlak-karstikboflluklardadolgutürü tarz›nda,Oligosen’inflüvyalkumtafl›vekiltafllar›ilemasifjipsleriiçerisindeyumrularfleklindedir.ÜstMiyosen’in masifjipsleriiçerisindeisebüyükboyutlumerceklerbiçimindeyeral›rlar.Sölestinlerdeyap›lanarazi,elektron mikroskobu(SEM),cevhermikroskobisi,elektronmikroprob,s›v›kapan›m,izelement(XRF)ile 18O/16O,34S/32S ve87Sr/86Srizotopçal›flmalar›sedimanter-sinjenetikkökenlibirmineralleflmeyidesteklememektedir.Bunakarfl›l›k yükseks›cakl›kkoflullar›n›netkilioldu¤uepijenetikve/veyageçdiyajenetikoluflumflekliniiflaretlemektedir.

AnahtarSözcükler:Sölestin,Jips,Jeokimya,Ulafl-SivasHavzas›,Do¤u-OrtaAnadolu

35 CELESTINE-BEARINGFORMATIONS,ULAfi-S‹VASBASIN,TURKEY

Introduction Bischoff&Seyfried1978;Barbieri&Masi1984;Glynn& Manystudieshaveshownthatsomecelestineoccurrences Reardon1990;Dove&Czank1995). anddepositsofeconomicimportanceareassociatedwith Thegoalofthispaperistosetforthnew evaporitic(e.g.,Müller1962;Evans& sedimentologicalandgeochemicaldataforthecelestine- Shearman1964;Usdowski1973;Rickman1977; bearingTertiaryevaporitesandtoprovideanew Olaussen1981;Kesler&Jones1981;Brodtkorb etal. approachtothismuch-debatedmineralization. 1982;Martinetal.1984;Kushnir1985;Carlson1987; Decima etal. 1987).Itwasreportedinmostofthose Regional worksthatcelestineoccurrencesarepresentinTertiary massive-gypsumunitsandweredepositedindifferent TheSivasBasinineast-centralTurkeyisoneofthethree ways. majorsedimentarybasinsofCentralAnatoliathat collectivelylieinacurvilinearbeltfollowingaperipheral TheTertiarySivasbasincontainsthemostimportant remnantbasinalongtheInner-Tauridesuturezone celestinedepositknowninTurkey.Thereareatleast25 (Görür etal. 1983;Erdo¤an etal. 1996).TheInner- celestineoccurrencesinthebasin;ofthese,onlyone Tauridesuturezonemarksthesiteofcollisionbetween (Körtuzlamine)isamajordeposit.Atotalof20million theTauridecarbonateplatformtothesouthandthe tonnesofcelestinehasbeenproducedfromtheKörtuzla CentralAnatolianCrystallineComplextothenorth,and minebytheopen-pitmethod.Celestine-bearinglayersin ophioliticfragmentsthatareremnantsoftheInner- theKörtuzlaminehavelengthsofupto850mand Taurideocean(Neotethyanbranch)occuralongthis widthsofupto100m,andareobservedaslensesin suturezone(Figure1a).TheSivasbasinevolvedfrom threedifferentzones.Theaveragegradeofthedepositis marinetolacustrineandfluvialenvironmentsbetween 55.2%SrO.Celestineoccurrencesinthebasinare thecollidingcrustalblocksastheinterveningInner- generallypresentwithingypsiferousunits(Tekin1995). TaurideoceanclosedduringTertiarytime.Thevolcanic Gypsumdepositsoftheregion(300kmlongand40-50 andsedimentaryrocksinthecenterofthebasinreston kmwide)extendfromfiark›fllainthewesttoRefahiyein anophioliticbasement.Theyconsist,frombottomtotop, theeast(Figure1a,b).IntheSivasbasin,thereareplaces ofPalaeocene-Eocenesiliciclastic,volcanogenicand wheretheevaporiticunitsexperiencedextensive carbonateflyschdepositswithshallowmarinelimestone tectonismanddiapirism.Themassivegypsumdeposits andmarl-gypsumintercalationsandolistolithsofvarious aremostlyboundedbystructuralfeatures,including ;Oligocenefluvialsedimentsandgypsum; imbricatedthrusts.However,theageofthemassive massiveMiocenegypsum,fluvialsediments,basalticlavas, gypsumdepositsisstillcontroversial,butthesedeposits lacustrinelimestoneandcarbonaceousmudstone.The areconsideredtobeOligo-Mioceneinagebymany Eoceneandyoungersedimentaryrocksofthebasinonlap workers(Kurtman1961;Baysal&Ataman1980;Gökten thedeformedrocksoftheTauridecarbonateplatformto 1983;Gökçen&Kelling1985;Gökçe&Ceyhan1988). thesouthandtheAkda¤metamorphicmassiftothenorth Owingtoextensivetectonismanddiapirism,primary (Gökten1983;Gökçen&Kelling1985;Cater etal. structuralandtexturalfeaturesofmanyofthemassive 1991;Tekin1995). gypsumdepositshavebeendestroyed.Thissituation createsconsiderabledifficultywithregardtothe interpretationofdepositionalenvironments. Materialsandmethods ThecelestinedepositsintheSivasbasinhavebeen Inthisstudy,grabandlinesampleswerecollectedfrom investigatedbymanyresearcherssince1970,butthereis gypsumoccurrencesintheTertiaryseriesoftheUlafl- noconsensusontheoriginofthesedeposits.Todate, Sivasevaporiticbasin.Thesesampleswerethensubjected threedifferentgeneticinterpretationshavebeen topetrographicanalysisusingapolarizingmicroscope,as proposed:(a)sedimentary-syngenetic(Çubuk etal. inthestudyofMandado&Tena(1985).Thirtycelestine- 1992),(b)epigeneticmineralizationasproductofthe bearingsampleswerechosenformicrotexturalstudy hydrationofanhydrite(Ceyhan1996)and(c)epigenetic usingaJEOLJSM-840Ascanningelectronmicroscope mineralizationformedathightemperature(Gundlach (SEM),andforEDSstudiesusingaTracorTN-5502 1959;Strübell1969;Brower1973;Usdowski1973; instrument.

36 E.TEK‹N

TOKAT Bulgaria BlackSea Georgia N ‹stanbul ZARA REFAH‹YE YILDIZEL‹ HAF‹K PONTIDES

Greece Sivas Armenia AKDA⁄MADEN‹ S‹VAS TertiaryBasin Sivas KARAYÜN Ankara CELALL‹ N STUDY Iran AREA ULAfi ANATOLIDES Inner fiARKIfiLA

Suture Tauride

TAURIDES BORDERFOLDS K›z›l›rmakRiver

AegeanSea Iraq GÜRÜN Syria 03060km a MediterraneanSea 0150km b KAYSER‹

Tha ET. N ET. * * Sr Sinekli Thp Akkaya Village

Qal Ts

Thp Kavlak Village T Thp Qal Sr 0 1.5 3 4.5 km ET. Sahantepe * Bahçecik ET.1 EXPLANATION Solgeçe Qal: Alluvium Ts * Unconformity Thp:Purtepe member, massive gypsum Tha: Aktas member, clastics-carbonates ET. Ayl Battalhöyüğü Unconformity * Ts: Selimiye formation, gypsiferous alluvial series Unconformity and local paraconformity Tb: Bozbel formation Tb (gypsiferous) ET.1 * Locations of measured stratigraphic c Sr : Celestinedeposits

Figure1. (a) LocationoftheTertiarySivasbasininTurkey.(b) Locationmapofthestudyarea.(c) Simplifiedgeologicalmapofthestudyareashow- ingthelocationofthecelestinebeds.

Twenty-sixgypsumsampleswereselectedand (Gladney etal. 1983)wereusedtodeterminethe analysedonaPhilipsPW-1400X-rayfluorescence analyticalprecisionoftheXRFstudies. spectrometerusingthestandardsofNorrish&Chappel Microprobestudieswereperformedonselectedthree (1977).Thesampleswerepowderedinanagatemortar samplesusingaJEOLJXA-8600electronmicroprobeand andthematerialpassedthrougha200meshsieve,that spectrophotometer.Forthisstudy,upto0.2mm-thick materialwasthenquartered,and15gofitwasusedto sliceswerepreparedandbothsidespolished,thencoated producepellets.USGSstandardsforF,Li,Ba,Pb,andCu

37 CELESTINE-BEARINGFORMATIONS,ULAfi-S‹VASBASIN,TURKEY

withcarbon.ZAF,20.00kV,and40.0degreesettings thegypsumsamplesweredissolved,treatingthemfirst wereused. withNaOH,andlaterBaSO4wasobtainedbyreacting 18 16 34 32 Inaddition,fivegypsumsamplesandfourcelestine themwithBaCl 2 atpH=2.The O/ Oand S/ S sampleswereselectedfor 87Sr/86Srisotopestudiesand isotopesofthatprecipitate(i.e.,BaSO 4)areidenticalto wereanalyzedusingaMAT261Mass thoseofgypsum(Hoefs1987). Spectrophotometer.Celestinewasconcentratedfrom 87 86 thesesamplesusingheavyliquids.TheNBS987 Sr/ Sr Stratigraphy isotoperatio(0.710265±12)wasusedasastandard duringmeasurement.Inthesamplepreparationfor δ18O Thestratigraphyofthecelestine-bearingevaporite stable-isotopeanalyses,wefollowedtheprocedures sequenceinthestudyareaisgiveninFigure2,andthe describedbyLonginelli&Craig(1967).Inordertoobtain distributionofthissequenceissummarizedinFigure1c. theSMOWvaluefromthemeasurementsof δ18OPDB, Theageoftheevaporitedeposits,developedonthe theproceduresofCraig(1961)andFriedman&O’Neil Palaeocenebasement,rangesfromLateEocenetoEarly (1977)werefollowedandavalueof7.26‰wasadded Miocene.Gypsumdepositionofthreedifferentagesand tothepreviousvalue.Asforthe 34SCTDmeasurements, celestineenrichmentsinthreedifferentzoneshavebeen identified.

Figure2. Generalizedcolumnarstratigraphicsectionofthestudyarea.

38 E.TEK‹N

Thelowermostlaminated(1-4cm)gypsumbedswith ThePurtepememberalsocontainsazoneoflarge(2- whiteclaystonealternationscomprisetheuppermostpart 20cm)andtransparentgypsumcrystalsthataremainly oftheBozbelFormation,whichisMiddle-LateEocenein twinnedgypsumprismswithnearverticalgrowthupon age.Thesemaybereferredtoas"balatinogypsum", fine,crystalline,massivegypsum.Theselenitecrystalsare basedonthedefinitionsofOgniben(1955)andHardie& presentasdome-shapedstructures,70-to80-cm-long Eugster(1971).Celestinemineralizationinlaminated and70-to100-cm-thick.Thecrystalsexhibitvertical (balatino)gypsumandsandylimestonesgenerally orientationoftheirc-axes,involvingzig-zag(saw-tooth)- developedin“zebra-type"(Brodtkorb etal. 1982),and shapedlaminations(cf.Schreiber&Friedman1976).The void-andfracture-fillingtypes;also,somebiogenic zig-zagsurfaceshavebeendrapedbyverythindolomite fragmentshavebeenpartiallyorcompletelyreplacedby laminae,likelyindicatingthatperiodicenvironmental celestine(Figure3a,b). changes(fromsalinetobrackish)occurredduringgrowth Thesecondtypeofcelestine-bearinggypsum oftheselenitegypsuminashallowlagoonalarea(Figure depositionoccursatthebaseand/oratintermediatelevels 3f).Detailedlithofaciesdescriptionsofthisevaporite oftheOligoceneSelimiyeFormation,which sequencearegiveninthemeasuredstratigraphicsections unconformablyorlocallyparaconformablyoverliesthe (ET.1to5)(Figure4). BozbelFormation.ThegypsumintheSelimiyeFormation Aterrestrialgypsumhasalsobeenidentified20km isoftwodifferent.Thefirstiswhitetocream- northeastofthestudyarea;thisgypsumformedina colouredmassivegypsum,10-20mthick,locatedatthe playa-lakeenvironmentthatlackscelestine baseoftheformation.Thisgypsumistransitionalwith mineralization.ItsageislikelyLateMiocene-Pliocene,and thelaminatedgypsumoftheunderlyingBozbel containsavastamountofassociatedhalite.Thisgypsum Formationandcontainscompactanhydriteinterbeds.The isoverlainbyPliocenebasalticvolcanicrocks(Gökçe& secondSelimiyegypsumiscomposedoflightgray, Ceyhan1988). extremelycompact,nodulargypsum(withnodules20-40 cmindiameter),andoccursinalluvial-fandepositsthat makeupthemiddletoupperpartsoftheSelimiye Petrography Formation(Figure3c).Inthesomeplaces,gypsumand TheUpperEocenegypsumislaminated,madeupoffine anhydrite-bearingcelestinenodules(60-90cmacross) tomedium,euhedral-subhedralforms.Thisgypsum arepresentwithinthenodulargypsumbeds.Thistypeof comprisesbandsofseveralcentimeterstoafew nodulardepositionistypicalintheexcavationsofthe decimetersthick,inclaystoneandmarlrichinorganic Sahantepecelestinedeposit(Figure3c). matter.Theircontentisextremelylow,containing Thethirdzoneofcelestine-bearinggypsumoccurs poorlypreservedplanktonicforaminifers.Alsofoundare withinthePurtepememberoftheHac›aliFormationof theremnantsofbenthicforaminifers.Theclaystones EarlyMioceneage(Figures1&2).ThePurtepemember containsilt-sizedgypsumcrystals(reworkedfragments) wasdepositedaschemicalsedimentsinthenortheastern thataredispersedintheclaymatrix. partofbasin,andconcordantlyoverlietheAktafl Thecelestinemineralizationinthelaminatedgypsum member,composedofshallow-marineclasticand andclaystonebandsispresentineconomicquantities. carbonatedeposits.ThePurtepemassivegypsumis Thistypeofcelestinemineralizationdevelopedin approximatelyafewhundredmetersthickanditslateral fracturesthatirregularlycutthelaminatedgypsumand extentisuptoafewkilometers(Figure3d).Economic cm-thickclaystonebands.Thecelestinecrystalformsare celestinedepositsintheregionoccuraslensesinthe prismaticandbar-like(Figure5a).SEMstudiesrevealed Purtepemember.Suchlensescommonlyhavelengthsof thatthoselarge,prismaticandbar-likecelestinecrystals 700-900mandwidthsof100-200m;theSrOcontents ofthesecelestinedepositsareintherangeof52.0-55.2 parallelthegrowthorientationofthegypsumcrystals %.Brecciationistypicalatthebetweencelestine (Figure5b). lensesandgypsumlayers.Claystonealternations,karstic- AlmostalloftheOligoceneandLowerMiocene typedissolution,voids,and3-5mthickcompact evaporitesconsistofsecondarygypsum;theseare carbonateoranhydritebandsalsooccurwithinthe alabastrine-typecrystalshavingmicrocrystallinenature. celestinebeds(Figure3e). Locally,thealabasterismegacrystallineormayhavea

39 CELESTINE-BEARINGFORMATIONS,ULAfi-S‹VASBASIN,TURKEY

Figure3. (a) Photographofspecimenfromzebra-typecelestineoccurrence,Bahçeciktepecelestinedeposit,UpperEoceneBozbelFormation(Tb) .k- microcrystallinecarbonateband,s-tabularcrystallinecelestineband. (b) Photographshowingfracture-fillingcelestinemineralization(white)intheSol- geçecelestinedeposit,UpperEoceneBozbelFormation(Tb).k-limestone,s-fracture-fillingcelestines. (c) Photographofcelestine-gypsumnodules observedinalluvialfandepositsoftheSahantepecelestineexposure,OligoceneSelimiyeFormation(Ts).Celestine-gypsumnodu lesareirregularand spherical-ellipsoidalshaped.kt-claystonematrix,s-celestinenodule,andj-gypsumnodule. (d) Photographshowingtheconcordantrelationship betweenclastic-carbonatesunitsoftheAktaflmemberandthePurtepemassivegypsummember.Thp:PurtepememberofMiddle(?)Mioceneage,and Tha:AktaflmemberofEarlyMioceneage.(e) Photographofcarbonate-anhydritebandsoftheSineklicelestinedepositinmassivegypsumofthePurte- pemember.Mj-massivegypsum,ab-anhydriteband,kb-carbonateband,ands-celestine. (f) Photographofselenitegypsumcrystalsdevelopedin theupperlevelsofthemassivegypsumofthePurtepemember.

40 E.TEK‹N

ET.1 ET.4 ET.5 Thick. Age Thick. Explanation Age Lithology Explanation Age Thick. Lithology Explanation (m) (m) (m) 450 1500 1200 Massive gypsum Massive gypsum Massive gypsum 1425 1125 375 Clay bands Massive gypsum Clay-laminated Anhydrite bands gypsum 300 Laminated gypsum 1350 1050 Thp Sandy and clayey 1275 limestone Clay-laminated ? MIDDLE MIOCENE 225 975 gypsum Thp Massive gypsum 1200 Thp 150 Clay bands 900 Massive gypsum 1125 825 75 Marl-claystone Sandstone Massive gypsum M.-U.

Tb. Clay-laminated EOCENE 0 Conglomeratic sandstone 1050 gypsum 750 Sandstone 975 Sandy and clayey limestone ET. 675 Claystone-marl Age Thick. Lithology Explanation Claystone (m) 900 600 450 825 EARLY MIOCENE EARLY Sandstone 525 375 Claystone EARLY MIOCENE EARLY Thp Massive gypsum 750 Sandy and clayey 450 300 Conglomeratic limestone sandstone 675 375 Tha EARLY MIOCENE EARLY Marl Sandstone 225 Claystone-marl Tha Sandy and clayey 300 limestone 600 Tha 150 Marl Sandstone Sandy and clayey 525 225 75 limestone Marl-claystone Sandstone

Tb. 450 EOCENE

MID.-UPP. Sandstone 0 150 Laminated gypsum 375 Claystone 75 ET.3 Sandy and clayey 0 300 limestone Age Thick.Lithology Explanation (m) 225 Sandstone 600 Massive gypsum 525 150 Thp Marl MIOCENE ? MIDDLE Limestone bands 75 450 Claystone 0 375

300 Anhydrite bands

OLIGOCENE Massive gypsum 250 Sandstone Marl 150

Tb. Ts. Marl EOCENE 75

MIDDLE-UPPER Sandstone 0

Figure4. Measuredstratigraphicsectionsfromthestudiedarea. porphyroblastictexture.Theirorigincanbeattributedto inclusionshavingjaggededges.Inthefield,theselayers therehydrationofanhydriteduringexhumation(Murray haveageneralcharactersimilartothenodularmosaic 1964;Kinsman1966).Evidencesupportingthis texture(Holliday1970;Warren&Kendall1985). conclusionisthepresenceofanhydriteinclusionsand ThecelestinesintheOligoceneandLowerMiocene lensesinthesecondarygypsumunits(Figure5c).Hence, gypsumsarecategorizedintothreetypes,basedontheir thetransformationhasobscuredoreraseddistinctive petrographicalfeatures:(a)prismaticandbar-like,(b) texturesandhasaltered;thus,itmaybe sub-idiomorphicandtabular,and(c)fibrous-radial.The difficulttorecognizetheiroriginalpetrographic firstandthirdtypescharacterizetheLowerMiocene character.Anotherkindofgypsuminthemassive depositsandusuallyco-exist.Thefirsttypeismostly evaporitesisaporphyroblastictexture;thistextureis observedinvugs,forminggeodicfillings(Figure5d).The characterizedbyfibrous-radialcrystalswithanhydrite sub-idiomorphic-tabulartypeontheotherhand,

41 CELESTINE-BEARINGFORMATIONS,ULAfi-S‹VASBASIN,TURKEY

Figure5.(a) Coarse,prismaticcelestinecrystalwithinclayey-carbonaceousgypsummatrix.Suchinclusionsofgypsumcrystalsintheceles- tinecrystalsistypical.j-gypsum,ands-celestine.(b) SEMimageofcoarse,prismatic,euhedralcelestinecrystalsofdisplacementtypewith oriented,fibrous-radialgypsumcrystals.j-gypsum,ands-celestine. (c) Anhydriteinclusionswithineuhedral,prismaticgypsumcrystals indicativeofhydration-dehydrationprocesses.a-anhydrite,andj-gypsum.(d) Coarse,bounded,prismatic,bar-likegypsumofporphyrob- lastictextureandprismaticcelestinecrystalsrelics.j-gypsum,ands-celestine. (e) Gypsumofalabastrinetexturetogetherwithcoarsecal- citeandcelestinecrystalinclusions(replacementtype)inthematrix.s-celestine,k-calcite,j-gypsum. (f) SEMimageofcoarse,prismat- ic,bar-like,irregularlyfreelygrowingcelestinecrystalswithinagypsummatrix(alabastrinetexture)togetherwitheuhedral calcitecrystals. s-celestine,k-calcite,andj-gypsum. (g) SEMimageofsub-euhedralcelestinecrystalsdevelopedinamicrocrystallinedolomitematrix. Zonedcelestinecrystaltogetherwithsurroundingchloritenodulesanddolomitesiltinthecentralpartofphotographaredist inctive.s-tab- ularcelestinecrystals,d-dolomitesilt,kl-chloriteball.

42 E.TEK‹N

characterizestheOligocenecelestines;theseare gypsumofLateEocene-Oligoceneagearewithinthe moderatelytocoarselycrystallineandaresurroundedby expectedrange.Themajoroxidevaluesof32.7-38.6% gypsumandanhydrite.Thesecelestinesaremostlypure, CaO,0.1-1.2%K2O,0.17-0.32%MgO,and0.11-0.31 butlocallycontainvariousamountsofgypsumrelicts %Na 2Oareconsistentwiththoseofgypsumofsyn- (Figure5e). sedimentaryorigin(Müller1962;Turekian1964;Baysal Theappearanceofprismatic-tobar-likecelestinein &Ataman1980;Hardie1984;Carlson1987;Gökçe& theSEMimagesissuchthattheirgrowthis Ceyhan1988). multidirectionalinthegypsummatrix,andtheyare TheF,Li,Ba,Pb,andCucontentsofgypsumsamples surroundedbyeuhedralcalcitecrystals(Figure5f).In ofvaryingagesfromtheUlafl-SivasBasinarealso SEMviews,thesecondtypeofcelestinemineralization instructive.Fvaluesarebetween3.4-4.8ppm,Liis1.6- (i.e.,sub-idiomorphicandtabular)hasthecharacteristics 3.0ppm,Bais0.01-6.5ppm,Pbis0.14-2.5ppm,and ofbothvug-fillingandnodularcelestinedeposits.They Cuis0.1-2.0ppm.Thus,theFandLicontentsofthe26 areinterpretedtohaveformedaszonal-growthcrystals samplesareverysimilar,however,theirBa,Pb,andCu intheclay-and/orcarbonate-dominatedmatrix(Figure contentsaresomewhatvariable.Tardy etal. (1972) 5g).Thelastgroup,thefibrous-radialtype,arenearly attributedlowFandLicontentstoexcessevaporation. purecelestinesthatgrewmultidirectionallyinvugs. Tekin(1995)suggestedthattheBa(6.5ppm),Pb(2.5 ppm),andCu(2ppm)contents,whichareabovethe normalvaluesinthePurtepemassivegypsummember Geochemistry andsimilarcontentsdeterminedinassociatedcelestine Trace-elementgeochemistry maybeindicativeofhydrothermalfluidshavingplayedan importantroleintheformationofepigeneticcelestinesin Major-oxidevaluesofSrO,CaO,MgO,K 2O,Na 2O,and theregion. SO3 obtainedfromXRFanalysesof26differentgypsum samplesweremeasuredweightpercentages,whereasthe Acomparisonofthetrace-elementvaluesoftheUlafl- traceelementsF,Li,Ba,Pb,andCuweremeasuredin Sivascelestine-bearinggypsumunitstothosefrom ppm.TheseSrOvaluesasignificantlyincrease,starting studiescarriedoutongypsumfromtheeasternpartof fromtheUpperEocenelaminatedgypsumatthebaseand theTertiarySivasbasin(Baysal&Ataman1980;Gökçe& continuingupwardtomassivegypsumoftheLower Ceyhan1988)ispresentedinTable1.Thisshowsthatin MiocenePurtepemember(0.10-1.74%).Itisimportant theUlafl-Sivasbasin,theFcontentsarelowerandtheSr tonotethatmassivegypsumofthePurtepemember andMgcontentshigherthanthosereportedinother containsabout1.75%SrOinthecrystallattice.ThisSrO studies,andthattheLivaluesaresimilar. valueisabovethenormallimitformarinegypsum,and 2+ thishighSr contentisattributedtoitsaccommodation 87 86 18 16 34 32 intothecrystallatticesofthemassivegypsumofthe Sr/ Sr, O/ Oand S/ Sisotopestudies Purtepemember,thispremiseissupportedbytheresults 87Sr/86Sr, 18O/16Oand 34S/32Sisotoperatiosforselected ofmicroprobeanalyses.Becauseseawatercontainsonly8 gypsumsamplesfromtheTertiaryUlafl-SivasBasinare ppmSr 2+ inionicform(e.g.,Turekian&Kulp1956; giveninTable2.Thereisadramaticincreasein87Sr/86Sr, Usdowski1973;Krauskopf1979;Sonnenfeld1984), 18O/16Oand34S/32Svaluesfromtheoldestgypsumatthe suchahighSr2+ contentisanimportantfactorinprimary basetotheyoungestatthetop.Similardatawas strontiumenrichment.Thisenrichmentmaybeduetoan presentedbyHoefs(1987)andUtrilla etal. (1992). additionalSrcomingfromthedissolutionofearlygypsum TheseincreasesindicatethattheUlafl-Sivasgypsumwas (Purtepemember),orfromasupplyviaasyn- derivedfromUpperEocene-LowerMiocenemarineunits. sedimentaryinfluxofwater.Thisisfindingimportantfor Müller(1962),Turekian(1964),Emery&Robinson determiningthesourceofSr 2+ ionsfortheformationof (1992),andFaure&Powell(1972)alsoreportedsimilar economicallyimportantcelestinedepositsoftheregion. 87Sr/86Srand 18O/16Oisotoperatiosfromvarious evaporiticbasins.However,thesevaluesareslightly TheSrOcontentsoffreelygrowing-twinned 87 86 secondarygypsumatthetopofthePurtepemassive lowerthantothe Sr/ Srratioofseawaterreportedin gypsummemberandthelaminated-massive-nodular thestudiesofDePaolo&Ingram(1985),Burke etal.

43 CELESTINE-BEARINGFORMATIONS,ULAfi-S‹VASBASIN,TURKEY

Table1.Trace-elementcontentsofgypsumsamplesfromthestudyareacomparedtothosereportedinpreviousstudies.Meancontentsinparentheses.

Celalli-KarayünandHafik Zara-RefahiyeRegion Region Sivas-UlaflRegion TraceElements (Baysal&Ataman1980) (Gökçe&Ceyhan1988) (thisstudy) (ppm) (ppm) (ppm)

F 16.1 40 3.4-4.8 (4.1) Li 2.8 3.1 1.6-3 (2.6) Sr 783 2450 2526-5368 (3946) Mg 3741 6528 3158-4768 (4158) Ba -- -- 0.01-6.5 (0.1) Pb -- -- 0.14-2.5 (0.3) Cu -- -- 0.1-2 (0.2)

(1982)andPeterman etal. (1970).Thissituationmay intenseandcontinuousgypsum,which haveariseninavarietyofways.Inaddition,the87Sr/86Sr probablyoccurredindepressionsleftfromtheEocene ratiosofsamplesfromfourdifferentareasofcelestine sea.Thisunitgraduallypassedupwardintogypsum- mineralizationareverysimilartothoseofgypsum,which bearingsandstones,whichcontainlargegypsumand areinrangeofbetween0.707405±16to0.707683± celestinenodules.Thelenticularshapeofevaporite 19.Thecloserelationshipofthe 87Sr/86Srisotopicratios outcropswithinthealluvialsedimentssuggeststhat suggeststhattheMiddleMiocenePurtepemassive evaporitizationoccurredindrychannelsorox-bow-lake- gypsummemberisthemostprobableSr 2+ sourcefrom typeenvironments.Thisphaseofevaporitedeposition thecelestines.Trace-elementcontentsandtheresultsof closedwhenmeanderingriversdepositedbyverythick microprobeanalysesofgypsumandcelestinesalso sandstones(Kinsman1969;Magee1991). supportthiscontention(Tekin1995). ThePurtepemassivegypsummemberoverliesthe Oligoceneunitsunconformablyandhasaverycomplex stratigraphy.Thegypsumwasdepositedbothincoastal Gypsumenvironments sabkhasandinshallowlagoons,whichweretheremnants Depositional-environmentalandsedimentologicstudies ofMiocenetransgression.Asaresultofthis,themarginal indicatethattheuppermostEocenelaminatedgypsum areaswerecontinuouslyfloodedbyseawater,andlater wasdepositedduringshortperiodsofevaporitization becameextremelyshallowandfinallydried.The alternatingwithclaydepositionfromsuspendedmaterial environmentwastemporarilyisolatedfromthemainsea. inashallowinnerlagoon,whichwasperiodicallyisolated Thus,redclaystonesandthin-beddedmarlswere fromthemainsea(marinewater)duringLateEocene associatedwithmassivegypsum.Mostofthegypsum regression.Thepresenceofredmudsenclosingthe depositsweretransformedintoanhydriteuponburial, gypsumalsosuggesttheshallowingstageofabasin andthenintosecondarygypsum(mainlyalabaster)when (Hardie&Eugster1971;Sonnenfeld1984)andaninflux theywereexhumed.Theuppermostlayersdonotcontain ofargillaceousmatter. relictsofthegrowthofgypsumtoanhydrite(c.f. Interpretationoffieldobservationsindicatesthatthe Schreiber&ElTabakh2000).Theabsenceofchloride massivegypsumoftheSelimiyeFormationexhibitsan salts(e.g.,NaCl,KCl,andMgCl 2)inthemassivegypsum

Table2. 87/86Sr,18/16Oand34/32Sisotopeanalysesofgypsumsamplesfromthestudyarea. 87/86 SrvaluesfromTekin&Varol(1997).

87 86 δ18 δ34 SampleNo Age TypesofGypsumMineralization Sr/ Sr(‰) OPDB SCDT

ET.90/45 Early Discoidalandtwinnedsecondarygypsum Miocene (Purtepemember) 0.707819±9 18.35 11.6 SY.6 Massivegypsum(Purtepemember) 0.707733±9 16.83 25.1

SH.1 Oligocene Nodulargypsum(Selimiyefm.) 0.707546±9 15.97 13.9 ET.90/61 Massivegypsum(Selimiyefm.) 0.707628±9 14.47 22.4

ET.90/27 LateEocene Laminatedgypsum(Bozbelfm.) 0.707413±9 12.68 21.8

44 E.TEK‹N

isattributedtotheleachingofthesehighlysolublesalts ofanhydrite,formingcompoundswiththesufficient 2- andsubsequentremovalfromgypsiferousunitsinthe SO4 intheenvironment. region(Gökçe&Ceyhan1988).Gökçe&Ceyhan(1988) Thisbackgroundinformationrevealsthatthereisno alsowrotethat,consideringthepresenceofsaltpansin consensusopiniononthemechanismofformationand theSivasBasin,suchaleachingprocessisstillin theageofcelestinesintheSivasBasin.Thefactthatthe operation.Theabsenceofchloridesaltscouldalsobe celestinedepositsthatco-existwithcarbonate,evaporitic, explainedinadifferentway;perhapstheyweresimply andterrestrialdepositsarenotage-dateddefinitivelyand notdepositedbecausetheconcentrationoftheseawater 18 16 34 32 thelackofgeochemicalandisotopic( O/ O, S/ S)data wasneverhighenoughtoformthem.Ontheotherhand, presentsignificantdifficultieswithregardtotheir theextremethicknessofthePurtepemassivegypsum genesis.Thepresentstudyprovidesanapproachtothe member(300minplaces)maybeattributabletosalt originandageofthecelestinesusingthefollowing diapirism,continuousfeedingfromseawaterand, findingsfromTekinetal.(1994),Tekin&Varol(1997): particularly,totectoniccontrolofthebasin(e.g.,Peryt (1)HydrothermalalterationzoneswithSiandAl 1994). enrichment,arepresentinallofthecelestinedepositsand thereisalsoenrichmentinpyrite,stibnite,limonite, OriginofCelestines siderite-ankerite,andbariteatthesamelocalities;(2) ThereareFe-oxidestainsandiron-bearingsilica Severalstudieswerecarriedoutpreviouslyonthe concretionsincelestinebedsoftheUpperEocene celestinesoftheSivasBasin(e.g.,Gökçe1989-1990; deposits;(3)Thepresenceofcelestinesmainlyin Çubuketal. 1992;Karamanderesi etal. 1992;Ceyhan 1996).Gökçe(1989-1990)evaluatedtheformationof fracturesandkarsticvugs;(4)Apyrite-limonite-and allthecelestinedeposits(occurrencesofvug-fillings stibnite-bearingmudstonelevelapparentlyrestrictedthe and/orveins)inthemassiveMiddleMiocenegypsumbeds downwardextensionofcelestine;(5)ExtensiveCO 2 aswellasthoseintheclasticdeposits.Theoriginofthe releasefromtheLowerMioceneHac›aliFormation;(6) celestinewasexplainedbyGökçe(1989-1990)thus:the Zonal-growthstructuresincelestines,orientedgypsum Sr2+ ingypsum,limestones,marlandclaystonewasfirst crystals,dolomiteinclusions,andsecondarymicro-scale leachedbymeteoricwaterandthenformedcompounds dissolutionstructuresobservedthroughSEMstudies;(7) 2- Bravoite,melnikovitepyrite,marcasite,limonite,siderite- withabundantSO 4 inthestratigraphicseriesyielding ankerite,nativegold,electrum,psilomelane,realgar- depositsofSrSO 4.Çubukandothers(1992)later assertedthatthecelestineoccursalongbeddingplanesin orpiment,rutile,sphalerite,andstibnitewereobserved theMiddletoUpperEoceneflyschfacies;theysuggested throughore-microscopystudies.Tinydetritalgold thatthecelestinesfirstformedsyngeneticallybychemical crystalswereobservedintabularcelestinecrystalthat depositionandlaterweretransportedinsolutionintothe displayszonalgrowth(SEMview);(8)RepetitionofBa overlyingandunderlyingunits. andSrintheformofdark-lightzonesobservedthrough EMPandEMPASanalyses.Clestinecrystalscollected Karamanderesiandothers(1992)proposedthatthe fromdifferentlayershaveaverageSrandBacontents celestinesaretheproductsofburiedvolcanicand/or rangingfrom3645to4465ppm,and0.020to0.041 intrusivesources,whichwereactiveduringthelatest ppm,respectively;(9)Elevatedhomogenization Miocene-Pliocene.Thus,theyinterpretedthecelestinesto temperaturesobservedthroughthefluid-inclusionstudies beofhydrothermalorigin,andsupportedthisviewby oncelestines.Adecreaseinhomogenization pointingoutthattheSr,Ba,andBcontentsofmodern temperatures,from360°Cto200°C,occuredfromthe hydrothermalsolutionsandthetravertinedeposits adjacenttothecelestinebedsarealmostidentical.Ceyhan LateEocenetotheEarlyMiocene.Salinityvaluesare (1996)reportedthreezonesofcelestinedepositioninthe almostconstant,intherangeof14-23%NaClequivalent; UpperEocene,OligoceneandLowerMiocene (10)Relativelyhighervaluesoftraceelements,suchasLi carbonaceous,clastic,andevaporiticunits.Ceyhan (3ppm),Mo(1.8ppm),Pb(19.39ppm),W(1.21ppm), (1996)alsoclaimedthatthecelestinesareofepigenetic As(1.84ppm),Zn(3.46ppm),Cu(7.9ppm)andBa(20 origin,havingresultedfromSr 2+ releasedbythe ppm),withrespecttosyngeneticallydepositedcelestine 87 86 dissolutionofcalciteandgypsumduringthedehydration mineralization(fromseawater);(11) Sr/ Srisotopic

45 CELESTINE-BEARINGFORMATIONS,ULAfi-S‹VASBASIN,TURKEY

ratiosofvug-filling,nodular,andmassive-lenticular occurrencesarevugfillingsintheBozbelFormation, celestinesvarybetween0.707405±16and0.707683± nodulesintheSelimiyeFormation,andmassive-pure 19,whereasrelativelylowerisotopicratios(0.706005± materialinthePurtepemember.Thecelestine 20)characterizethezebra-typecelestine. mineralizationaslargelens-shapedmassesintheLower Basedonthesefindings,thesedimentaryoriginof MiocenemassivegypsumofthePurtepememberare celestinesoftheSivasBasinshouldbequestioned.In economicdeposits.(2)Baseduponpetrographicstudies, particular,theexistenceofmetalionsandtheelevated itwasdeterminedthatgypsumsamplesfromthe homogenizationtemperaturesinallthecelestinessuggest evaporiticfaciesoftheregiongenerallyhavesecondary ahydrothermal-epigeneticorigin;Scholleandothers alabastrineand/orporphyroblastictextures.Inaddition, (1990)suggestthatthecelestinestheystudiedformed someofthesamplesdisplaybrecciatedmosaic,chicken epigenetically.However,the 3H/4Hisotopevaluesof wire,andgranoblastictextures(c.f.Shearman1977; Schreiberetal.1976;Lowenstein1987).(3)Major-and modernCO 2 exhalationsindicatetheexistenceofburied volcanicmassesinthisregion(EminTeke,personal trace-elementgeochemicalstudiesperformedon celestine-bearinggypsumsamples, 87Sr/86Sr, 18O/16Oand communication,1995).Moreover,fieldobservations 34 32 indicatethattheSivasBasinexperiencedanextensive S/ Sisotoperatiosfromfivesamples,and volcanicactivityduringtheTertiary.Basedonthis paleontologicalfindingsshowthat,basedonthe evidence,theformationmechanismofthecelestinescan classificationofHardie(1984),thewaterinthegypsum beoutlinedasfollows: isofmarineorigin.However,thereisadifference betweentheOligocenenodulargypsumandfreely Intheepigeneticstage,theeffectofmeteoricwaters growing-twinnedsecondarygypsumcrystalsofLate onevaporitescausedthereleaseofstrontiumvia Mioceneage.Porewaterwithintheclaystonesisthemost dissolution.Sr-richsolutionsthenweremixedwith probablesourceforsulfate-richwatersinthegypsum. hydrothermalsolutions.Ienvisagethatstrontium-bearing Cody&Cody(1988),Cody(1991),Lowenstein(1987), hydrothermalsolutionsinaconvectivebrought andBain(1990)alsosuggestthattheformationofthis aboutthedepositionofcelestine.Strontiumenrichment typeofgypsumunitsisdirectlyrelatedtoevaporated causedbythisconvectivesystemmayalsohavebeen porewater.(4)Theoriginofcelestinedepositswithinthe promotedbythehydrationofanhydrite(Tekin1995; Purtepemassivegypsumremainsdebatable.However, Ceyhan1996).Althoughtheliteraturedoesnotprovidea ourpreliminaryevidencesuggeststhatthecelestineisnot definitivemodelforcelestineformation,models sedimentaryinorigin,butmostprobablyformedathigh suggestingthehigh-temperaturecrystallizationof temperature(200-360°C)asaproductoflate-diagenetic celestinehavebeenproposed(Gundlach1959;Strübell replacement. 1969;Brower1973;Usdowski1973;Bischoff& Seyfried1978;Barbieri&Masi1984;Glynn&Reardon 1990;Dove&Czank1995). Acknowledgements TheauthorappreciatesthecontributionsoftheResearch Conclusions CenteroftheTurkishNationalPetroleumCorporation (SEMandEDSanalyses),S.TuncayofUniversityofthe Thisstudyyieldedthefollowingresults:(1)Threetypes Leicester,England(XRFandelectronmicroprobe ofevaporitedepositsofdifferentageswereobservedin analyses),andM.Sat›roftheUniversityofTübingen, theTertiaryUlafl-SivasBasin.Theseare:(a)thelaminated Germany(isotopeanalyses).IalsothankB.Varol,A.U. gypsumintheUpperEoceneBozbelFormationinthe Do¤anandK.Kayabal›ofAnkaraUniversity,‹.Çemenof lowerpartofthesedimentary;(b)massive OklahomaStateUniversity,andM.Karab›y›ko¤luandZ. gypsumoftheOligoceneSelimiyeFormation,locatedin AyanoftheGeneralDirectorateofResearchand themiddlepartofthesequenceandconformably Exploration(MTA)forcriticallyreadingthemanuscript overlyingthelaminatedgypsum;and(c)themassive andÖ.‹leriforcomputerdrafting.F.Orti,J.M.M. gypsumoftheLowerMiocenePurtepememberofthe Martin,B.C.SchreiberandT.M.Perytreadthe Hac›aliFormationintheuppermostpartofthe manuscriptandtheircommentshaveimprovedit succession.Celestinemineralizationinthesegypsum substantially.S.MittwedehelpedwiththeEnglish.

46 E.TEK‹N

References

BAIN,R.J.1990.Diagenetic,nonevaporitiveoriginforgypsum.Geology EMERY,D.&ROBINSON,A.1992.InorganicGeochemistryApplicationsto 18,447-450. PetroleumGeology . BlackwellScientificPublications, 232, Oxford. BARBIERI,M.&MASI,U.1984.Srgeochemicalevidenceontheoriginof celestine-baritedepositatPiandell'OrganointheTolfaMountains ERDO⁄AN,B.,AKAY,E.&U⁄UR,M.S.1996.GeologyoftheYozgatregion area(Latium,CentralItaly).MineralogyandPetrography Acta28, andofthecollisionalÇank›r›Basin. International 33-37. GeologyReview38,788-806.

BAYSAL,O.&A TAMAN,G.1980.,mineralogyand EVANS,G.D.&S HEARMAN, D.J.1964.Recentcelestinefromthe geochemistryofasulfateseries(Sivas-Turkey). Sedimentary sedimentsoftheTrucialCoastofthePersianGulf. Nature 202, Geology 25,67-81. 35-386.

BISCHOFF,J.L.&S EYFRIED,W.E.1978.Hydrothermalchemistryof FAURE,G.&P OWELL,J.L.1972. StrontiumIsotopeGeology. Springer- seawaterfrom25oto350°C. AmericanJournalofScience 278, Verlag,188,NewYork. 838-860. FRIEDMAN,I.&O’N EIL, J.R.1977.Complicationofstableisotope BRODTKORB,M.K.,R AMOS,V.B ARBIERI,&M.,A METRANO,S.1982.The fractionationfactorsofgeochemicalinterest. In:F LEISCHER,M. evaporiticcelestine-baritedepositsofNeuquen,Argentina. (ed)DataofGeochemistry. U.S.GeologySurvey,Professional MineraliumDeposita 17,423-436. Paper440,163-178.

BROWER,E.1973.Synthesisofbarite,celestineandbarium-strontium GLADNEY,E.S.,BURNS,C.E.&R OELANDTS,I.1983.1982complicationof sulfatesolidsolutioncrystals. GeochimicaetCosmochimicaActa elementalconcentrationsinelevenUnitedStatesGeological 37,155-158. Surveyrockstandards.GeostandardsNewsletter 7,3-226.

BURKE, W.H.,D ENISON,R.E.,H ETHERINGTON,E.A.,K OEPNICK,R.B., GLYNN,P.D.&R EARDON, E.J.1990.Solid-solutionaqueous-solution 87 86 NELSON,H.F.&OTTO,J.B.1982.Variationofseawater Sr/ Sr equilibria:Thermodynamictheoryandrepresentation. American throughoutPhanerozoictime.Geology 10,516-519. JournalofScience 290,164-201.

CARLSON,E.H.1987.CelestinereplacementofevaporitesintheSalina GÖKÇE,A.&C EYHAN,F.1988.Stratigraphy,structuralfeaturesand Group.SedimentaryGeology 54,92-112. genesisoftheMiocenegypsiferoussedimentsinthesoutheastern Sivas(Turkey). BulletinofFacultyofEngineering,Cumhuriyet CATER,J.M.L.,H ANNA,S.S.,R IES,A.C.&T URNER, R.1991.Tertiary UniversitySeries-AEarthSciences 1,91-111[inTurkishwith evolutionoftheSivasBasin,CentralTurkey. 195, Englishabstract]. 29-46. GÖKÇE,A.1989-1990.Geologyandformationofcelestinedepositsof CEYHAN,F.1996.Geology,OccurrencesandOriginofCelestineDeposits southofSivas. BulletinofFacultyofEngineering,Cumhuriyet intheSivasRegion. PhDthesis,CumhuriyetUniversity,Sivas, UniversitySeries-AEarthSciences 6-7,11-27[inTurkishwith Turkey[inTurkishwithEnglishabstract,unpublished]. Englishabstract]. CODY,R.D.,&C ODY, A.M.1988.Gypsumnucleationandcrystal GÖKÇEN,S.L.&K ELLING,G.1985.OligocenedepositsoftheZara-Hafik morphologyinanalogsalineterrestrialenvironments. Journalof region.(Sivas,CentralTurkey):evolutionfromstorminfluenced Sedimentary58,247-255. shelftoevaporiticbasin.GeologieRundschau 74,139-153. CODY, R.D.1991.Organo-crystallineinteractioninevaporitesystems: GÖKTEN, E.1983.Stratigraphyandgeologicalevolutionofthesouth- theeffectsofcrystallizationinhibition. JournalofSedimentary southeastoffiark›flla(Sivas). BulletinoftheGeologicalSocietyof Petrology 61,704-718. Turkey 26,167-176[inTurkishwithEnglishabstract]. CRAIG,H.1961.Standardforreportingconcentrationsofdeuterium GÖRÜR,N.,fi ENGÖR,A.M.C.,A KKÖK,R.,&Y› LMAZ,Y.1983. and-18innaturalmatters. Science 133,1833-1934 SedimentologicalevidencefortheopeningoftheNorthernbranch ÇUBUK,Y.,OZANSOY,C.&KAYAN,T.1992.GeologyofBattalhöyü¤ütepe ofNoe-TethysinthePontides. BulletinoftheGeologicalSociety (Ulafl-Sivas,Turkey)celestinedeposits. GeolgicalSocietyof ofTurkey 26/1,11-20[inTurkishwithEnglishabstract]. TurkeyAnnualMeeting,Abstracts, 1-7[inTurkish]. GUNDLACH, H.1959.UntersuchungenzurGeochemiedesSrauf DECIMA,A.,M CKENZIE,J.A.,&S CHREIBER,B.C.1987.Theoriginof hydrothermalenLagerstätten.GeologieJahrbuch 76,637. "evaporative"limestones:anexamplefromtheMessinianofSicily HARDIE,L.A.&E UGSTER,H.P.1971.Thedepositionalenvironmentof (Italy).JournalofSedimentaryPetrology 58,256-272. marineevaporites:acaseforshallow,clasticaccumulation. DE PAOLO,D.J.&INGRAM,B.L.1985.Highresolutionstratigraphywith Sedimentology 16,187-220. strontiumisotopes.Science 227,938-941. HARDIE, L.A.1984.Evaporites:marineornon-marine. American DOVE,M.P.&C ZANK,C.A.1995.Crystalchemicalcontrolsonthe JournalofScience 284,193-240. dissolutionkineticsoftheisostructuralsulfates:celestine, HOEFS, J.1987.StableIsotopeGeochemistry (3rd ed.),SpringerVerlag, anglesite,andbaryte. GeochimicaetCosmochimicaActa 59, Munich. 1907-1915.

47 CELESTINE-BEARINGFORMATIONS,ULAfi-S‹VASBASIN,TURKEY

HOLLIDAY, D.W.1970.Thepetrologyofsecondarygypsumrocks:a OGNIBEN,L.1955.Inversegradedbeddinginprimarygypsumof review.JournalofSedimentaryPetrology 40, 734-744. chemicaldeposition. JournalofSedimentaryPetrology 25,273- 281. KARAMANDERESI,I.H.,K› L›ÇDA⁄›,R.&K› L›Ç,N.1992.Relationship betweenS›cakçermik(Sivas)geothermalsystemandcelestine OLAUSSEN, S.1981.FormationofcelestineintheWenlock,Oslo formation.GeolgicalSocietyofTurkeyAnnualMeeting,Abstracts, (Norway)region.Evidenceforevaporiticdepositional 65[inTurkish]. environment.JournalofSedimentaryPetrology 51,37-46.

KESLER,S.E.&J ONES, L.M.1981.Sulphurandstrontiumisotopic PERYT, T.M.1994.Theanatomyofsulphateplatformandadjacent geochemistryofcelestine,bariteandgypsumfromtheMesozoic basinsystemintheLebasub-basinoftheLowerWerraAnhydrite basinsofnortheasternMexico. ChemicalGeology 3,21-224. (Zechstein,Upper),NorthernPoland.Sedimentology 41, 63-113. KINSMAN, D.J.J.1966.Gypsumandanhydriteofrecentage,Trucial Coast,PersianGulf. Proceedingsofthe2 nd InternationalSalt PETERMAN,Z.E.,H EDGE,C.E.&T OURTELOT,H.A.1970.Isotopic Symposium,Cleveland,NorthernOhioGeologySociety 1,302- commpositionofSrinsea-waterthroughoutPhanerozoictime. 326. GeochimicaetCosmochimicaActa34,105-120

KINSMAN,D.J.J.1969.Modelsofformation,sedimentaryassociations RICKMAN, D.L.1977.TheOriginofCelestine(StrontiumSulfate)Oresin anddiagnosticfeaturesofshallow-waterandsupratidal theSouthwesternUnitedStatesandNorthernMexico. MScthesis, evaporites.AmericanAssociationofPetroleumBulletin NewMexicoInst›tuteofMiningandTechnologyInstitute 53,830-840. [unpublished].

KRAUSKOPF,K.B.1979. IntroductiontoGeochemistry .McGraw-Hill SCHOLLE,P.A.,S TEMMERIK,L.&H ARPOTH, O.1990.Originofmajor BookCompany,NewYork. karst-associatedcelestinemineralizationinKarstrygen,central- eastGreenland.JournalofSedimentaryPetrology 60,397-410. KURTMAN,F.1961.StratigraphyofgypsiferousseriesinSivasregion. MineralResearchandExplorationInstituteofTurkey(MTA) SCHREIBER,B.C.&F RIEDMAN G.M.1976.Depositionalenvironmentsof Bulletin 56,26-30[inTurkishwithEnglishabstract]. UpperMiocene(Messinian)evaporitesofsicilyasdetermined fromanalysisofintercalatedcarbonates. Sedimentology 23,255- KUSHNIR, S.V.1985.Theepigeneticcelestineformationmechanismfor 270. rockscontainingCaSO4.Geokhimiya 10,455-1463. SCHREIBER,B.C.,F RIEDMAN,G.M.,D ECIMA,A.&S CHREIBER, E.1976. LONGINELLI,A.,&CRAIG, H.1967.Oxygen-18variationsinsulfateionsin DepositionalenvironmentsofUpperMiocene(Messinian) sea-waterandsalinalakes.Science 156,1431-1438. evaporitedepositsoftheSicilianBasin. Sedimentology 23,729- LOWENSTEIN, T.K.1987.Evaporitedepositionalfabricsinthedeeply 760. buriedBucknerFormation. JournalofSedimentary SCHREIBER,B.C.&E L TABAKH, M.2000.Depositionandearlyalteration Petrology 57,108-116. ofevaporites.Sedimentology47,215-238. MAGEE,J.W.1991.LateQuaternarylacustrine,groundwater,aeolian SHEARMAN,D.J.1977.SabkhaFaciesEvaporites.ScientificWorkBook, andpedogenicgypsuminthePrunglelakes,Southeastern DepartmentofGeology,UniversityofLondon. Australia.,Palaeoclimatology,Palaeoecology 84, 3-42. SONNENFELD, P.1984.BrinesandEvaporites.AcademicPress,London.

MANDADO,J.&T ENA,J.M.1985.Apeeltechniqueforsulfateand STRÜBELL, G.1969.DiehydrotermaleLöslichkeitvonColestinimSystem

carbonaterocks. JournalofSedimentaryPetrology(research SrSO4-NaCl-H2O.NeuesJahrbuchfürMineralogieMonatshefte 4, methodspapers) 56,548-549. 99-109.

MARTIN,J.M.,ORTEGA-HUERTAS,M.&TORREZ-RUIZ,J.1984.Genesisand TARDY,Y.,KREMPP,G.&TRAUTH,N.1972.Lelithiumdanslesmine'raux evolutionofstrontiumdepositsoftheGranadaBasin(South argileuxdessedimentsetdessols. GeochimicaetCosmochimica easternSpain);evidenceofdiageneticreplacementofa Acta 36,397-412. stromatolitebelt.SedimenaryGeology 39,281-288. TEKIN,E.,AYAN,Z.,&V AROL,B.1994.Sivas-Ulaflsölestinoluflumlar›n›n MURRAY,R.C.1964.Originandofgypsumandanhydrite. (Tersiyer)mikrodokusalözelliklerives›v›kapan›mçal›flmalar›. JournalofSedimentaryPetrology 34,512-525. GeologicalSocietyofTurkeyBulletin 37,61-76[inTurkishwith Englishabstract]. MÜLLER, G.1962.ZurGeochemiedesStrontiumsinOzeanenevaporites unterbesondererBerücksichtigungdersedimentarenCoelestin TEKIN,E.1995.TheOriginofCelestineOccurrencesinSivasBasin(NW lagerstattevonHemmelte-West(SüdOldenburg). Geologie 11,1- Ulafl)ofTertiaryAgeandtheirSedimentologicandPetrographical 90. Properties.PhDthesis,AnkaraUniversity,Ankara,Turkey[in TurkishwithEnglishabstract,unpublished]. NORRISH,K.&CHAPPEl,B.W.1977.X-Rayfluorescencespectrometry.In: ZUSSMAN,J.(ed) Physical MethodsinDeterminativeMineralogy TEKIN,E.&V AROL,B.1997.Sivas-UlaflTersiyerhavzas›sölestinlerinin (2nd edition),AcademicPress,London)201-272. kökeniveoluflumflekli. SelçukÜniversitesi20.Y›lJeoloji SempozyumuBildirilerKitap盤›,451-464[inTurkish].

48 E.TEK‹N

TUREKIAN, K.K.1964.Themarinegeochemistryofstrontium. UTRILLA,R.,PIERRE,C.,ORTI,F.&PUEYO,J.J.1992.Oxygenandsulfur GeochimicaetCosmochimicaActa 28,1479-1496. isotopecompositionsasindicatorsoftheoriginofMesozoicand CenozoicevaporitesfromSpain. ChemicalGeology(Isotope TUREKIAN,K.K.&K ULP,J.L.1956.Thegeochemistryofstrontium. GeoscienceSection) 102,229-244 GeochimicaetCosmochimicaActa10,245-269. WARREN,J.K.&KENDAL,C.G.St.C.1985.Ontherecognitionofmarine USDOWSKI,E.1973.DasgeochemischeVerhaltendesStrontiumsbeider sabkhas(subaerial)andsalina(subaqueous)evaporites. American GeneseundDiagenesevonCa-carbonatundCa-sulfat. Minerallen AssociationPetroleumGeologistsBulletin 69,1013-1023. ContributeMineralPetrology 38,177-195.

49