Annex 1: Chemical Agents * 143
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical Threat Agents Call Poison Control 24/7 for Treatment Information 1.800.222.1222 Blood Nerve Blister Pulmonary Metals Toxins
CHEMICAL THREAT AGENTS CALL POISON CONTROL 24/7 FOR TREATMENT INFORMATION 1.800.222.1222 BLOOD NERVE BLISTER PULMONARY METALS TOXINS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS • Vertigo • Diarrhea, diaphoresis • Itching • Upper respiratory tract • Cough • Shock • Tachycardia • Urination • Erythema irritation • Metallic taste • Organ failure • Tachypnea • Miosis • Yellowish blisters • Rhinitis • CNS effects • Cyanosis • Bradycardia, bronchospasm • Flu-like symptoms • Coughing • Shortness of breath • Flu-like symptoms • Emesis • Delayed eye irritation • Choking • Flu-like symptoms • Nonspecific neurological • Lacrimation • Delayed pulmonary edema • Visual disturbances symptoms • Salivation, sweating INDICATIVE LAB TESTS INDICATIVE LAB TESTS INDICATIVE LAB TEST INDICATIVE LAB TESTS INDICATIVE LAB TESTS INDICATIVE LAB TESTS • Increased anion gap • Decreased cholinesterase • Thiodiglycol present in urine • Decreased pO2 • Proteinuria None Available • Metabolic acidosis • Increased anion gap • Decreased pCO2 • Renal assessment • Narrow pO2 difference • Metabolic acidosis • Arterial blood gas between arterial and venous • Chest radiography samples DEFINITIVE TEST DEFINITIVE TEST DEFINITIVE TEST DEFINITIVE TESTS DEFINITIVE TESTS • Blood cyanide levels • Urine nerve agent • Urine blister agent No definitive tests available • Blood metals panel • Urine ricinine metabolites metabolites • Urine metals panel • Urine abrine POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS • Hydrogen Cyanide -
Safety Data Sheets (Sdss) Information and Glossary
Safety Data Sheets (SDSs) Information and Glossary 2408 Wanda Daley Drive Ames, Iowa 50011 (515) 294-5359 | www.ehs.iastate.edu Copyright© Reviewed 2018 Safety Data Sheets (SDSs) Information Safety Data Sheets (SDSs) are informational sheets required by the Occupational Safety and Health Administration (OSHA) for hazardous substances (chemicals). The OSHA Hazard Communication Standard (29 CFR 1910.1200) and the Iowa Hazardous Chemical Risks Right to Know Standard (Iowa Administrative Code Section 875, Chapters 110-140) requires SDSs be “readily accessible” for any hazardous chemical in the workplace. Employees must be made aware of the SDS content and chemical storage location. SDSs can be obtained from manufacturers and distributors at the time of initial shipment. Each university workplace must maintain an SDS for each hazardous chemical in its inventory. SDSs that are available electronically meet the “readily accessible” criteria, as long as computer access is available to all employees whenever work is being conducted. EH&S suggests that each workspace also maintain paper copies of commonly used hazardous chemicals for ease of access. OSHA requires specific information be included on an SDS, in a 16-section format as described in the UN Globally Harmonized System of Classification and Labeling of Chemicals (GHS). The SDS must be in English and must include at least the following information: Section 1: Identification includes product identifier; manufacturer or distributor name, address, phone number; emergency phone number; recommended use; restrictions on use. Section 2: Hazard(s) Identification includes all hazards regarding the chemical; required label elements. Section 3: Composition/Information on Ingredients includes information on chemical ingredients; trade secret claims. -
Industry Compliance Programme
Global Chemical Industry Compliance Programme GC-ICP Chemical Weapons Convention December 2006 Version 1.0 GLOBAL CHEMICAL INDUSTRY COMPLIANCE PROGRAMME FOR IMPLEMENTING THE CHEMICAL WEAPONS CONVENTION The purpose of the handbook is to provide guidance to chemical facilities, traders and trading companies in developing a Global Chemical Industry Compliance Programme (GC-ICP) to comply with the Chemical Weapons Convention (CWC). The GC-ICP focuses first on determining if there is a reporting requirement to your National Authority and second on collecting the relevant support data used to complete the required reports. The GC-ICP is designed to provide a methodology to comply with the CWC and establish systems that facilitate and demonstrate such compliance. Each facility/company should also ensure that it follows its country’s CWC specific laws, regulations and reporting requirements. • Sections 2, 3, and 4 guide you through the process of determining if chemicals at your facility/ company should be reported to your National Authority for compliance with the CWC. • Section 5 provides recommended guidance on information that you may use to determine your reporting requirements under the CWC and administrative tools that your facility/company may use to ensure compliance with the CWC. • Section 6 provides a glossary of terms and associated acronyms. • Section 7 provides a listing of all National Authorities by country. CWC Global Chemical Industry Compliance Programme 1 TABLE OF CONTENTS Section 1 Overview What is the Chemical Weapons Convention? -
Responding to a Chemical Warfare Agent Incident: from Sampling and Analysis to Decontamination and Waste Management Stuart Willi
Responding to a Chemical Warfare Agent Incident: from sampling and analysis to decontamination and waste management Stuart Willison & Lukas Oudejans U. S. EPA National Homeland Security Research Center 1 Outline • Homeland Security Relevance to Chemical (Warfare Agent) Incidents and Incident Response Cycle • Identification of Gaps/Needs: PARTNER Process and Stakeholder Priorities • Current High Stakeholder Priorities • Research Efforts to meet these Needs/Gaps Selected Analytical Methods (SAM) Document CWA Method Development and Wipe Efficiency Studies on Surfaces Fate and Transport of CWAs Natural Attenuation of VX Decontamination of Vesicant/Blister CWAs HD, L, HL Analytical Method Development: Lewisite; EA 2192 Best Practices Document for Waste Media from Remediation Activities • Summary 2 Response to Contamination Events Since 9/11, multiple chemical/biotoxin contamination events have occurred in the United States and worldwide: • Several ricin incidents (2002-2014) • Deepwater Horizon oil spill (April 2010) • Kalamazoo River oil spill (July 2010) • CWA sulfur mustard clam shells (2010) • CWA chemical attacks (Syria, Middle East) (March-August 2013 and April 2014-current) • Elk River chemical spill in West Virginia (January 2014) • Toxic algae blooms in Toledo, OH (August 2014) • Arsenic-contaminated soil in Kentucky potentially containing CWA Lewisite (March 2015) • (Organophosphate-) Pesticide over- or misuse across USA in relation to bed bug epidemic (current) 3 Response Cycle Contaminant Release Reduce Vulnerabilities Lessons -
G.J. Chemical Company, Inc. Safety Data Sheet
G.J. CHEMICAL COMPANY, INC. SAFETY DATA SHEET . PRODUCT IDENTIFIER 1.1 PRODUCT NAME: ACETONE PRODUCT NUMBER(S):100100, 100101,100110, 100120, 100130, 100140,100150, 100160 & 100180 TRADE NAMES/SYNONYMS: 2-Propanone; Dimethylformaldehyde; Dimethyl Ketone; Beta-Ketopropane; Methyl Ketone; CAS-No: 67-74-1 CHEMICAL FAMILY: Ketone, Aliphatic 1.2 RELEVANT IDENTIFIED USES OF THE SUBSTANCE OR MIXTURE AND USES ADVISED AGAINST IDENTIFIED USES: 1. Manufacture, process and distribution of substances and mixtures * 2. Use in laboratories 3. Uses in coatings 4. Use as binders and release agents 5. Rubber production and processing 6. Polymer manufacturing 7. Polymer processing 8. Use in Cleaning Agents 9. Use in Oil and Gas Field drilling and production operations 10. Blowing agents 11. Mining chemicals USES ADVISED AGAINST: No information available 1.3 DETAILS OF THE SUPPLIER OF THE SAFETY DATA SHEET Company: G.J. CHEMICAL CO., INC. Address: 40 VERONICA AVENUE SOMERSET, NJ 08873 Telephone: 1-973-589-1450 Fax: 1-973-589-3072 1.4 Emergency Telephone Number Emergency Phone: 1-800-424-9300 (CHEMTREC) . HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture GHS Classification in accordance with 29CFR 1910 (OSHA HCS) Flammable liquids (Category 2), H225 Eye irritation (Category 2A), H319 Specific target organ toxicity - single exposure (Category 3), Central Nervous system, H336 2.2 GHS Label elements, including precautionary statements Pictogram GHS02 GHS07 Signal word: DANGER Hazard statement(s) H225 Highly flammable liquid and vapor. H319 Causes serious eye irritation. H336 May cause drowsiness or dizziness. Precautionary statement(s) Prevention: P210 Keep away from heat/sparks/open flames/hot surfaces. -
Scientific Advisory Board
OPCW Scientific Advisory Board SAB-III/1 27 April 2000 Original: ENGLISH REPORT OF THE THIRD SESSION OF THE SCIENTIFIC ADVISORY BOARD 1. Introduction 1.1 The Scientific Advisory Board (hereinafter referred to as the “Board”) held two meetings during its third session, which took place from 14 - 16 December 1999 and from 15 - 16 March 2000 in The Hague. 1.2 Dr Claude Eon of France, the Chairman of the Board, presided over its proceedings. 1.3 The Board considered the following issues: (a) adamsite; (b) analytical procedures; (c) equipment issues; (d) destruction technologies; (e) bio-medical samples; (f) future contributions of the Board to the preparation of the first Review Conference; and (g) any other business. 1.4 In preparation for its meeting the Board had received reports from its temporary working groups (TWGs) on adamsite and analytical procedures, and a report on a joint meeting of the temporary working groups on equipment issues and on chemical weapons destruction technologies. 1.5 During its meeting in December 1999, the Board received a briefing by the Deputy Director-General on the status of implementation of the Convention and on work priorities. The Board was also briefed by staff from the Verification and Inspectorate Divisions on experiences with the conduct of different types of inspection, as well as on analytical and equipment-related matters. It was further briefed on the results of an expert meeting on bio-medical samples conducted by the Secretariat in December 1999. CS-2000-1867 SAB-III/1 page 2 2. Work on substantive issues Adamsite 2.1 The Board received and discussed the draft report of the TWG on adamsite dated 7 October 1999, noted additional comments, and decided to include in its report the following considerations in relation to this matter: 2.2 Adamsite (10-chloro-5,10-dihydro-phenarsazine, code name DM, CAS registry number 578-94-9) is a yellow-green crystalline solid with a boiling point of 410ºC and a melting point of 195ºC. -
Copyrighted Material
1 Historical Milieu 1.1 Organophosphorus Nerve Agents 2 1.2 Blister Agents 5 1.3 Sternutator Agents 11 1.4 Chemical Weapons Convention (CWC) 13 1.4.1 Schedule of Chemicals 14 1.4.2 Destruction of Chemical Weapons 14 References 16 COPYRIGHTED MATERIAL Analysis of Chemical Warfare Degradation Products, First Edition. Karolin K. Kroening, Renee N. Easter, Douglas D. Richardson, Stuart A. Willison and Joseph A. Caruso. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. 2 ANALYSIS OF CHEMICAL WARFARE DEGRADATION PRODUCTS 1.1 ORGANOPHOSPHORUS NERVE AGENTS Organophosphorus (OP) type compounds, that is, deriva- tives containing the P=O moiety, were first discovered in the 1800s when researchers were investigating useful applica- tions for insecticides/rodenticides. There are many derivatives of organophosphorus compounds, however, the OP deriva- tives that are typically known as ‘nerve agents’ were discov- ered accidentally in Germany in 1936 by a research team led by Dr. Gerhard Schrader at IG Farben [1–4]. Schrader had noticed the effects and lethality of these organophosphorus compounds towards insects and began developing a new class of insecticides. While working towards the goal of an improved insecticide, Schrader experimented with numerous phosphorus-containing compounds, leading to the discovery of the first nerve agent, Tabun (or GA) (Figure 1.1). The potency of these insecticides towards humans was not realized until there was yet another accident, which involved a Tabun spill. Schrader and coworkers began experiencing symptoms, such as miosis (constriction of the pupils of the eyes), dizziness and severe shortness of breath, with numerous effects lasting several weeks [1, 4, 5]. -
Chemical Warfare Agent (CWA) Identification Overview
Physicians for Human Rights Chemical Warfare Agent (CWA) Identification Overview Chemical Warfare Agent Identification Fact Sheet Series Table of Contents This Chemical Warfare Agent (CWA) Identification Fact Sheet is part 2 Physical Properties of a Physicians for Human Rights (PHR) series designed to fill a gap in 2 VX (Nerve Agent) 2 Sarin (Nerve Agent) knowledge among medical first responders to possible CWA attacks. 2 Tabun (Nerve Agent) This document in particular outlines differences between a select 2 BZ (Incapacitating Agent) group of vesicants and nerve agents, the deployment of which would 2 Mustard Gas (Vesicant) necessitate emergency medical treatment and documentation. 3 Collecting Samples to Test for Exposure 4 Protection PHR hopes that, by referencing these fact sheets, medical professionals 5 Symptoms may be able to correctly diagnose, treat, and document evidence of 6 Differential Diagnosis exposure to CWAs. Information in this fact sheet has been compiled from 8 Decontimanation 9 Treatment publicly available sources. 9 Abbreviations A series of detailed CWA fact sheets outlining in detail those properties and treatment regimes unique to each CWA is available at physiciansforhumanrights.org/training/chemical-weapons. phr.org Chemical Warfare Agent (CWA) Identification Overview 1 Collect urine samples, and blood and hair samples if possible, immediately after exposure Physical Properties VX • A lethal dose (10 mg) of VX, absorbed through the skin, can kill within minutes (Nerve Agent) • Can remain in environment for weeks -
Tinnitus Hopes Put to Sleep by Latest Auris Failure
March 14, 2018 Tinnitus hopes put to sleep by latest Auris failure Madeleine Armstrong Ketamine is best known as a horse tranquiliser or a recreational drug, but it has also been proposed as a treatment for various disorders from depression to Alzheimer’s. Hopes of developing the drug in tinnitus have been dashed by the failure of Auris’s Keyzilen in a second phase III trial. As well as leaving Auris’s future looking bleak – Keyzilen is the second of its phase III candidates to flunk in four months – the setback could also be bad news for the sparse tinnitus pipeline. According to EvaluatePharma there is only one other candidate in active clinical development, Otonomy’s OTO-313, and this uses the same mechanism of action as Keyzilen (see table below). Tinnitus pipeline Generic Project Company Pharma class Trial(s) Notes name Phase III Auris Esketamine TACTT2 Keyzilen NMDA antagonist Failed Aug 2016 Medical hydrochloride (NCT01803646) TACTT3 Failed Mar 2018 (NCT02040194) Phase I OTO- Phase I/II trial to OTO-311 abandoned in Otonomy NMDA antagonist Gacyclidine 313 start H1 2019 favour of this formulation Preclinical Auris AM-102 Undisclosed - - Medical KCNQ2 Knopp Kv7 potassium - - Program Biosciences channel modulator Source: EvaluatePharma. Both projects are psychoactive drugs targeting the NMDA receptor. Tinnitus is commonly caused by loud noise and resulting damage to the sensory hair cells in the cochlea. Initial trauma to the inner ear has been shown to trigger excess production of glutamate, which leads to the hyperactivation of NMDA receptors and, in turn, cell death. Blocking the NMDA receptor could therefore have a protective effect – but it is unclear how this mechanism would work once the damage to hair cells had been done. -
(19) United States (12) Patent Application Publication (10) Pub
US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist. -
Critical Evaluation of Proven Chemical Weapon Destruction Technologies
Pure Appl. Chem., Vol. 74, No. 2, pp. 187–316, 2002. © 2002 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION IUPAC COMMITTEE ON CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES* WORKING PARTY ON EVALUATION OF CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES** CRITICAL EVALUATION OF PROVEN CHEMICAL WEAPON DESTRUCTION TECHNOLOGIES (IUPAC Technical Report) Prepared for publication by GRAHAM S. PEARSON1,‡ AND RICHARD S. MAGEE2 1Department of Peace Studies, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK 2Carmagen Engineering, Inc., 4 West Main Street, Rockaway, NJ 07866, USA *Membership of the IUPAC Committee is: Chairman: Joseph F. Burnett; Members: Wataru Ando (Japan), Irina P. Beletskaya (Russia), Hongmei Deng (China), H. Dupont Durst (USA), Daniel Froment (France), Ralph Leslie (Australia), Ronald G. Manley (UK), Blaine C. McKusick (USA), Marian M. Mikolajczyk (Poland), Giorgio Modena (Italy), Walter Mulbry (USA), Graham S. Pearson (UK), Kurt Schaffner (Germany). **Membership of the Working Group was as follows: Chairman: Graham S. Pearson (UK); Members: Richard S. Magee (USA), Herbert de Bisschop (Belgium). The Working Group wishes to acknowledge the contributions made by the following, although the conclusions and contents of the Technical Report remain the responsibility of the Working Group: Joseph F. Bunnett (USA), Charles Baronian (USA), Ron G. Manley (OPCW), Georgio Modena (Italy), G. P. Moss (UK), George W. Parshall (USA), Julian Perry Robinson (UK), and Volker Starrock (Germany). ‡Corresponding author Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. -
Medicine with Deeper, More Biochemical Conception Of
Edinburgh Medical Journal May 1951 APPLICATIONS of chemical defence research IN MEDICINET? By Professor R. A. PETERS to be invited It is a great responsibility, as well as a great honour, to Cameron lecturers give this lecture ; and I expect that with other I this ancient seat of share a sense of awe upon standing here in is learning. For me it is an awe tinged with much feeling (it possible that this is partly because some forebears of my mother came from near to recent of the this ; it is in part due the perusal city) perhaps " address here Froude in on the Times of John Knox, given by 1865 " " entitled Influence of the Reformation upon the Scottish Character ; this address drives home to the Sassenach the sterner stuff of which all of us in the the Scots are made ; but I really think it is more that as south, even if we come as I do from a Medical School as ancient the Hospital of St Bartholomew, know full well that Edinburgh stands high indeed in the world of Medical Schools as Scotland itself stands in the world of intellect. Elsewhere I have discussed fully the historical background of our for me back researches upon Chemical Defence substances, which go to World War I.23 Again in my Dixon lecture,24 I have indicated some of the interest for pharmacology. The outlook for medicine has not the been reviewed so far. Therefore I propose to-day to discuss of British influence upon the future of therapeutics of the discovery anti-lewisite and of some of the other researches upon war gas but substances ; and to consider not only the leads towards therapy, the possible newer trends given to medicine itself.