Phylogenetic Survey of Soluble Saxitoxin-Binding Activity in Pursuit of the Function and Molecular Evolution of Saxiphilin, a Relative of Transferrin

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Survey of Soluble Saxitoxin-Binding Activity in Pursuit of the Function and Molecular Evolution of Saxiphilin, a Relative of Transferrin Phylogenetic survey of soluble saxitoxin-binding activity in pursuit of the function and molecular evolution of saxiphilin, a relative of transferrin " # LYNDON E. LLEWELLYN , PETER M. BELL # $ EDWARD G. MOCZYDLOWSKI *, " Australian Institute of Marine Science, PMB 3, ToWnsille MC, Queensland 4810, Australia # * Department of Pharmacolog, Yale Uniersit School of Medicine, 333 Cedar Street, NeW Haen, CT 06520–8066, USA (EdwardjMoczydlowski!Yale.edu) $ Department of Cellular and Molecular Phsiolog, Yale Uniersit School of Medicine, NeW Haen, CT 06520, USA SUMMARY Saxiphilin is a soluble protein of unknown function which binds the neurotoxin, saxitoxin (STX), with high affinity. Molecular characterization of saxiphilin from the North American bullfrog, Rana catesbeiana, has previously shown that it is a member of the transferrin family. In this study we surveyed various animal species to investigate the phylogenetic distribution of saxiphilin, as detected by the presence of $ soluble [ H]STX binding activity in plasma, haemolymph or tissue extracts. We found that saxiphilin activity is readily detectable in a wide variety of arthropods, fish, amphibians, and reptiles. The $ pharmacological characteristics of [ H]STX binding activity in phylogenetically diverse species indicates that a protein homologous to bullfrog saxiphilin is likely to be constitutively expressed in many ectothermic animals. The results suggest that the saxiphilin gene is evolutionarily as old as an ancestral $ gene encoding bilobed transferrin, an Fe +-binding and transport protein which has been identified in several arthropods and all the vertebrates which have been studied. site on Na+ channels has been localized to residues 1. INTRODUCTION within a conserved sequence motif in four homologous The neurotoxin, saxitoxin (STX), and a large array of domains of the α-subunit, which forms part of the ion- STX derivatives are produced by certain species of selective pore (Terlau et al. 1991). dinoflagellates in the marine environment and cyano- While the molecular pharmacology of STX with bacteria in the freshwater ecosystem (Carmichael et al. respect to Na+ channels is well characterized, our 1990; Hall et al. 1990; Schantz 1986; Shimizu 1996). group has been attempting to uncover the biological Consumption of toxic phytoplankton by filter-feeding significance of a different high-affinity binding site for organisms results in the accumulation and dispersal of STX, which is located on a soluble protein named STX through the food chain to animals which have saxiphilin. This site was first recognized due to the $ been reported to include an ascidian, annelids, mol- finding of high-affinity binding activity for [ H]STX in luscs, crabs, fish, and ultimately mammals (Anderson tissue extracts and plasma of frogs and toads (Doyle et & White 1992; Geraci et al. 1989; Gessner et al. 1996; al. 1982; Mahar et al. 1991). A component exhibiting $ Llewellyn & Endean 1989; Nagashima et al. 1984; soluble [ H]STX binding activity was purified from Yasumoto et al. 1986). The human intoxication plasma of the bullfrog, Rana catesbeiana, and found to syndrome of paralysis and death resulting from correspond to a 91 kDa protein related to the trans- $ unwitting consumption of STX-contaminated shellfish ferrin family of Fe +-binding proteins (Li & Moczyd- is commonly known as ‘paralytic shellfish poisoning’ lowski 1991). Structural similarity of saxiphilin to (PSP). The neurotoxicity of STX is due to potent transferrin is indicated by a high level of sequence blockade of voltage-sensitive Na+ channels that me- similarity; e.g. 51% identity to Xenopus laeis trans- diate nerve and muscle action potentials (Ritchie & ferrin and 44% identity to human serum transferrin Rogart 1977). STX exerts half-maximal blockage of (Morabito & Moczydlowski 1994). Serum transferrin Na+ current at a concentration of 2–100 nM of STX, and lactoferrin have a bilobed structure owing to the depending on the particular Na+ channel isoform (Guo presence of two internally homologous domains of et al. 1987). At the molecular level, the STX binding ca. 340 residues, the N-lobe and the C-lobe, that each $+ −#! contain a high affinity site for Fe (KD ca.10 M) − and the synergistic anion cofactor, HCO$ (Baker & * Author and address for correspondence. Lindley 1992). Bullfrog saxiphilin has the same internal Proc. R. Soc. Lond. B (1997) 264, 891–902 891 " 1997 The Royal Society Printed in Great Britain 892 L. E. Llewellyn and others Phlogenetic sure of saxiphilin-like actiit duplication as the transferrins, but has substitutions in toxication from microbial sources, it ought to be $ nine out of ten highly conserved Fe +-site residues, commonly expressed by animal species inhabiting $ thereby accounting for its lack of demonstrable Fe +- ecosystems known to harbour STX-producing phyto- binding activity (Li et al. 1993; Morabito & Moczyd- plankton. Unexpectedly, we found putative saxiphilin- lowski 1994). The single high-affinity binding site for like activity in terrestrial and aquatic arthropods and STX (KD ca. 0.2 nM) in bullfrog saxiphilin has been in a wide variety of ectothermic vertebrates, including localized to the C-lobe, as determined by assay of a fish and amphibians from the aquatic environment as recombinant form of the protein in which the N-lobe well as reptiles indigenous to semi-arid locales. The $ has been deleted (Morabito et al. 1995). [ H]STX data imply that saxiphilin has an ancient origin in binding to saxiphilin is also inhibited at low pH in a animal evolution, and that it may function in a manner reminiscent of the pH-dependent release of process(es) of broadly-based biological significance. $ Fe + by transferrin (Llewellyn & Moczydlowski 1994), a process which is important in the delivery of iron to 2. METHODS eukaryotic cells by transferrin receptor-mediated endo- cytosis (Thorstensen & Romslo 1990). (a) Materials $ Aside from the recognized role of serum transferrin [ H]STX was purchased from Amersham International, in iron transport, transferrin and lactoferrin are also purified, and standardized according to Moczydlowski et al. $+ $ responsible for maintaining low levels of free Fe in (1988). Several different lots of [ H]STX used in this $+ biological fluids, which inhibits the growth of Fe - study had specific activities in the range of 20200– " requiring microorganisms and protects against the 35100 cpm pmol− . STX was purchased from Calbiochem # $ potential toxicity of Fe +} Fe + in the generation of (La Jolla, CA). The following STX derivatives were hydroxyl free radicals (Crichton 1991). By analogy to generously provided by Dr Sherwood Hall (US Food and this latter chemical defence function, it may be Drug Administration): decarbamoylsaxitoxin (dcSTX), hypothesized that saxiphilin functions as a defence neosaxitoxin (neoSTX), B1 and C1 (see figure 2a for structures). Stock solutions of these toxins were diluted in mechanism against STX intoxication, by sequestering 1 mM citrate buffer, pH 5.0. The common buffers, Mops, any STX that an animal might acquire from microbial Mes, Hepes, and Tris, and the anaesthetics, tricaine sources. Although comparatively little is known about methanesulphonate and sodium brevital, came from Sigma the chemical ecology of STX in the freshwater (St Louis, MO). The cation exchange resin, AG50W-X2, H+ environment, an argument for this hypothesis can be form, 100–200 mesh, was obtained from Bio-Rad (Richmond, drawn from previous observations of tadpole mortality CA). Other chemicals were reagent grade, and came from associated with STX production by the cyanobacterial commercial sources. species, Aphaniomenon flos-aquae (Ikawa et al. 1982), and the occurrence of saxiphilin in Ranid tadpoles and (b) Sources of animals and sample preparation frogs (Mahar et al. 1991). Another question concerns the molecular evolution Some species used in this study were purchased from of saxiphilin. Transferrins have thus far been identified Connecticut Valley Biological (Southampton, MA), Caro- in all classes of vertebrates, several insect species and an lina Biological (Burlington, NC), and Charles Sullivan Co. (Nashville, TN). Various animals were collected in the ascidian (Bartfeld & Law 1990; Jamroz et al. 1993; vicinity of Mount Desert Island Biological Laboratory Kurama et al. 1995; Martin et al. 1984; Welch 1990). (Salisbury Cove, ME) and the Australian Institute of Marine Sequence data imply that the gene duplication Science (Townsville, ueensland, Australia). Numerous underlying the bilobed structure of modern transferrin professional colleagues, listed in the acknowledgements, occurred before the emergence of insects (Bowman et generously donated plasma and tissue samples from animals al. 1988; Bartfeld & Law 1990). Since saxiphilin used in their own studies. Plasma samples from several species contains this same internal duplication, a transferrin of sharks, dolphins and whales were obtained from the New gene may have been the direct ancestral precursor of England Aquarium (Boston, MA) through the assistance of the saxiphilin gene. Evidence has recently emerged Dr Don Anderson at the Woods Hole Oceanographic $ that saxiphilin is not the only example of a non-Fe +- Institute (Woods Hole, MA). Lyophilized plasma from terrestrial mammals, birds, and the Thailand cobra (N. n. binding member of the transferrin family. Fierke and kaouthia), liver extract of the African lungfish (P. aethiopicus) her co-workers have identified a protein inhibitor of and horseshoe crab (L. polphemus) haemolymph were
Recommended publications
  • Fishing and Harvesting of Aquatic
    Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 SGCN and Habitat Stressors Level 1 Threat Biological Resource Use Level 2 Threat: Fishing and Harvesting of Aquatic Resources Description: Harvesting aquatic wild animals or plants for commercial, recreation, subsistence, research, or cultural purposes, or for control/persecution reasons; includes accidental mortality/bycatch Species Associated With This Stressor: Total SGCN: 1: 21 2: 48 3: Class Actinopterygii (Ray-finned Fishes) SGCN Category Species: Alosa pseudoharengus (Alewife) 2 Severity: Moderate Severity Actionability: Moderately actionable Notes: Extraction and mortality rates differ widely among Maine runs. Implementing voluntary conservation measures, such as continuous escapement or not fishing the run during the first week, can help ensure sustainable harvests Species: Anguilla rostrata (American Eel) 2 Severity: Moderate Severity Actionability: Moderately actionable Notes: Commercial and Recreational harvest can be effectively regulated or minimized, however timescale of effect on adult spawning populations is long Species: Alosa sapidissima (American Shad) 1 Severity: Moderate Severity Actionability: Moderately actionable Notes: Extraction and mortality rates differ widely among Maine runs. Implementing voluntary conservation measures, such as continuous escapement or not fishing the run during the first week, can help ensure sustainable harvests Species: Thunnus thynnus (Atlantic Bluefin Tuna) 2 Severity: Severe Actionability: Moderately actionable Notes: While fishing mortality in the Western Atlantic has been effectively reduced based on TACs and other measures, fishing mortality continues to be very high in the Eastern Atlantic. The species is also susceptible as bycatch in longlining and other pelagic fishing. Species: Gadus morhua (Atlantic Cod) 1 Severity: Moderate Severity Actionability: Moderately actionable Notes: Historic heavy fishing pressure has drastically reduced Atlantic cod stocks in the Gulf of Maine and Maine waters.
    [Show full text]
  • Download Complete Work
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Birkeland, Charles, P. K. Dayton and N. A. Engstrom, 1982. Papers from the Echinoderm Conference. 11. A stable system of predation on a holothurian by four asteroids and their top predator. Australian Museum Memoir 16: 175–189, ISBN 0-7305-5743-6. [31 December 1982]. doi:10.3853/j.0067-1967.16.1982.365 ISSN 0067-1967 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia THE AUSTRALIAN MUSEUM, SYDNEY MEMOIR 16 Papers from the Echinoderm Conference THE AUSTRALIAN MUSEUM SYDNEY, 1978 Edited by FRANCIS W. E. ROWE The Australian Museum, Sydney Published by order of the Trustees of The Australian Museum Sydney, New South Wales, Australia 1982 Manuscripts accepted lelr publication 27 March 1980 ORGANISER FRANCIS W. E. ROWE The Australian Museum, Sydney, New South Wales, Australia CHAIRMEN OF SESSIONS AILSA M. CLARK British Museum (Natural History), London, England. MICHEL J ANGOUX Universite Libre de Bruxelles, Bruxelles, Belgium. PORTER KIER Smithsonian Institution, Washington, D.C., 20560, U.S.A. JOHN LUCAS James Cook University, Townsville, Queensland, Australia. LOISETTE M. MARSH Western Australian Museum, Perth, Western Australia. DAVID NICHOLS Exeter University, Exeter, Devon, England. DAVID L. PAWSON Smithsonian Institution, Washington, D.e. 20560, U.S.A. FRANCIS W. E. ROWE The Australian Museum, Sydney, New South Wales, Australia. CONTRIBUTIONS BIRKELAND, Charles, University of Guam, U.S.A. 96910. (p. 175). BRUCE, A.
    [Show full text]
  • Biodiversity and the Future of the Gulf of Maine Area Lewis Incze and Peter Lawton Genes
    Biodiversity and the Future of the Gulf of Maine Area Lewis Incze and Peter Lawton Genes Biodiversity is the diversity of life at all levels of organization, from genes to species, communities and ecosystems. Species Nearshore Offshore Bank Basin Slope GoMA: Ecosystem Field Project Habitats and Seamount Communities Abyssal Plain From microbes to whales, and from fundamental biodiversity to EBM GoMA Areas of Work: Species in the Gulf of Maine Area Ecology: past and present Technology Synthesizing Knowledge Linkages to EBM Outreach Today’s Agenda: 08:45-09:45 Presentation: The Global Census and GoMA: What did we do? What did we learn? 09:45-10:00 Q&A 10:00-10:20 BREAK 10:20-11:00 Presentation: Pathways to EBM 11:00-11:45 Discussion Programs of the Census of Marine Life ArCoD Arctic CMarZ Zooplankton CAML Antarctic Creefs Coral Reefs CenSeam Seamounts GoMA Gulf of Maine Area CheSS Chemosynthetic Systems ICOMM Microbes COMARGE Continental margins MAR-ECO Mid-Ocean Ridges CeDAMAR Abyssal Plains NaGISA Intertidal/Shallow Subtidal CenSeam Seamounts TOPP Top Predators HMAP History of Marine Animal Populations FMAP Future of “ “ “ OBIS Ocean Biogeographic Information System Collaborators/Affiliated programs Great Barrier Reef Gulf of Mexico BarCode of Life Encyclopedia of Life Oceans film 10 years (2000-2010) 80 countries, 2700 scientists 17 projects, 14 field projects + OBIS, HMAP Xxx cruises, xxxx days at sea, and FMAP ~ $77m leveraged ~ $767 m --need to 5 affiliated projects (field and technology) check 9 national and regional committees >2,500 scientific papers (many covers) books special journal volumes ~1,200 new species identified >1,500 species in waiting Collection in PLoS-ONE, 2010, incl.
    [Show full text]
  • Notes on Starfish on an Essex Oyster Bed
    J. mar. biol. Ass. U.K. (1958) 37, 565-589 Printed in Great Britain NOTES ON STARFISH ON AN ESSEX OYSTER BED By D. A. HANCOCK Fisheries Laboratory, Burnham-on-Crouch (Text-figs. 1-9) In a previous paper (Hancock, 1955) an account was given of the feeding behaviour of the starfish Asterias rubens L. and the common sunstar Solaster papposus (L.) on Essex oyster beds. In discussion, it was stated that there was no evidence that, in the conditions described, a cultivated oyster ground provided a greater attraction than an uncultivated one. The present work was undertaken to provide information on this subject, and also on the movements, growth and ecological relationships of starfish. Further experiments were made on feeding behaviour, particularly of the young starfish. Samples required to give information on the growth and distribution of starfish were obtained from regular surveys of an oyster bed, by a series of parallel dredge hauls covering both cultivated and derelict bottoms. In November 1954, a section of oyster ground, 125 m wide, and stretching from one bank to the other (Fig. 1),was marked out at the Southward Laying, River Crouch. The first dredge haul was made with two 4 ft. 6in. dredges over the 125 m width, parallel to the edge of the north shore at L.W.a.S.T. and 10 m from it. Buoys were used to mark distances offshore, and subsequent dredge hauls were made parallel with each other 20 m apart, and, when time permitted, were continued as far as the south shore, giving a total of twenty-six stations.
    [Show full text]
  • Evolution of Centipede Venoms Under Morphological Constraint
    Production and packaging of a biological arsenal: Evolution of centipede venoms under morphological constraint Eivind A. B. Undheima,b, Brett R. Hamiltonc,d, Nyoman D. Kurniawanb, Greg Bowlayc, Bronwen W. Cribbe, David J. Merritte, Bryan G. Frye, Glenn F. Kinga,1, and Deon J. Venterc,d,f,1 aInstitute for Molecular Bioscience, bCentre for Advanced Imaging, eSchool of Biological Sciences, fSchool of Medicine, and dMater Research Institute, University of Queensland, St. Lucia, QLD 4072, Australia; and cPathology Department, Mater Health Services, South Brisbane, QLD 4101, Australia Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved February 18, 2015 (received for review December 16, 2014) Venom represents one of the most extreme manifestations of (11). Similarly, the evolution of prey constriction in snakes has a chemical arms race. Venoms are complex biochemical arsenals, led to a reduction in, or secondary loss of, venom systems despite often containing hundreds to thousands of unique protein toxins. these species still feeding on formidable prey (12–15). However, Despite their utility for prey capture, venoms are energetically in centipedes (Chilopoda), which represent one of the oldest yet expensive commodities, and consequently it is hypothesized that least-studied venomous lineages on the planet, this inverse re- venom complexity is inversely related to the capacity of a venom- lationship between venom complexity and physical subdual of ous animal to physically subdue prey. Centipedes, one of the prey appears to be absent. oldest yet least-studied venomous lineages, appear to defy this There are ∼3,300 extant centipede species, divided across rule. Although scutigeromorph centipedes produce less complex five orders (16).
    [Show full text]
  • I. the Development of the Starfish Solaster Endeca Forbes
    TRANSACTIONS OF THE ZOOLOGICAL SOCIETY OF LONDON. I. The Development of the Star$.& Solaster endeca _Forbes. By JAMESF. GEMMILL, M.A., M.D., B.Sc., F.Z.S., Leetwer ~PL~~~~~~l~g~, Glnsgow Uwiversity, ad in Zoology, Glnsgow Provincial Fraining College. (Received and read November 29, 1910.) [PLATESI.-V.] CONTENTS. Page I. STRUCTURDAND POSITION ........................................................ 3 11. OVARIESAND OVA .............................................................. 4 Arrangement and structure of the egg-tubes, 4; muscular t.issue and sinus-spaces in their walls, 4; relation of the latter to genital sinuses and hiemal tissue, 5; growth of the ova, 6 ; accumulation of yolk-granules, 6 ; yolk-nuclei, 7 ; follicle-cells, 7 ; egg-ducts, 8. 111. MATURATION,SPA.WNIXGI, PERTILIZATIOB, Brc. ........................................ 9 Time of maturation, 9 ; season, &c. of spawning, 9 ; the ova in water, 10 j memhrarie of fertilisation, 11 j cross-fertilisation, 11 ; early and later segmentetion, 11 ; formation of blastula by egression and of gastrula by invagination, 12 ; appearance of cilia, 12 ; morements of blastula and gastrula, 13 ; hypenchyme, 13 ; chronology, 13. IV. ESTEBNALCHARACTERS, MOVEMENTS, &c. DURIND THE FREE-SWIMMINGP~RIOD .............. 14 Elongation of gastrula, 14 ; formation of arms and of sucker, 14 ; preoral lobe and body of larva, 14 ; formation of hydropore, 14 j closure of blastopore; 15 j movements of the lam=, 15 j ciliation at anterior and posterior ends an? over general surface, 15 ; commencement of flexion and torsion of the preoral lobe, 16 ; first appearance extern- ally of hydroccele lobes and of aboral arm rudiments, 17 j chronology, 17. VOL. XX.-PART I. No. I.--Februny, 1912. B 2 DR. J.
    [Show full text]
  • What Changed the Demography of an Introduced Population of An
    Journal of Animal What changed the demography of an introduced Ecology 0887\ 56\ 568Ð577 population of an herbivorous lady beetle< TAKAYUKI OHGUSHI and HIROICHI SAWADA$ Laboratory of Entomology\ Faculty of Agriculture\ Kyoto University\ Kyoto 595\ Japan Summary 0[ The population dynamics of an introduced population of Epilachna niponica "Lewis# "Coleoptera] Coccinellidae# was investigated for a 6!year period following its introduction to a site outside of its natural range[ A population from Asiu Exper! imental Forest was introduced to Kyoto University Botanical Garden\ 09 km south of its natural distribution[ 1[ Arthropod predation was much lower in the introduced than in the source popu! lation[ As a result of the lower predation in the Botanical Garden\ larvae reached densities _ve times higher than in the Asiu Forest and host plants were frequently defoliated[ Food shortage caused larval deaths from starvation and increased dis! persal[ 2[ The density of the introduced population was much more variable than that of the source population[ The variation in population density in both the introduced and source populations is limited by density!dependent reduction in fecundity and female survival[ However\ variation in the introduced population|s density was increased due to host plant defoliation that resulted in overcompensating density!dependent mortality[ In years with high larval density plants were defoliated and this increased adult mortality during the prehibernation period[ Besides\ the density!dependent regulatory mechanisms that
    [Show full text]
  • Faunal Make-Up of Moths in Tomakomai Experiment Forest, Hokkaido University
    Title Faunal make-up of moths in Tomakomai Experiment Forest, Hokkaido University Author(s) YOSHIDA, Kunikichi Citation 北海道大學農學部 演習林研究報告, 38(2), 181-217 Issue Date 1981-09 Doc URL http://hdl.handle.net/2115/21056 Type bulletin (article) File Information 38(2)_P181-217.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Faunal make-up of moths in Tomakomai Experiment Forest, Hokkaido University* By Kunikichi YOSHIDA** tf IE m tf** A light trap survey was carried out to obtain some ecological information on the moths of Tomakomai Experiment Forest, Hokkaido University, at four different vegetational stands from early May to late October in 1978. In a previous paper (YOSHIDA 1980), seasonal fluctuations of the moth community and the predominant species were compared among the four· stands. As a second report the present paper deals with soml charactelistics on the faunal make-up. Before going further, the author wishes to express his sincere thanks to Mr. Masanori J. TODA and Professor Sh6ichi F. SAKAGAMI, the Institute of Low Tem­ perature Science, Hokkaido University, for their partinent guidance throughout the present study and critical reading of the manuscript. Cordial thanks are also due to Dr. Kenkichi ISHIGAKI, Tomakomai Experiment Forest, Hokkaido University, who provided me with facilities for the present study, Dr. Hiroshi INOUE, Otsuma Women University and Mr. Satoshi HASHIMOTO, University of Osaka Prefecture, for their kind advice and identification of Geometridae. Method The sampling method, general features of the area surveyed and the flora of sampling sites are referred to the descriptions given previously (YOSHIDA loco cit.).
    [Show full text]
  • A Revision of the Japanese Lymantriidae (Ii)
    Jap. J. M. Sc. & Biol., 10, 187-219, 1957 A REVISION OF THE JAPANESE LYMANTRIIDAE (II) HIROSHI INOUE1) Eiko-Gakuen, Funakoshi, Yokosuka2) (Received: April 13th, 1957) Genus Lymantria Hubner Lymantria Hubner, 1819, p. 160; Hampson, 1892, p. 459; Strand, 1911, p. 126; id., 1915, p. 320; Pierce & Beirne, 1941, p. 43. Liparis Ochsenheimer, 1810, p. 186 (nec Scopoli, 1777). Porthetria Hubner, 1819, p. 160. Enome Walker, 1855b, p. 883. •¬ genitalia : uncus hooked; valva fused, variable in shape, almost always produced into an arm; aedoeagus simple; j uxta a moderately broad plate ; cornutus wanting. From the structure of male genitalia the Japanese representatives may be divided into the following groups: Group 1: dis par subspp., xylina subspp. Uncus narrow, long, valva with costal half extended as an arm, its inner surface without ampulla. Group 2: lucescens, monacha. Uncus broad, short, valva with costa ex- tended as an arm, inner surface with ampulla. Group 3: minomonis. Uncus as in group 2, valva with costal arm broad and short, inner surface with complicated ampulla. Group 4 : f umida. Uncus as in the preceding, valva fused, apex produced into an arm, ampulla a large plate. Group 5: bantaizana. Uncus as in the preceding group, valva with a long arm from apex, ampulla large, triangular. Group 6: mat hura aurora. Uncus as in the preceding group, valva forked, tegumen with dorso-lateral margin strongly extended as a •gpseudo-valva•h. 26. L. dispar (Linne) (Maimai-ga, Shiroshita-maimai) Phalaena Bombyx dispar L., 1758, p. 501. Lymantria dispar Staudinger, 1901, p. 117; Strand, 1911, p. 127; Goldschmidt, 1940, p.
    [Show full text]
  • Evolution, Discovery, and Interpretations of Arthropod Mushroom Bodies Nicholas J
    Downloaded from learnmem.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Evolution, Discovery, and Interpretations of Arthropod Mushroom Bodies Nicholas J. Strausfeld,1,2,5 Lars Hansen,1 Yongsheng Li,1 Robert S. Gomez,1 and Kei Ito3,4 1Arizona Research Laboratories Division of Neurobiology University of Arizona Tucson, Arizona 85721 USA 2Department of Ecology and Evolutionary Biology University of Arizona Tucson, Arizona 85721 USA 3Yamamoto Behavior Genes Project ERATO (Exploratory Research for Advanced Technology) Japan Science and Technology Corporation (JST) at Mitsubishi Kasei Institute of Life Sciences 194 Machida-shi, Tokyo, Japan Abstract insect orders is an acquired character. An overview of the history of research on the Mushroom bodies are prominent mushroom bodies, as well as comparative neuropils found in annelids and in all and evolutionary considerations, provides a arthropod groups except crustaceans. First conceptual framework for discussing the explicitly identified in 1850, the mushroom roles of these neuropils. bodies differ in size and complexity between taxa, as well as between different castes of a Introduction single species of social insect. These Mushroom bodies are lobed neuropils that differences led some early biologists to comprise long and approximately parallel axons suggest that the mushroom bodies endow an originating from clusters of minute basophilic cells arthropod with intelligence or the ability to located dorsally in the most anterior neuromere of execute voluntary actions, as opposed to the central nervous system. Structures with these innate behaviors. Recent physiological morphological properties are found in many ma- studies and mutant analyses have led to rine annelids (e.g., scale worms, sabellid worms, divergent interpretations.
    [Show full text]
  • A Diver's Guide to Northern Ireland Marine Species of Interest
    A Diver’s Guide to Northern Ireland Marine Species of Interest Thornback Ray (Raja clavata) - Row of large, Cuckoo Ray (Leucoraja naevus) - The large eye recurved thorns runs from the back of the head and spots on the pectoral fins are diagnostic. Size: Adults along the tail. Size: Adults 85 cm–1 m long (incl. tail). 45–70 cm long (incl. tail). Spotted Ray (Raja montagui) - Pale back with dark Lesser sandeel (Ammodytes marinus) - Elongate, spots, which do not extend to edge of fins . Size: Adults silver body with a single, long dorsal fin. Size: Adults up 60–80 cm long (incl. tail). to 25 cm long. Please submit species records with an Funding: Department of Agriculture, accompanying date, location and photograph, Environment and Rural Affairs (DAERA), to CEDaR Online Recording - www2.habitas. Northern Ireland org.uk/records or the iRecord App (available to Author: Christine Morrow download from the App Store or Google Play). Photography: Bernard Picton Contributors: Centre for Environmental Data Once confirmed by an assigned verifier, all and Recording (CEDaR), DAERA Marine and records will be collated on CEDaR’s database Fisheries Division and will appear on the NBN Atlas Northern Contracting Officer: Sally Stewart-Moore Ireland. - northernireland.nbnatlas.org Sea squirt (Pyura microcosmus) - Thick, leathery Pin-head squirt (Pycnoclavella stolonialis) - Trans- test usually covered in detritus. Orange-red and white parent body with white cross-shaped patch between stripes inside siphons. Size: Up to 10 cm tall. the siphons. Size: Zooids only 2–3 mm tall. Goosefoot starfish (Anseropoda placenta) - Can be Purple sun star (Solaster endeca) - Cream to purple recognised by short webbed arms; thin body; white and colour; close-set spines; 7–13 arms.
    [Show full text]
  • Morphological Data, Extant Myriapoda, and the Myriapod Stem-Group
    Contributions to Zoology, 73 (3) 207-252 (2004) SPB Academic Publishing bv, The Hague Morphological data, extant Myriapoda, and the myriapod stem-group Gregory+D. Edgecombe Australian Museum, 6 College Street, Sydney, NSW 2010, Australia, e-mail: [email protected] Keywords: Myriapoda, phylogeny, stem-group, fossils Abstract Tagmosis; long-bodied fossils 222 Fossil candidates for the stem-group? 222 Conclusions 225 The status ofMyriapoda (whether mono-, para- or polyphyletic) Acknowledgments 225 and controversial, position of myriapods in the Arthropoda are References 225 .. fossils that an impediment to evaluating may be members of Appendix 1. Characters used in phylogenetic analysis 233 the myriapod stem-group. Parsimony analysis of319 characters Appendix 2. Characters optimised on cladogram in for extant arthropods provides a basis for defending myriapod Fig. 2 251 monophyly and identifying those morphological characters that are to taxon to The necessary assign a fossil the Myriapoda. the most of the allianceofhexapods and crustaceans need notrelegate myriapods “Perhaps perplexing arthropod taxa 1998: to the arthropod stem-group; the Mandibulatahypothesis accom- are the myriapods” (Budd, 136). modates Myriapoda and Tetraconata as sister taxa. No known pre-Silurianfossils have characters that convincingly place them in the Myriapoda or the myriapod stem-group. Because the Introduction strongest apomorphies ofMyriapoda are details ofthe mandible and tentorial endoskeleton,exceptional fossil preservation seems confound For necessary to recognise a stem-group myriapod. Myriapods palaeontologists. all that Cambrian Lagerstdtten like the Burgess Shale and Chengjiang have contributed to knowledge of basal Contents arthropod inter-relationships, they are notably si- lent on the matter of myriapod origins and affini- Introduction 207 ties.
    [Show full text]