Respiratory Protection Program

Total Page:16

File Type:pdf, Size:1020Kb

Respiratory Protection Program RESPIRATORY PROTECTION PROGRAM PURPOSE During the course of work activities it may be necessary to use respiratory equipment for protection against respiratory hazards. This program’s primary objective is to prevent excessive exposure to harmful dusts, fogs, fumes, mists, gases, smokes, sprays, or vapors. When effective engineering controls are not feasible, or while they are being instituted, appropriate respirators shall be used. This program establishes procedures for respirator selection, use, care, maintenance, medical evaluation, training and storage. RESPIRATORY HAZARD CLASSIFICATION Of the three normally recognized ways toxic materials can enter the body - through the (1) gastrointestinal tract, (2) skin, and (3) lungs – the respiratory system presents the quickest and most direct avenue of entry. This is because of the respiratory system’s direct relationship with the circulatory system and the constant need to oxygenate tissue cells to sustain life. Once the toxic material enters the lungs it then enters the bloodstream. The three basic classifications of respiratory hazards are: 1. Oxygen deficient air 2. Particulate contaminants 3. Gas and vapor contaminants Respiratory hazards exist in many construction work places. Winger Companies, herein referred to as Winger, employees need to be trained to recognize and identify these hazards and to be able to protect themselves. DUSTS – Airborne dusts often represent one of most significant respiratory hazards. Some dusts, such as asbestos, coal dust, and silica, can cause pneumoconiosis, or scarring of the lung with long term exposure. TRACE METALS – Metals such as arsenic and cadmium are contained in low levels in fly ash and boiler tube deposits. If conditions are excessively dusty or if boiler tube deposits are released by cutting or grinding, significant exposure to these substances may occur. Metals can act as general systemic toxins. The type of toxic effects depends on the type of metal. MISTS – Tiny droplets of liquid suspended in the air. Examples are oil mist produced from lubricants used in metal cutting operations, acid mists from electroplating, and paint spray mist from spraying operations. METAL FUMES – Iron oxide, and finely divided particles containing arsenic, cadmium, lead and other metals called fume can be generated during the welding and cutting operations. Fume exposure can affect lung function and may be associated with other toxic effects. GASES – Sulfur oxides from boiler flue gas, sulfuric acid gas and ozone from arcing in precipitators are lung irritants. Carbon monoxide is produced by incomplete combustion of a fuel. CHEMICAL VAPOR – Vapor from solvents, paints and paint thinner, and boiler chemicals such as hydrazine can cause health effects ranging from headache and nausea to nervous system damage. ___________________________________________________________________________________________________________ Winger Companies Safety & Health Manual Respiratory Program Revised September 2017 Page 1 of 13 CARCINOGENS – Overexposure to arsenic and asbestos has been associated with lung and other types of cancer. Hydrazine has been shown to cause cancer in test animals. BIOLOGICAL – Include bacteria, viruses, fungi, and other living organisms that are respirable and can cause acute and chronic infections. Examples include Legionnaire’s Disease, animal waste and Histoplasmosis. EVALUATION of the ATMOSPHERE Prior to beginning work activities, the atmosphere in the work area must be evaluated in order to determine the nature and degree of actual or potential exposure. The following guidelines can be used when identifying those specific applications requiring the use of respiratory equipment. OXYGEN DEFICIENT ATMOSPHERES – Any atmosphere that tests lower than 19.5% oxygen is considered to be oxygen deficient. Self-Contained Breathing Apparatus (SCBA) or airline respirators supplied from breathing air cylinders are required. IMMEDIATELY DANGEROUS TO LIFE OR HEALTH (IDLH) - Means an atmosphere that poses an immediate threat to life, would cause irreversible adverse health effects, or would impair the individual’s ability to escape from a dangerous atmosphere. NOT IMMEDIATELY HAZARDOUS ATMOSPHERES – Atmospheres where oxygen levels are adequate but contain gaseous contaminants or particulate matter are considered to be not immediately hazardous atmospheres. Use chemical cartridge respirators for gaseous. Use mechanical filter respirators to protect against particulate matter. HAZARD CONTROL and HAZARD ASSESSMENT The best way to control respiratory hazards is the elimination of conditions that create the potentially hazardous environment. This can be accomplished by three ways; first, engineering design (through process or equipment design process ventilation, and/or the substitution of less hazardous materials) second, administrative controls (special work practices such as washing or vacuuming work areas, establishing regulated areas), or third, the use of respirators and protective clothing may be necessary. The use of Personal Protective Equipment (PPE) is always used as a last resort when the first two options cannot reduce the hazard. To the extent possible, the choice of the appropriate type of respiratory protection shall be based upon work place monitoring data. Always check the Material Safety Data Sheet for the material you will be exposed to and identify the proper respirator to be worn. Additional workplace monitoring where the potential exists for employee overexposure to airborne contaminants may also be necessary. EXAMPLES OF TASKS THAT MAY REQUIRE RESPIRATORS Welding Brazing Soldering ___________________________________________________________________________________________________________ Winger Companies Safety & Health Manual Respiratory Program Revised September 2017 Page 2 of 13 Cutting Spraying Grinding Painting Chemical Use Confined Space Entry SELECTION of EQUIPMENT GUIDELINES The choice of the appropriate respirator is based on the knowledge of the potential hazards to which an employee is likely to be exposed, the specific contaminants, the concentrations of contaminants, the skin absorption potential of the contaminants, and whether there is an adequate supply of oxygen in the contaminated atmosphere. Not all respirators are right for all jobs. There are different types of respirators that must be used in certain situations. Proper selection of respirators is very important. IF you choose the wrong respirator for the job, you could be putting yourself at serious risk. To choose the correct respirator for the job, the air must be tested to find out the condition of the atmosphere or the material must be identified, for example substances in piping systems. Winger employees will only use air-purifying respirators that are NIOSH certified. Air-purifying respirators use filters or chemical absorbing cartridges to remove harmful contaminants from the air the user is breathing. Air-purifying respirators or combination cartridge / filter – simply filters air – does not supply oxygen, therefore cannot be worn in environments which are oxygen deficient (< 19.5%) or immediately dangerous to life or health (IDLH). When air contaminants exceed permissible exposure limits, use an air-purifying or filtering respirator coded to protect you against your specific job hazards. ___________________________________________________________________________________________________________ Winger Companies Safety & Health Manual Respiratory Program Revised September 2017 Page 3 of 13 TYPES OF RESPIRATORS There are two basic types of respirators, air purifying and air supplying. Winger provides, at no cost to the employee, different types of air purifying respirators to employees who pass the pulmonary function test; respirator fit test and medical evaluation. AIR PURIFYING RESPIRATORS 1. Particulate Respirators (Dust Masks) – These type of respirators have a Protection Factor (PF) of 5 – 10. Workplace applications include grinding, sanding, sweeping, bagging and other dusty operations. These are disposable and may be used on a voluntary basis. APPENDIX D TO OSHA §1910.134 MANDATORY INFORMATION FOR EMPLOYEES USING RESPIRATORS WHEN NOT REQUIRED UNDER THE STANDARD Respirators are an effective method of protection against designated hazards when properly selected and worn. Respirator use is encouraged, even when exposures are below the exposure limit, to provide an additional level of comfort and protection for workers. However, if a respirator is used improperly or not kept clean, the respirator itself can become a hazard to the worker. Sometimes, workers may wear respirators to avoid exposures to hazards, even if the amount of hazardous substance does not exceed the limits set by OSHA standards. You need to take certain precautions to be sure that the respirator itself does not present a hazard. You should do the following: A. Read and heed all instructions provided by the manufacturer on use, maintenance, cleaning and care, and warnings regarding the respirators limitations. B. Choose respirators certified for use to protect against the contaminant of concern. NIOSH certifies respirators. A label or statement of certification should appear on the respirator or respirator packaging. It will tell you what the respirator is designed for and how much it will protect you. C. Do not wear your respirator into atmospheres containing contaminants for which your respirator is not designed to protect against. For example, a respirator designed to filter
Recommended publications
  • Safety Data Sheets (Sdss) Information and Glossary
    Safety Data Sheets (SDSs) Information and Glossary 2408 Wanda Daley Drive Ames, Iowa 50011 (515) 294-5359 | www.ehs.iastate.edu Copyright© Reviewed 2018 Safety Data Sheets (SDSs) Information Safety Data Sheets (SDSs) are informational sheets required by the Occupational Safety and Health Administration (OSHA) for hazardous substances (chemicals). The OSHA Hazard Communication Standard (29 CFR 1910.1200) and the Iowa Hazardous Chemical Risks Right to Know Standard (Iowa Administrative Code Section 875, Chapters 110-140) requires SDSs be “readily accessible” for any hazardous chemical in the workplace. Employees must be made aware of the SDS content and chemical storage location. SDSs can be obtained from manufacturers and distributors at the time of initial shipment. Each university workplace must maintain an SDS for each hazardous chemical in its inventory. SDSs that are available electronically meet the “readily accessible” criteria, as long as computer access is available to all employees whenever work is being conducted. EH&S suggests that each workspace also maintain paper copies of commonly used hazardous chemicals for ease of access. OSHA requires specific information be included on an SDS, in a 16-section format as described in the UN Globally Harmonized System of Classification and Labeling of Chemicals (GHS). The SDS must be in English and must include at least the following information: Section 1: Identification includes product identifier; manufacturer or distributor name, address, phone number; emergency phone number; recommended use; restrictions on use. Section 2: Hazard(s) Identification includes all hazards regarding the chemical; required label elements. Section 3: Composition/Information on Ingredients includes information on chemical ingredients; trade secret claims.
    [Show full text]
  • G.J. Chemical Company, Inc. Safety Data Sheet
    G.J. CHEMICAL COMPANY, INC. SAFETY DATA SHEET . PRODUCT IDENTIFIER 1.1 PRODUCT NAME: ACETONE PRODUCT NUMBER(S):100100, 100101,100110, 100120, 100130, 100140,100150, 100160 & 100180 TRADE NAMES/SYNONYMS: 2-Propanone; Dimethylformaldehyde; Dimethyl Ketone; Beta-Ketopropane; Methyl Ketone; CAS-No: 67-74-1 CHEMICAL FAMILY: Ketone, Aliphatic 1.2 RELEVANT IDENTIFIED USES OF THE SUBSTANCE OR MIXTURE AND USES ADVISED AGAINST IDENTIFIED USES: 1. Manufacture, process and distribution of substances and mixtures * 2. Use in laboratories 3. Uses in coatings 4. Use as binders and release agents 5. Rubber production and processing 6. Polymer manufacturing 7. Polymer processing 8. Use in Cleaning Agents 9. Use in Oil and Gas Field drilling and production operations 10. Blowing agents 11. Mining chemicals USES ADVISED AGAINST: No information available 1.3 DETAILS OF THE SUPPLIER OF THE SAFETY DATA SHEET Company: G.J. CHEMICAL CO., INC. Address: 40 VERONICA AVENUE SOMERSET, NJ 08873 Telephone: 1-973-589-1450 Fax: 1-973-589-3072 1.4 Emergency Telephone Number Emergency Phone: 1-800-424-9300 (CHEMTREC) . HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture GHS Classification in accordance with 29CFR 1910 (OSHA HCS) Flammable liquids (Category 2), H225 Eye irritation (Category 2A), H319 Specific target organ toxicity - single exposure (Category 3), Central Nervous system, H336 2.2 GHS Label elements, including precautionary statements Pictogram GHS02 GHS07 Signal word: DANGER Hazard statement(s) H225 Highly flammable liquid and vapor. H319 Causes serious eye irritation. H336 May cause drowsiness or dizziness. Precautionary statement(s) Prevention: P210 Keep away from heat/sparks/open flames/hot surfaces.
    [Show full text]
  • Breathing Protection 02
    PRODUCT CATALOG US BREATHING PROTECTION 02 CONTENTS 4. SELECTING RESPIRATORY PROTECTION 28. CHOOSE A SUITABLE FACEPIECE 5. TWO TYPES OF RESPIRATORY PROTECTION 28. SR 520 - SR 530 6. SELECTING BREATHING PROTECTION ON 30. SR 570 THE BASIS OF LEVEL OF CONTAMINATION 34. SR 580 7. SELECTING BREATHING PROTECTION BASED 36. SR 580/SR 584 ON WORK DURATION AND WORKLOAD 38. SR 580/SR 587/SR 588-1 & SR 588-2 9. HALF MASKS AND FULL FACE MASKS 39. FILTER 10. HALF MASK SR 100 40. FILTER FOR HALF- AND FULL FACE MASK 12. HALF MASK SR 900 42. FILTER FOR FAN UNIT 14. REMOTE FILTER KIT OPTIONS 16. REMOTE FILTER HOLDER SR 905 43. CONTINUOUS FLOW AIR LINE RESPIRATORY PROTECTION EQUIPMENT 16. FULL FACE MASK SR 200 44. SR 200 AIRLINE 46. SR 307 19. READY-TO-GO KITS 19. FULL FACE MASK OPTIONS 47. COMPRESSED AIR FILTER 20. HALF MASK OPTIONS 47. SR 99-1 23. POWER ASSISTED FILTER PROTECTION POWERED AIR PURIFYING RESPIRATORS 48. COMPRESSED AIR HOSES 24. SR 500 48. SR 358 26. READY-TO-GO-KITS 48. SR 359 50. FILTER RECOMMENDATIONS 03 WORLD CLASS RESPIRATORY PROTECTION EQUIPMENT MADE IN SWEDEN SINCE 1926 Sundström Safety protects people from SUNDSTRÖMS FLEXIBLE SYSTEM contaminated air and is not content to MAKES WORK MORE COMFORTABLE, simply meet official requirements. SAFER AND MORE EFFICIENT Our aim is to always design and manu- facture the best and most comfortable The base for Sundström Safety's System is always the respiratory protection equipment actual respiratory protection over nose and mouth. on the market.
    [Show full text]
  • 142, May 1999 Reuse of Organic Vapor Chemical Cartridges
    Technical Data Bulletin #142, May 1999 Reuse of Organic Vapor Chemical Cartridges Introduction One of the most significant changes in the Occupational Safety and Health Administration’s (OSHA’s) new 1910.134 respiratory protection standard is the requirement to establish change schedules for chemical cartridges used for gases and vapors. Change schedules are often based on service life measurements or estimates. To best use the service life information, it is necessary to understand how chemical cartridges work. It is especially important when organic vapor cartridges are used against volatile chemicals during more than one work shift. These chemicals may desorb from the carbon when not in use. Inappropriate reuse of the organic vapor cartridges can result in breakthrough occurring earlier than predicted by the service life estimate. For example, when the organic vapor cartridge has been used for chemicals that migrate through the cartridge during the storage or nonuse period, it should not be reused. The decision to reuse the cartridge may have an impact on worker protection and the respiratory protection program Background Chemical cartridges are used on respirators to help remove and lower worker exposures to harmful gases and vapors in the workplace. There are several types of chemical cartridges: organic vapor, ammonia, formaldehyde, mercury vapor and acid gases, such as hydrogen chloride, chlorine and sulfur dioxide. It is important to understand how the different cartridge types work. All chemical cartridges consist of a container filled with a sorbent. A chemical cartridge sorbent is a granular porous material that interacts with the gas or vapor molecule to remove it from the air.
    [Show full text]
  • Carbon Monoxide
    Right to Know Hazardous Substance Fact Sheet Common Name: CARBON MONOXIDE Synonyms: Carbonic Oxide; Exhaust Gas; Flue Gas CAS Number: 630-08-0 Chemical Name: Carbon Monoxide RTK Substance Number: 0345 Date: January 2010 Revision: December 2016 DOT Number: UN 1016 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Carbon Monoxide is a colorless and odorless gas. It is mainly Hazard Summary found as a product of incomplete combustion from vehicles Hazard Rating NJDHSS NFPA and oil and gas burners. It is used in metallurgy and plastics, HEALTH - 2 and as a chemical intermediate. FLAMMABILITY - 4 REACTIVITY - 0 TERATOGEN FLAMMABLE POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Carbon Monoxide is on the Right to Know Hazardous 4=severe Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH and NFPA. Carbon Monoxide can affect you when inhaled. This chemical is on the Special Health Hazard Substance Carbon Monoxide may be a TERATOGEN. HANDLE List. WITH EXTREME CAUTION. Exposure during pregnancy can cause lowered birth weight in offspring. Skin contact with liquid Carbon Monoxide can cause frostbite. SEE GLOSSARY ON PAGE 5. Inhaling Carbon Monoxide can cause headache, dizziness, lightheadedness and fatigue. Higher exposure to Carbon Monoxide can cause FIRST AID sleepiness, hallucinations, convulsions, and loss of Eye Contact consciousness. Immediately flush with large amounts of water for at least 15 Carbon Monoxide can cause personality and memory minutes, lifting upper and lower lids. Remove contact changes, mental confusion and loss of vision.
    [Show full text]
  • Respiratory Protection: Breathing Safely
    Respiratory Protection: Breathing Safely Before being fit‐tested or required to use a respirator in the workplace, your employer must provide you with a medical evaluation to determine your ability to use a respirator. A respirator may place a physical burden on the user — varying by the type of respirator worn, the job and workplace conditions, and the medical status of the individual. There are two classes of respirators designed to keep you safe on the job: Air‐Purifying Respirators Atmosphere‐Supplying Respirators Air‐purifying respirators remove Atmosphere‐supplying respirators provide contaminants from the air through clean, breathable air from an independent, filters, cartridges, or canisters as uncontaminated source. you breathe. Personal Protective Equipment: Employee Essentials: Breathing Safely, Respirator Resource Copyright 2016 J. J. Keller & Associates, Inc. Air‐Purifying Respirators Filter Classifications Non‐powered, air‐purifying respirator filters are classified with a letter and number code. The letter describes the filter’s ability to function when exposed to oils: N means Not resistant to oil R means somewhat Resistant to oil, and P means oil‐Proof, or very resistant to oil The number refers to the filter’s ability to remove particulates. Filter ratings range from 95 percent to 99.7 percent efficient. The filter classes are: N95, N99, N100, R95, R99, R100, and P95, P99, and P100. So, a “P100” is an oil‐proof filter with nearly 100 percent efficiency. Know that you need a chemical cartridge or canister to remove gas or vapor hazards. Cartridge & Canister Classifications No single cartridge or canister can protect you from all gas or vapor hazards.
    [Show full text]
  • Standard for Gas Mask
    JICOSH Home | Standard for Gas Mask http://www.jniosh.go.jp/icpro/jicosh-old/english/law/GasMask/index.html Standard for Gas Mask (Ministry of Labour Notification No. 68 of September 26, 1990) Latest Amendments: Ministry of Health, Labour and Welfare Notification No.299 of September 18, 2001 Japanese The Standard for Gas Mask has been enacted as follows conforming to and in order to enforce the Industrial Safety and Health Law (Law No. 57 of 1972). Contents Article 1 Scope of application Article 2 Type of gas mask Article 3 Materials Article 4 Test on strength Article 5,6 Structure Article 7 Performance tests Article 8 Labeling and others Article 9 Exceptions of this Standard Supplementary Provisions (Scope of application) Article 1 The standard issued in the Ministry of Health, Labour and Welfare Notification is applied to the gas masks which are categorized into those described in the left column of the following Table, according to the kinds of hazardous materials (including particulates which coexist with these gaseous materials) described in the right column of the same Table, among the gas masks to be used at the places where gases, vapors and particulates mixed with these gases or vapors may harm the human body by inspiring them. However, this standard is not applied to those gas masks used in places where oxygen concentration is below 18% or the concentrations of gases or vapors exceeds 2% ( in case the gas is ammonia, the concentration exceeds 3%). Category Hazardous materials Gas masks for halogens Halogen gases or vapors Gas masks for organic compounds Organic compound vapors Gas masks for carbon monoxide Carbon monoxide Gas masks for ammonia Ammonia Gas masks for sulfur dioxide Sulfur dioxide (Type of gas mask) Article 2 Gas masks shall be categorized into the types described in the left column of the following Table, according to the form and the scope of application described in the right column of the same Table.
    [Show full text]
  • Ammonia Cartridge Kgc-1L(H)
    AMMONIA CARTRIDGE KGC-1L(H) For Industrial Use ONLY This product is designed for industrial use only. Make sure that this product be used by persons who: Have sufficient knowledge on occupational health and safety and respiratory protective equipment; or, Work under the close supervision of personnel with sufficient knowledge. Shelf life is 2 years from the date of manufacture if this chemical cartridge is stored unopened. The date of manufacture is printed on the side of the chemical cartridge. 䖩 Store this chemical cartridge unopened in dark, cool place. Avoid direct sunlight, toxic gas and high humidity. 䖩 NEVER use this chemical cartridge if it is torn, holed or opened. 䖩 NEVER use this chemical cartridge if its shelf life is expired even in un-open condition. 䖩 NEVER disassemble this chemical cartridge. 䖩 Make sure that there are no distortions and/or no damages such as scars on this chemical cartridge. Read user instruction of chemical cartridge respirator and description on packaging film prior to use. There is no quality deterioration even if the air in the package is found expanded due to the change in temperature. Read user instruction of the respirator carefully and install the chemical cartridge on the respirator correctly. Working environment where ammonia gas (vapor) exists. Call Koken for further information on Scope of applications ammonia gas that can be removed by the chemical cartridge, as some gases cannot be removed. 䖩 If used together with a dedicated optional filtering material (Mighty Micron Pre-Filter Type 1 for AHS*), this chemical cartridge can be used in working environment where ammonia gas and dust particles co-exist (Class S1).
    [Show full text]
  • 2010 Respirator Selection Guide
    3M Occupational Health and Environmental Safety Division 2010 Respirator Selection Guide Helping Protectat Work, at Home, Peoplefor Life Table of Contents Respirator Selection Criteria ................................................................................1 • Respirator Program Management • Respirator Fit • Protection Factors • Effects from Skin or Eye Contact • Worker Activity • Location of Hazardous Areas • Respirator Characteristics, Capabilities, and Limitations • General Use Instructions • General Use Limitations Format Explanation ................................................................................................4 • Chemical Name • IDLH Level • Odor Threshold • OEL • Synonyms • Respirator Recommendations • Comments Respirator Filter Definitions ..................................................................................9 • 3M 42 CFR 84 Filters –N-Series Filters –R-Series Filters –P-Series Filters How to Use This Guide ........................................................................................11 Chemical Compound Guide ................................................................................15 Respirator Codes and Descriptions ....................................... inside back cover © 3M 2010. 1 Respirator Selection Criteria The 3M™ Respirator Selection Guide respirators, or the use of this guide, contact reusable respirator, the wearer must obtain a includes a list of chemicals for which your local 3M OH&ESD representative or satisfactory fit as indicated by a qualitative 3M respirators
    [Show full text]
  • A Mask for Every Task. Dräger X-Plore® Twinfilter Series
    9046902_Infoflip_Twinfilter_Umschlag_niosh:7 14.09.10 09:41 Seite 1 Warnings/Cautions/Limitations These respirators may help to reduce exposure to certain airborne contaminants. Misuse may result in illness or death. For proper use, the wearer should read and understand all provided user instructions as part of the product packaging. Before use of these respirators, an employer HEADQUARTERS: (as defined by OSHA) must implement a written respirator protection Dräger Safety AG & Co. KGaA program under 29 CFR 1910.134, which includes training and fit testing. Revalstrasse 1 – Do not use in atmospheres containing less than 19.5% oxygen 23560 Luebeck, Germany – Do not use in Immediately Dangerous to Life and Health (IDLH) Tel +49 451 882 0 situations/atmospheres Fax +49 451 882 2080 – Be knowledgeable of the type of contaminant, concentration level www.draeger.com and limitations prior to use – All respirator instructions and warnings must be understood by wearer prior to use – Do not use in situations exceeding the maximum use concentration (MUC) as established by regulations – Follow an established cartridge/canister change-out schedule A a G K . o C & G A k r e w r e g ä r D 0 0 1 1 0 0 2 2 - 4 © 8 1 | - D R P I CR | ions t a A mask for every task. ommunic Dräger X-plore® Twinfilter Series. C ing t e k Mar | 1 - 0 1 Draeger Safety, Inc. 9 101 Technology Drive 0 | 2 Pittsburgh, PA 15275 0 9 6 Tel +1 412 787 83 83 4 0 Fax +1 412 787 22 07 9 Ansicht_Umschlag.indd 1 14.09.2010 9:51:18 Uhr 9046902_Infoflip_Twinfilter_Umschlag_niosh:7 14.09.10 09:41 Seite 2 0 0 1 1 0 0 2 2 - - 6 5 8 8 1 1 - - D D Dräger X-plore® Twinfilter Masks – Comfort and Safety Double-Layered Distortion-Free Lens Face Seal Made from polycarbonate Combined with triple sealing or Triplex glass offering If you combine Dräger’s extensive knowledge in respiratory protection edges, it provides secure greater than 90% of normal technology with the sound practical knowledge of industrial and trade protection and tight fit for vision for ideal visibility almost every face while working.
    [Show full text]
  • History of US Respirator Approval (Continued)
    86 Journal of the International Society for Respiratory Protection Vol. 35, No. 2, 2018 History of U.S. Respirator Approval (Continued) - Gas masks, Supplied-air respirators, and Chemical cartridge respirators David Spelce1, Timothy R Rehak2, Richard W. Metzler3, and James S. Johnson4 1 921 LeShea Court, Chesapeake, VA 2 National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory, Pittsburgh, PA 3 Richard W. Metzler Inc., 810 Longvue Drive, Houston PA 4 JSJ and Associates, 7867 Cypress Creek Court, Pleasanton, CA Corresponding author E-mail: [email protected] ABSTRACT his article is the third in a series of four articles on respirator history. This article continues to follow T the history of respirator approval, use, and improvements in the US as discussed in our article entitled, History of U.S. Respirator Approval, published in the ISRP Journal, Vol. 35, No. 1, 2018 (Spelce. et. al. 2018). In addition, a 1957 respirator decision logic diagram illustrates the U.S. Bureau of Mines (USBM) rules to follow for respirator selection (USBM 1957). Keywords: respirator approval, certification history, USBM respirator decision logic Introduction his is the third in our series of four articles on respirator history in the US. We continue our discussion T of USBM respirator approval with the next promulgated schedule, gas masks, Schedule 14. Proceeding in chronological order, Schedule 19, Supplied-air respirators will be discussed next, followed by Schedule 23 for Organic Vapor, Chemical Cartridge Respirators. Our fourth and final article in this series will address air-purifying particulate respirators (Schedule 21 and 42 CFR 84). Vol.
    [Show full text]
  • Breathe Right! Is an Oregon OSHA Standards and Technical Resources Section Publication
    BreatheOregon OSHA’s Right! guide to developing a respiratory protection program for small-business owners and managers About this illustrations Background. The Black Veil respirator. Black veiling covering the nose and mouth held a pad of wool waste soaked in a chemical solution of sodium hyposulphite, sodium carbonate, glycerine, and water. This type of respirator was used by British troops in 1915 for protection against phosgene, chloropicrin, and chlorine gas attacks. Foreground. A modern half-mask air-purifying respirator. A tight-fitting elastomeric mask covering the nose and mouth forms a protective barrier between the respiratory tract and air contaminants. Air-purifying filters, cartridges, or canisters are designed to protect against specific types of particulates, gases, or vapors. No cost access to respiratory protection information for small-business including Oregon’s rules, letters of interpretations, program directives, fact sheets, hazard alerts, publications and education can be accessed through the following: www.orosha.org/subjects/respiratory_protection.html 440-3330 (6/14 OR-OSHA) BreatheOregon OSHA’s Right! guide to developing a respiratory protection program for small-business owners and managers About this document Breathe Right! is an Oregon OSHA Standards and Technical Resources Section publication. Thanks to the following individuals: • Patricia Young: Oregon OSHA, layout and design • Phillip Fehrenbacher: illustrations • Mark Peterson: DCBS Communications, editing and proofing Questions or comments? We’d like to hear from you. • Questions about respiratory protection? Contact the Technical Section: 503-378-3272, [email protected] • Comments or suggestions for improving this guide? Contact Stephanie Ficek: 503-947-7389, [email protected] Piracy notice: Reprinting, excerpting, or plagiarizing this publication is fine with us as long as it’s not for profit! Please inform Oregon OSHA of your intention as a courtesy.
    [Show full text]