Safety Data Sheets (Sdss) Information and Glossary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
G.J. Chemical Company, Inc. Safety Data Sheet
G.J. CHEMICAL COMPANY, INC. SAFETY DATA SHEET . PRODUCT IDENTIFIER 1.1 PRODUCT NAME: ACETONE PRODUCT NUMBER(S):100100, 100101,100110, 100120, 100130, 100140,100150, 100160 & 100180 TRADE NAMES/SYNONYMS: 2-Propanone; Dimethylformaldehyde; Dimethyl Ketone; Beta-Ketopropane; Methyl Ketone; CAS-No: 67-74-1 CHEMICAL FAMILY: Ketone, Aliphatic 1.2 RELEVANT IDENTIFIED USES OF THE SUBSTANCE OR MIXTURE AND USES ADVISED AGAINST IDENTIFIED USES: 1. Manufacture, process and distribution of substances and mixtures * 2. Use in laboratories 3. Uses in coatings 4. Use as binders and release agents 5. Rubber production and processing 6. Polymer manufacturing 7. Polymer processing 8. Use in Cleaning Agents 9. Use in Oil and Gas Field drilling and production operations 10. Blowing agents 11. Mining chemicals USES ADVISED AGAINST: No information available 1.3 DETAILS OF THE SUPPLIER OF THE SAFETY DATA SHEET Company: G.J. CHEMICAL CO., INC. Address: 40 VERONICA AVENUE SOMERSET, NJ 08873 Telephone: 1-973-589-1450 Fax: 1-973-589-3072 1.4 Emergency Telephone Number Emergency Phone: 1-800-424-9300 (CHEMTREC) . HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture GHS Classification in accordance with 29CFR 1910 (OSHA HCS) Flammable liquids (Category 2), H225 Eye irritation (Category 2A), H319 Specific target organ toxicity - single exposure (Category 3), Central Nervous system, H336 2.2 GHS Label elements, including precautionary statements Pictogram GHS02 GHS07 Signal word: DANGER Hazard statement(s) H225 Highly flammable liquid and vapor. H319 Causes serious eye irritation. H336 May cause drowsiness or dizziness. Precautionary statement(s) Prevention: P210 Keep away from heat/sparks/open flames/hot surfaces. -
Water Quality, Health, and Place
November 2015 Water Quality, Health, and Place A RESEARCH BRIEF VERSION 1.1 Photo by Ann Forsyth Photo by The HEALTH AND PLACE INITIATIVE (HAPI) investigates how to create healthier cities in the future, with a specific emphasis on China. Bringing together experts from the Harvard Graduate School of Design (HGSD) and the Harvard School of Public Health (HSPH), it creates a forum for understanding the multiple issues that face cities in light of rapid urbanization and an aging population worldwide. Health and Places Initiative http://research.gsd.harvard.edu/hapi/ Harvard Graduate School of Design The Research Briefs series summarizes recent research on links between human health and places at the neighborhood or district scale and provides background for a number of other forthcoming products—a set of health assessment tools, planning and urban design guidelines, urban design prototypes, and neighborhood cases. While the Research Briefs draw out implications for practice, it is these other tools that really provide specific, real-world guidance for how to create healthy places. © 2015 President and Fellows of Harvard College As is typical practice feel free to use and cite small parts of this work, with attribution. If you want to use substantial parts, or even this entire document, the following applies. Permission is granted for use for nonprofit education purposes for all of the work except third party materials incorporated in the work, which may require permission from the authors of such material. For permission to use this work in other circumstances, contact the Harvard Graduate School of Design: [email protected]. -
Page 1 the Public Health Benefits of Sanitation Interventions
The Public Health Benefits of Sanitation Interventions EPAR Brief No. 104 Jacob Lipson, Professor Leigh Anderson & Professor Susan Bolton Prepared for the Water & Sanitation Team of the Bill & Melinda Gates Foundation Evans School Policy Analysis and Research (EPAR) Professor Leigh Anderson, PI and Lead Faculty Associate Professor Mary Kay Gugerty, Lead Faculty December 10, 2010 Introduction Limited sanitation infrastructure, poor hygienic practices, and unsafe drinking water negatively affect the health of millions of people in the developing world. Using sanitation interventions to interrupt disease pathways can significantly improve public health.1 Sanitation interventions primarily benefit public health by reducing the prevalence of enteric pathogenic illnesses, which cause diarrhea. Health benefits are realized and accrue to the direct recipients of sanitation interventions and also to their neighbors and others in their communities. In a report to the United Nations Development Programme (UNDP), Hutton et al. (2006) estimate that the cost- benefit ratio of sanitation interventions in all developing countries worldwide is 11.2.2 This literature review summarizes the risks of inadequate sanitation to public health and presents the empirical evidence on the public health benefits of complete, intermediate and multiple factor sanitation interventions. The sanitation literature frequently uses inconsistent terminology to describe sanitation infrastructure, technologies and intervention types. Where feasible, we report study results using the original terminology of the authors, while also using consistent terminology to facilitate comparisons across studies. In this review and in much of the literature, sanitation interventions are defined as improvements which provide public or household fecal disposal facilities, and/or improve community fecal disposal and treatment methods.3,4 Sanitation interventions are distinct from water interventions, which focus on increasing access to clean water or improving water quality at drinking water sources or points of use. -
Breathing Protection 02
PRODUCT CATALOG US BREATHING PROTECTION 02 CONTENTS 4. SELECTING RESPIRATORY PROTECTION 28. CHOOSE A SUITABLE FACEPIECE 5. TWO TYPES OF RESPIRATORY PROTECTION 28. SR 520 - SR 530 6. SELECTING BREATHING PROTECTION ON 30. SR 570 THE BASIS OF LEVEL OF CONTAMINATION 34. SR 580 7. SELECTING BREATHING PROTECTION BASED 36. SR 580/SR 584 ON WORK DURATION AND WORKLOAD 38. SR 580/SR 587/SR 588-1 & SR 588-2 9. HALF MASKS AND FULL FACE MASKS 39. FILTER 10. HALF MASK SR 100 40. FILTER FOR HALF- AND FULL FACE MASK 12. HALF MASK SR 900 42. FILTER FOR FAN UNIT 14. REMOTE FILTER KIT OPTIONS 16. REMOTE FILTER HOLDER SR 905 43. CONTINUOUS FLOW AIR LINE RESPIRATORY PROTECTION EQUIPMENT 16. FULL FACE MASK SR 200 44. SR 200 AIRLINE 46. SR 307 19. READY-TO-GO KITS 19. FULL FACE MASK OPTIONS 47. COMPRESSED AIR FILTER 20. HALF MASK OPTIONS 47. SR 99-1 23. POWER ASSISTED FILTER PROTECTION POWERED AIR PURIFYING RESPIRATORS 48. COMPRESSED AIR HOSES 24. SR 500 48. SR 358 26. READY-TO-GO-KITS 48. SR 359 50. FILTER RECOMMENDATIONS 03 WORLD CLASS RESPIRATORY PROTECTION EQUIPMENT MADE IN SWEDEN SINCE 1926 Sundström Safety protects people from SUNDSTRÖMS FLEXIBLE SYSTEM contaminated air and is not content to MAKES WORK MORE COMFORTABLE, simply meet official requirements. SAFER AND MORE EFFICIENT Our aim is to always design and manu- facture the best and most comfortable The base for Sundström Safety's System is always the respiratory protection equipment actual respiratory protection over nose and mouth. on the market. -
142, May 1999 Reuse of Organic Vapor Chemical Cartridges
Technical Data Bulletin #142, May 1999 Reuse of Organic Vapor Chemical Cartridges Introduction One of the most significant changes in the Occupational Safety and Health Administration’s (OSHA’s) new 1910.134 respiratory protection standard is the requirement to establish change schedules for chemical cartridges used for gases and vapors. Change schedules are often based on service life measurements or estimates. To best use the service life information, it is necessary to understand how chemical cartridges work. It is especially important when organic vapor cartridges are used against volatile chemicals during more than one work shift. These chemicals may desorb from the carbon when not in use. Inappropriate reuse of the organic vapor cartridges can result in breakthrough occurring earlier than predicted by the service life estimate. For example, when the organic vapor cartridge has been used for chemicals that migrate through the cartridge during the storage or nonuse period, it should not be reused. The decision to reuse the cartridge may have an impact on worker protection and the respiratory protection program Background Chemical cartridges are used on respirators to help remove and lower worker exposures to harmful gases and vapors in the workplace. There are several types of chemical cartridges: organic vapor, ammonia, formaldehyde, mercury vapor and acid gases, such as hydrogen chloride, chlorine and sulfur dioxide. It is important to understand how the different cartridge types work. All chemical cartridges consist of a container filled with a sorbent. A chemical cartridge sorbent is a granular porous material that interacts with the gas or vapor molecule to remove it from the air. -
Respiratory Protection Program
RESPIRATORY PROTECTION PROGRAM PURPOSE During the course of work activities it may be necessary to use respiratory equipment for protection against respiratory hazards. This program’s primary objective is to prevent excessive exposure to harmful dusts, fogs, fumes, mists, gases, smokes, sprays, or vapors. When effective engineering controls are not feasible, or while they are being instituted, appropriate respirators shall be used. This program establishes procedures for respirator selection, use, care, maintenance, medical evaluation, training and storage. RESPIRATORY HAZARD CLASSIFICATION Of the three normally recognized ways toxic materials can enter the body - through the (1) gastrointestinal tract, (2) skin, and (3) lungs – the respiratory system presents the quickest and most direct avenue of entry. This is because of the respiratory system’s direct relationship with the circulatory system and the constant need to oxygenate tissue cells to sustain life. Once the toxic material enters the lungs it then enters the bloodstream. The three basic classifications of respiratory hazards are: 1. Oxygen deficient air 2. Particulate contaminants 3. Gas and vapor contaminants Respiratory hazards exist in many construction work places. Winger Companies, herein referred to as Winger, employees need to be trained to recognize and identify these hazards and to be able to protect themselves. DUSTS – Airborne dusts often represent one of most significant respiratory hazards. Some dusts, such as asbestos, coal dust, and silica, can cause pneumoconiosis, or scarring of the lung with long term exposure. TRACE METALS – Metals such as arsenic and cadmium are contained in low levels in fly ash and boiler tube deposits. If conditions are excessively dusty or if boiler tube deposits are released by cutting or grinding, significant exposure to these substances may occur. -
Mortality–Air Pollution Associations in Low-Exposure Environments (MAPLE): Phase 1
RESEARCH REPORT HEA L TH HEA L TH Mortality–Air Pollution Associations EFFE CTS EFFE CTS in Low-Exposure Environments INSTITUTE INSTITUTE (MAPLE): Phase 1 75 Federal Street, Suite 1400 Number 203 Michael Brauer, Jeffrey R. Brook, Tanya Christidis, Boston, MA 02110, USA November 2019 Yen Chu, Dan L. Crouse, Anders Erickson, Perry Hystad, +1-617-488-2300 www.healtheffects.org Chi Li, Randall V. Martin, Jun Meng, Amanda J. Pappin, Lauren L. Pinault, Michael Tjepkema, Aaron van Donkelaar, Scott Weichenthal, and Richard T. Burnett RESEARCH REPORT Number 203 November 2019 Includes a Commentary by HEI’s Low-Exposure Epidemiology Studies Review Panel ISSN 1041-5505 (print) ISSN 2688-6855 (online) Mortality–Air Pollution Associations in Low-Exposure Environments (MAPLE): Phase 1 Michael Brauer, Jeffrey R. Brook, Tanya Christidis, Yen Chu, Dan L. Crouse, Anders Erickson, Perry Hystad, Chi Li, Randall V. Martin, Jun Meng, Amanda J. Pappin, Lauren L. Pinault, Michael Tjepkema, Aaron van Donkelaar, Scott Weichenthal, and Richard T. Burnett with a Commentary by HEI’s Low-Exposure Epidemiology Studies Review Panel Research Report 203 Health Effects Institute Boston, Massachusetts Trusted Science · Cleaner Air · Better Health Publishing history: This document was posted at www.healtheffects.org in November 2019. Citation for document: Brauer M, Brook JR, Christidis T, Chu Y, Crouse DL, Erickson A, et al. 2019. Mortality–Air Pollution Associations in Low-Exposure Environments (MAPLE): Phase 1. Research Report 203. Boston, MA:Health Effects Institute. © 2019 Health Effects Institute, Boston, Mass., U.S.A. Cameographics, Belfast, Me., Compositor. Printed by Recycled Paper Printing, Boston, Mass. Library of Congress Catalog Number for the HEI Report Series: WA 754 R432. -
4. What Are the Effects of Education on Health? – 171
4. WHAT ARE THE EFFECTS OF EDUCATION ON HEALTH? – 171 4. What are the effects of education on health? By Leon Feinstein, Ricardo Sabates, Tashweka M. Anderson, ∗ Annik Sorhaindo and Cathie Hammond ∗ Leon Feinstein, Ricardo Sabates, Tashweka Anderson, Annik Sorhaindo and Cathie Hammond, Institute of Education, University of London, 20 Bedford Way, London WC1H 0AL, United Kingdom. We would like to thank David Hay, Wim Groot, Henriette Massen van den Brink and Laura Salganik for the useful comments on the paper and to all participants at the Social Outcome of Learning Project Symposium organised by the OECD’s Centre for Educational Research and Innovation (CERI), in Copenhagen on 23rd and 24th March 2006. We would like to thank the OECD/CERI, for their financial support of this project. A great many judicious and helpful suggestions to improve this report have been put forward by Tom Schuller and Richard Desjardins. We are particularly grateful for the general funding of the WBL Centre through the Department for Education and Skills whose support has been a vital component of this research endeavour. We would also like to thank research staff at the Centre for Research on the Wider Benefits of Learning for their useful comments on this report. Other useful suggestions were received from participants at the roundtable event organised by the Wider Benefits of Learning and the MRC National Survey of Health and Development, University College London, on 6th December 2005. All remaining errors are our own. MEASURING THE EFFECTS OF EDUCATION ON HEALTH AND CIVIC ENGAGEMENT: PROCEEDINGS OF THE COPENHAGEN SYMPOSIUM – © OECD 2006 172 – 4.1. -
Carbon Monoxide
Right to Know Hazardous Substance Fact Sheet Common Name: CARBON MONOXIDE Synonyms: Carbonic Oxide; Exhaust Gas; Flue Gas CAS Number: 630-08-0 Chemical Name: Carbon Monoxide RTK Substance Number: 0345 Date: January 2010 Revision: December 2016 DOT Number: UN 1016 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Carbon Monoxide is a colorless and odorless gas. It is mainly Hazard Summary found as a product of incomplete combustion from vehicles Hazard Rating NJDHSS NFPA and oil and gas burners. It is used in metallurgy and plastics, HEALTH - 2 and as a chemical intermediate. FLAMMABILITY - 4 REACTIVITY - 0 TERATOGEN FLAMMABLE POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Carbon Monoxide is on the Right to Know Hazardous 4=severe Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH and NFPA. Carbon Monoxide can affect you when inhaled. This chemical is on the Special Health Hazard Substance Carbon Monoxide may be a TERATOGEN. HANDLE List. WITH EXTREME CAUTION. Exposure during pregnancy can cause lowered birth weight in offspring. Skin contact with liquid Carbon Monoxide can cause frostbite. SEE GLOSSARY ON PAGE 5. Inhaling Carbon Monoxide can cause headache, dizziness, lightheadedness and fatigue. Higher exposure to Carbon Monoxide can cause FIRST AID sleepiness, hallucinations, convulsions, and loss of Eye Contact consciousness. Immediately flush with large amounts of water for at least 15 Carbon Monoxide can cause personality and memory minutes, lifting upper and lower lids. Remove contact changes, mental confusion and loss of vision. -
Every Breath We Take: the Lifelong Impact of Air Pollution
Every breath we take: the lifelong impact of air pollution Report of a working party February 2016 The Royal College of Physicians The Royal College of Physicians (RCP) plays a leading role in the delivery of high-quality patient care by setting standards of medical practice and promoting clinical excellence. The RCP provides physicians in over 30 medical specialties with education, training and support throughout their careers. As an independent charity representing 32,000 fellows and members worldwide, the RCP advises and works with government, patients, allied healthcare professionals and the public to improve health and healthcare. Citation for this document : Royal College of Physicians. Every breath we take: the lifelong impact of air pollution . Report of a working party. London: RCP, 2016. Copyright All rights reserved. No part of this publication may be reproduced in any form (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner. Applications for the copyright owner’s written permission to reproduce any part of this publication should be addressed to the publisher. Copyright © Royal College of Physicians 2016 ISBN 978-1-86016-567-2 eISBN 978-1-86016-568-9 Royal College of Physicians 11 St Andrews Place Regent’s Park London NW1 4LE www.rcplondon.ac.uk Registered charity no 210508 Typeset by Cambrian Typesetters, Camberley, Surrey Printed and bound in Great Britain by The Lavenham -
Respiratory Protection: Breathing Safely
Respiratory Protection: Breathing Safely Before being fit‐tested or required to use a respirator in the workplace, your employer must provide you with a medical evaluation to determine your ability to use a respirator. A respirator may place a physical burden on the user — varying by the type of respirator worn, the job and workplace conditions, and the medical status of the individual. There are two classes of respirators designed to keep you safe on the job: Air‐Purifying Respirators Atmosphere‐Supplying Respirators Air‐purifying respirators remove Atmosphere‐supplying respirators provide contaminants from the air through clean, breathable air from an independent, filters, cartridges, or canisters as uncontaminated source. you breathe. Personal Protective Equipment: Employee Essentials: Breathing Safely, Respirator Resource Copyright 2016 J. J. Keller & Associates, Inc. Air‐Purifying Respirators Filter Classifications Non‐powered, air‐purifying respirator filters are classified with a letter and number code. The letter describes the filter’s ability to function when exposed to oils: N means Not resistant to oil R means somewhat Resistant to oil, and P means oil‐Proof, or very resistant to oil The number refers to the filter’s ability to remove particulates. Filter ratings range from 95 percent to 99.7 percent efficient. The filter classes are: N95, N99, N100, R95, R99, R100, and P95, P99, and P100. So, a “P100” is an oil‐proof filter with nearly 100 percent efficiency. Know that you need a chemical cartridge or canister to remove gas or vapor hazards. Cartridge & Canister Classifications No single cartridge or canister can protect you from all gas or vapor hazards. -
Inadequate Housing and Health: an Overview. Int. J. of Environment and Pollution 30
Int. J. Environment and Pollution, Vol. 30, Nos. 3/4, 2007 411 Inadequate housing and health: an overview Xavier Bonnefoy Environment and Health Consultant, Paris, France E-mail: [email protected] Abstract: For many years, the housing environment has been acknowledged as one of the main settings that affect human health. Living and housing conditions are the basis of many factors influencing residential health. Still, to date there is no commonly agreed upon definition of ‘healthy housing’, and there are still major gaps in the knowledge on how housing conditions may affect health. Epidemiological findings suggest strong associations between housing conditions and health effects. This paper explores the relevance of housing conditions as a key factor influencing mental health, sleep quality, indoor air, home safety, accessibility, obesity, mould growth, hygrothermal conditions and energy consumption, perception of crime, and residential quality. Keywords: housing conditions; inadequate housing; health; evidence. Reference to this paper should be made as follows: Bonnefoy, X. (2007) ‘Inadequate housing and health: an overview’, Int. J. Environment and Pollution, Vol. 30, Nos. 3/4, pp.411–429. Biographical notes: Xavier Bonnefoy is a Civil Engineer, Sanitary Engineer and has Post Graduate Degree from the Faculty of Medicine of Nancy in Public Health (CES de santé publique). Currently, he is working as an Environment and Health Consultant. Until July 2006, he served as Regional Adviser and head of the noise and health and housing and health programmes at the European Center for Environment and Health, Bonn office, of the WHO Regional Office for Europe. As WHO staff, he was coordinating the team in charge of the implementation of the Budapest conference declaration aspects related to housing and health in the European Region of WHO.