Downloaded at the Ecological Forecasting Lab Website (

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded at the Ecological Forecasting Lab Website ( 1 Referencing This publication should be referred as: GOFC-GOLD (2017) A Sourcebook of Methods and Procedures for Monitoring Essential Biodiversity Variables in Tropical Forests with Remote Sensing. Eds: GOFC-GOLD & GEO BON. Report version UNCBD COP-13, GOFC-GOLD Land Cover Project Office, Wageningen University, The Netherlands. ISSN: 2542-6729. Core Editorial Team Mike Gill, Vice-Chair GEO BON / Polar Knowledge Canada Rob Jongman, JongmanEcology / Wageningen University Research Sandra Luque, National Research Institute of Science and Technology for Environment and Agriculture, France Brice Mora, GOFC-GOLD LC Office / Wageningen University Research Marc Paganini, European Space Agency - ESRIN Zoltan Szantoi, Joint Research Centre, European Commission, Ispra, Italy / Department of Geography and Environmental studies, Stellenbosch University Authors In addition to the core editors, a number of international experts in remote sensing, and biodiversity field measurement have contributed to the development of the Sourcebook and are thankfully acknowledged for their support. This Sourcebook is the result of a joint voluntary effort from more than 70 contributing authors from different institutions (that they may not necessarily represent). It is still an evolving document. The experts who contributed to the present version are listed under the section(s) to which they contributed and immediately below in alphabetical order: Maria P. Adamo, Jesús A. Anaya, Liana O. Anderson, Herizo Andrianandrasana, Pedro de Araujo Lima Constantino, Dusti Becker, Andrea Berardi, Palma Blonda, Richard Bodmer, Stephanie A. Bohlman, Robert G.H. Bunce, Kim Calders, Trevor Caughlin, Rene Colditz, Mark Chandler, Guangsheng Chen, Jenny Cousins, Theresa M. Crimmins, María Isabel Cruz López, Finn Danielsen, Ben DeVries, Lina Estupinan-Suarez, Deqin Fan, Jean-Baptiste Féret, Miguel A. Fernandez, Mike Gill, Ana Paula Giorgi, Scott Goetz, Sarah J. Graves, Matthew C. Hansen, Kate S. He, Uta Heiden, Mark Huxham, Daniel J. Hayes, Patrick Jantz, Nan Jiang, Rob H.G. Jongman, H. Andrew Lassiter, Olga León, Alison Leslie, Jed Long, Richard Lucas, Sandra Luque, Ronald E. McRoberts, Jayalaxshmi Mistry, Brice Mora, Ghislain Moussavou, Sander Mucher, Nagendra Harini, Mark Nelson, Madhura Niphadkar, Pontus Olofsson, Marc Paganini, Zisis I. Petrou, Michael K. Poulsen, Arun Pratihast, Johannes Reiche, Sami W. Rifai, Duccio Rocchini, Christophe Sannier, Carlos E. Sarmiento Pinzón, Roger Sayre, Linda See, Andrew Skidmore, Zoltan Szantoi, Cristina Tarantino, Ida Theilade, Thrity Vakil, Peter Vogt, Benjamin E. Wilkinson, John N. Williams, Haigen Xu, Wenquan Zhu. 2 Publishers GOFC-GOLD Land Cover Project Office, supported by the European Space Agency, and hosted by Wageningen University, The Netherlands © Global Observation of Forest Cover and Land Dynamics (GOFC-GOLD) Available at: http://www.gofcgold.wur.nl/sites/gofcgold- geobon_biodiversitysourcebook.php Biodiversity Observation Network, Group on Earth Observations © Group on Earth Observations Available at: http://geobon.org/ 3 Acknowledgments The European Space Agency is acknowledged for its support of the GOFC-GOLD Land Cover Project Office. We thank the GEO BON Secretariat for helping to coordinate the initiative. Authors were supported by their home institutions to contribute to this publication in their respective areas of expertise. We thank also Nadine Drigo for her editing work. Reviewers We acknowledge the following people for their valuable comments provided during the review process: Jesus Anaya, Tom Barry, Joy Burrough, Emilio Chuvieco, Rene Colditz, Isabel Cruz, Peter Dennis, Ben Devries, Ilse Geijzendorffer, Gary Geller, Uta Heiden, Reinhard Klenke, Sandra Luque, Rebecca Mant, Ron McRoberts, Brice Mora, Greg Newman, Vihervaara Petteri, Johannes Reiche, Andrew Skidmore, Zoltan Szantoi, Orlando Vargas, Alfried Vogler, Peter Vogt, Benjamin Wilkinson, Xiaoyang Zhang. 4 Table of Contents 1 INTRODUCTION ............................................................................................................................................ 9 1.1 BACKGROUND, THE ROAD TO COORDINATED BIODIVERSITY MONITORING SYSTEMS ............................................................ 9 1.2 PURPOSE AND SCOPE OF THE SOURCEBOOK ............................................................................................................. 17 1.3 FOREST DEFINITIONS ........................................................................................................................................... 18 1.3.1 Key references for Section 1 ...................................................................................................... 20 2 MONITORING KEY EBVS WITH REMOTE SENSING ....................................................................................... 22 2.1 INTRODUCTION – ESSENTIAL BIODIVERSITY VARIABLES .............................................................................................. 22 2.1.1 What are Essential Biodiversity Variables? ............................................................................... 23 2.1.2 Tracking EBVs Using Remote Sensing ....................................................................................... 24 2.1.3 Key references for Section 2.1 ................................................................................................... 25 2.2 VEGETATION PHENOLOGY .................................................................................................................................... 26 2.2.1 Concepts of vegetation phenology ........................................................................................... 26 2.2.2 Phenometrics ............................................................................................................................ 27 2.2.3 Methods for monitoring vegetation phenology ........................................................................ 28 2.2.4 Opportunities for using remote sensing to monitor vegetation phenology .............................. 32 2.2.5 Issues and Challenges ............................................................................................................... 39 2.2.6 Potentials and applications of phenology studies in tropical forests ........................................ 41 2.2.7 Activities of phenology monitoring in tropical forests .............................................................. 42 2.2.8 Key References for section 2.2 .................................................................................................. 45 2.3 NET PRIMARY PRODUCTIVITY ................................................................................................................................. 51 2.3.1 Definition and relevance ........................................................................................................... 51 2.3.2 Field measurements of net primary productivity ...................................................................... 51 2.3.3 Remote sensing for estimating NPP .......................................................................................... 53 2.3.4 Key References for section 2.3 .................................................................................................. 57 2.4 ECOSYSTEM EXTENT AND FRAGMENTATION.............................................................................................................. 60 2.4.1 Ecosystems vs. Ecosystem Occurrences .................................................................................... 60 2.4.2 Ecosystems as Distinct Physical Environments and Associated Biota ....................................... 61 2.4.3 Land Cover as a Proxy for Ecosystems ...................................................................................... 63 2.4.4 Land Cover Change – A Proxy Approach for Assessing Change in Ecosystem Extent ............... 63 2.4.5 Unspecified Change and Ecosystem Basemaps – A Proxy-Free Approach ................................ 63 2.4.6 Ecosystem Fragmentation ........................................................................................................ 64 2.4.7 Forest Cover Change Monitoring with Global Forest Watch Products ..................................... 64 2.4.8 Ecosystem Extent and Fragmentation – Summary of Issues..................................................... 65 2.4.9 Key references for section 2.4 ................................................................................................... 66 2.5 ECOSYSTEM STRUCTURE ................................................................................................................................... 67 2.5.1 Background ............................................................................................................................... 67 2.5.2 Passive sensor technology ........................................................................................................ 68 2.5.3 RADAR technology .................................................................................................................... 69 2.5.4 LiDAR technology ...................................................................................................................... 70 2.5.5 LiDAR applications supporting EBV ecosystem structure .......................................................... 72 2.5.6 Status and outlook .................................................................................................................... 76 2.5.7 Acknowledgements ..................................................................................................................
Recommended publications
  • BEATRICE MISSAH.Pdf
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI COLLEGE OF HEALTH SCIENCES FACULTY OF PHARMACY AND PHARMACEUTICAL SCIENCES DEPARTMENT OF PHARMACOGNOSY LARVICICAL AND ANTI-PLASMODIAL CONSTITUENTS OF CARAPA PROCERA DC. (MELIACEAE) AND HYPTIS SUAVEOLENS L. POIT (LAMIACEAE) BY BEATRICE MISSAH SEPTEMBER, 2014 LARVICICAL AND ANTI-PLASMODIAL CONSTITUENTS OF CARAPA PROCERA DC. (MELIACEAE) AND HYPTIS SUAVEOLENS L. POIT (LAMIACEAE) A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MPHIL PHARMACOGNOSY IN THE DEPARTMENT OF PHARMACOGNOSY, FACULTY OF PHARMACY AND PHARMACEUTICAL SCIENCES BY BEATRICE MISSAH KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI SEPTEMBER, 2014 DECLARATION I hereby declare that the experimental work described in this thesis is my own work towards the award of an MPhil and to the best of my knowledge, it contains no material previously published by another person or material which has been submitted for any other degree of the university, except where due acknowledgement has been made in the test. ……………………………………… ………………………… Beatrice Missah Date Certified by ………………………………………… …………………………… Dr. (Mrs.) Rita A. Dickson Date (Supervisor) …………………………………………… ………………………….. Dr. Kofi Annan Date (Supervisor) Certified by ………………………………………… ………………………….. Prof. Abraham Yeboah Mensah Date (Head of Department) ii DEDICATION I dedicate this work to my dear father Mr. Bernard Missah for his immense support and care for me. iii ABSTRACT Malaria is a serious health problem worldwide due to the emergence of parasite resistance to well established antimalarial drugs. This has heightened the need for the development of new antimalarial drugs as well as other control methods. Plant based antimalarial drugs continue to be used in many tropical areas for the treatment and control of malaria and hence the need for scientific investigation into their usefulness as alternatives to conventional treatment.
    [Show full text]
  • Matses Indian Rainforest Habitat Classification and Mammalian Diversity in Amazonian Peru
    Journal of Ethnobiology 20(1): 1-36 Summer 2000 MATSES INDIAN RAINFOREST HABITAT CLASSIFICATION AND MAMMALIAN DIVERSITY IN AMAZONIAN PERU DAVID W. FLECK! Department ofEveilltioll, Ecology, alld Organismal Biology Tile Ohio State University Columbus, Ohio 43210-1293 JOHN D. HARDER Oepartmeut ofEvolution, Ecology, and Organismnl Biology Tile Ohio State University Columbus, Ohio 43210-1293 ABSTRACT.- The Matses Indians of northeastern Peru recognize 47 named rainforest habitat types within the G61vez River drainage basin. By combining named vegetative and geomorphological habitat designations, the Matses can distinguish 178 rainforest habitat types. The biological basis of their habitat classification system was evaluated by documenting vegetative ch<lracteristics and mammalian species composition by plot sampling, trapping, and hunting in habitats near the Matses village of Nuevo San Juan. Highly significant (p<:O.OOI) differences in measured vegetation structure parameters were found among 16 sampled Matses-recognized habitat types. Homogeneity of the distribution of palm species (n=20) over the 16 sampled habitat types was rejected. Captures of small mammals in 10 Matses-rc<:ognized habitats revealed a non-random distribution in species of marsupials (n=6) and small rodents (n=13). Mammal sighlings and signs recorded while hunting with the Matses suggest that some species of mammals have a sufficiently strong preference for certain habitat types so as to make hunting more efficient by concentrating search effort for these species in specific habitat types. Differences in vegetation structure, palm species composition, and occurrence of small mammals demonstrate the ecological relevance of Matses-rccognized habitat types. Key words: Amazonia, habitat classification, mammals, Matses, rainforest. RESUMEN.- Los nalivos Matslis del nordeste del Peru reconacen 47 tipos de habitats de bosque lluvioso dentro de la cuenca del rio Galvez.
    [Show full text]
  • University of Cape Coast Extraction, Isolation And
    UNIVERSITY OF CAPE COAST EXTRACTION, ISOLATION AND CHARACTERIZATION OF SOME LIMONOIDS AND SOME CONSTITUENTS OF THE ROOT BARK OF TURRAEA HETEROPHYLLA - SMITH (MELIACEAE) AKROFI ROBERTSON 2011 UNIVERSITY OF CAPE COAST EXTRACTION, ISOLATION AND CHARACTERIZATION OF SOME LIMONOIDS AND CONSTITUENTS OF THE ROOT BARK OF TURRAEA HETEROPHYLLA - SMITH (MELIACEAE) BY ROBERTSON AKROFI THESIS SUBMITTED TO THE DEPARTMENT OF CHEMISTRY OF THE SCHOOL OF PHYSICAL SCIENCES, UNIVERSITY OF CAPE COAST IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR AWARD OF MASTER OF PHILOSOPHY DEGREE IN CHEMISTRY JUNE, 2011 DECLARATION Candidate’s Declaration I hereby declare that this thesis is the result of my original work and that no part of it has been presented for another degree in this University or elsewhere. Candidate’s Signature: -------------------------------- Date: ------------------- Robertson Akrofi Supervisors’ Declaration We hereby declare that the preparation and presentation of the thesis were supervised in accordance with the guidelines on supervision of thesis laid down by the University of Cape Coast. Principal Supervisor’s Signature: ------------------------- Date: ------------------- Professor F. S. K. Tayman Co-Supervisor’s Signature: -------------------------------- Date: ------------------- Professor Y. O. Boahen ii ABSTRACT The root bark of the plant Turraea heterophylla belonging to the family Meliaceae was investigated for its chemical constituents. Phytochemical screening of both the methanolic and methylene chloride extracts indicated the presence of tannins, saponnins, terpenes, steroids and about eight different limonoids. Exhaustive extraction, chromatography and spectral analyses led to isolation of three compounds. The spectrometric analyses and the resulting data - including IR, NMR(H-H COSY and 1HNMR) and the LC - ESI - MS spectra and their interpretation helped to propose the structures of the three compounds.
    [Show full text]
  • Counting on Forests and Accounting for Forest Contributions in National
    OCCASIONAL PAPER Agouti on the wedding menu Bushmeat harvest, consumption and trade in a post-frontier region of the Ecuadorian Amazon Ian Cummins Miguel Pinedo-Vasquez Alexander Barnard Robert Nasi OCCASIONAL PAPER 138 Agouti on the wedding menu Bushmeat harvest, consumption and trade in a post-frontier region of the Ecuadorian Amazon Ian Cummins Runa Foundation Miguel Pinedo-Vasquez Center for International Forestry Research (CIFOR) Earth Institute Center for Environmental Sustainability (EICES) Alexander Barnard University of California Robert Nasi Center for International Forestry Research (CIFOR) Center for International Forestry Research (CIFOR) Occasional Paper 138 © 2015 Center for International Forestry Research Content in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/ ISBN 978-602-387-009-7 DOI: 10.17528/cifor/005730 Cummins I, Pinedo-Vasquez M, Barnard A and Nasi R. 2015. Agouti on the wedding menu: Bushmeat harvest, consumption and trade in a post-frontier region of the Ecuadorian Amazon. Occasional Paper 138. Bogor, Indonesia: CIFOR. Photo by Alonso Pérez Ojeda Del Arco Buying bushmeat for a wedding CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] cifor.org We would like to thank all donors who supported this research through their contributions to the CGIAR Fund. For a list of Fund donors please see: https://www.cgiarfund.org/FundDonors Any views expressed in this publication are those of the authors. They do not necessarily represent the views of CIFOR, the editors, the authors’ institutions, the financial sponsors or the reviewers.
    [Show full text]
  • Instituto Nacional De Pesquisas Da Amazônia – Inpa Programa De Pós-Graduação Em Ecologia
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA USO DE HABITAT E OCORRÊNCIA DE ROEDORES CAVIOMORFOS NA AMAZÔNIA CENTRAL, BRASIL FERNANDA DE ALMEIDA MEIRELLES Manaus, Amazonas Novembro, 2012 1 FERNANDA DE ALMEIDA MEIRELLES USO DE HABITAT E OCORRÊNCIA DE ROEDORES CAVIOMORFOS NA AMAZÔNIA CENTRAL, BRASIL ORIENTADOR: Dr. EDUARDO MARTINS VENTICINQUE Co-orientador: Dr. Torbjørn Haugaasen Dissertação apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em Biologia (Ecologia). Manaus, Amazonas Novembro, 2012 ii Banca examinadora não-presencial: Dra. Camila Righetto Cassano – Universidade Estadual de Santa Cruz Parecer: Aprovada com correções Dra. Maria Luisa da Silva Pinto Jorge – Universidade Estadual Paulista Júlio Mesquita Filho Parecer: Aprovada com correções Dr. José Manuel Vieria Fragoso – Universidade de Standfor, Califórnia (EUA) Parecer: Aprovada Banca examinadora presencial em 26 de novembro de 2012: Dr. Marcelo Gordo – Universidade Federal do Amazonas Parecer: Aprovada Dr. Paulo Estefano Dineli Bobrowiec – Instituto Nacional de Pesquisas da Amazônia Parecer: Aprovada Dr. Pedro Ivo Simões – Instituto Nacional de Pesquisas da Amazônia Parecer: Aprovada iii Sinopse: Estudei o uso de habitat e o efeito da distribuição de castanhais sobre a ocorrência de pacas, cotias e cutiaras na Reserva de Desenvolvimento Sustentável Piagaçu - Purus. Para isso distribuímos 107 câmeras-trap em locais com e sem exploração de castanha- do-Brasil. As variáveis ambientais, utilizadas como preditoras da ocorrência das espécies, foram medidas em campo ou extraídas de bases geográficas digitais. Os resultados indicam que as três espécies de roedores ocorrem preferencialmente em áreas com alta densidade de drenagem e distantes de comunidades humanas.
    [Show full text]
  • CRL-Rodent Genetics and Genetic Quality Control for Inbred and F1 Hybrid Strains, Part II
    CRL-Rodent Genetics and Genetic Quality Control for Inbred and F1 Hybrid Strains, Part II ASK CHARLES RIVER FREQUENTLY ASKED QUESTIONS ON-LINE LITERATURE WHAT'S NEW Previous | Index | Next WINTER 1992 Rodent Genetics and Genetic Quality Control for Inbred and F1 Hybrid Strains, Part II Genetically defined rodent strains with stable, identifiable phenotypes have played a central role in the advances made in biomedical research. Such strains have been developed by selection and inbreeding, as was discussed in the fall 1991 document (Part I of this two-part series). That Bulletin also defined basic genetic terms, introduced the concept of genetic quality control, and reviewed the role of colony management in detection and prevention of subline divergence. This document addresses the important role of genetic monitoring, especially the monitoring of qualitative biochemical and immunological markers. Routine genetic monitoring is necessary to detect genetic contamination, the most important cause of subline divergence. Ideal markers for monitoring display simple Mendelian inheritance. They have a phenotype that is not altered by environmental factors but corresponds to the genotype. Markers should be monitored on chromosomes or linkage groups found throughout the genome. Alleles should be codominant so homozygotes and heterozygotes can be distinguished. Skin Grafting Skin grafting is a classical and still essential technique for characterizing inbred strains. It was developed in the 1950s by Billingham and others to detect histocompatibility differences. As histocompatibility (H) is determined by several hundred H genes found on virtually every chromosome, skin grafting reveals subline divergence due to mutation as well as to genetic contamination. Acceptance of reciprocal skin grafts, or isohistogenicity, indicates that animals are isogeneic.
    [Show full text]
  • Hystrx It. J. Mamm. (Ns) Supp. (2007) V European Congress of Mammalogy
    Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy RODENTS AND LAGOMORPHS 51 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy 52 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy A COMPARATIVE GEOMETRIC MORPHOMETRIC ANALYSIS OF NON-GEOGRAPHIC VARIATION IN TWO SPECIES OF MURID RODENTS, AETHOMYS INEPTUS FROM SOUTH AFRICA AND ARVICANTHIS NILOTICUS FROM SUDAN EITIMAD H. ABDEL-RAHMAN 1, CHRISTIAN T. CHIMIMBA, PETER J. TAYLOR, GIANCARLO CONTRAFATTO, JENNIFER M. LAMB 1 Sudan Natural History Museum, Faculty of Science, University of Khartoum P. O. Box 321 Khartoum, Sudan Non-geographic morphometric variation particularly at the level of sexual dimorphism and age variation has been extensively documented in many organisms including rodents, and is useful for establishing whether to analyse sexes separately or together and for selecting adult specimens to consider for subsequent data recording and analysis. However, such studies have largely been based on linear measurement-based traditional morphometric analyses that mainly focus on the partitioning of overall size- rather than shape-related morphological variation. Nevertheless, recent advances in unit-free, landmark/outline-based geometric morphometric analyses offer a new tool to assess shape-related morphological variation. In the present study, we used geometric morphometric analysis to comparatively evaluate non-geographic variation in two geographically disparate murid rodent species, Aethmoys ineptus from South Africa and Arvicanthis niloticus from Sudan , the results of which are also compared with previously published results based on traditional morphometric data. Our results show that while the results of the traditional morphometric analyses of both species were congruent, they were not sensitive enough to detect some signals of non-geographic morphological variation.
    [Show full text]
  • The Purus Project Implementation Report a Tropical Forest Conservation Project in Acre, Brazil
    The Purus Project Implementation Report A Tropical Forest Conservation Project in Acre, Brazil Prepared by Brian McFarland from: 3 Bethesda Metro Center, Suite 700 Bethesda, Maryland 20814 (240) 247-0630 With significant contributions from: James Eaton, TerraCarbon Normando Sales and Wanderley Rosa, Moura & Rosa Pedro Freitas, Carbon Securities D E D I C A T Ó R I A "A voz é a única arma que atinge a alma." (Chico Mendes) Ao iniciar sua luta mostrando ao mundo uma nova forma de impedir a devastação da floresta, com seus "empates", surgia um novo líder, questionado e combatido por muitos, compreendido por poucos. Passados trinta anos, verifica-se que aqueles empates não foram em vão. Hoje estamos cientes da necessidade de preservarmos mais e melhor, valorizando os Povos da Floresta, verdadeiros guardiões da mata e sua biodiversidade, estes, verdadeiros tesouros passíveis de remuneração e compensação, em busca de um mundo melhor para enfrentar a necessidade de conter o aquecimento global. Parabéns Chico, você não era um visionário: o Projeto Purus é a materialização deste sonho. Page 2 of 143 A Climate, Community and Biodiversity Standard Project Implementation Report TABLE OF CONTENTS TABLE OF CONTENTS ………………………….………………………………..…………… Page 3 COVER PAGE ................................................................................................................................. Page 6 INTRODUCTION ………………………………………………………….…………………….. Page 7 G1. ORIGINAL CONDITIONS IN THE PROJECT AREA 1. General Information ………………………………………….…………….……………………... Page 9 2. Climate Information …………………………………………..…..………….……..…………… Page 11 3. Community Information ……………………………………..………………..…..……………... Page 12 4. Biodiversity Information ………………………………………..…………….…………………. Page 17 G2. BASELINE PROJECTIONS 1. Land Use without Project …………………………………….……………….…………………. Page 25 2. Carbon Stock Exchanges without Project …………………………………….…..……………... Page 26 3. Local Communities without Project …………………………………………..……………….… Page 27 4. Biodiversity without Project ………………………………………………….….…………….… Page 28 G3.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • ECOLOGICAL REVIEW and DEMOGRAPHIC STUDY of Carapa Guianensis
    ECOLOGICAL REVIEW AND DEMOGRAPHIC STUDY OF Carapa guianensis By CHRISTIE ANN KLIMAS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2006 Copyright 2005 by Christie A. Klimas This document is dedicated to my husband, my parents and my grandfather Frank Klimas. Thank you for everything. ACKNOWLEDGMENTS First of all, I would like to offer my heartfelt thanks to my advisor, Dr. Karen Kainer, for her continual support and patience. I thank her for her constructive criticism and motivation in reading seemingly unending iterations of grant proposals and this thesis. I also want to express gratitude to my Brazilian “co-advisor” Dr. Lucia H. Wadt for her hospitality, her assistance with my proposal, her suggestions and support with my field research. Her support helped me bridge cultural divides and pushed me intellectually. I want to thank the members of my supervisory committee: Dr. Wendell Cropper and Dr. Emilio Bruna for their support and thorough evaluation of my thesis. I also offer my sincere thanks to Meghan Brennan and Christine Staudhammer for their statistical suggestions and advice. I want to thank the Rotary International Fellowship program for their initial support of my research. My experience as a Rotary Ambassadorial Fellow was a turning point in my life, both academically and personally. It was what helped me develop the interests that I pursued in this thesis and led me to the graduate program at Florida. I want to gratefully thank those who provided essential assistance during this exploratory period.
    [Show full text]
  • Extranuptial Nectaries in Carapa Aubl. (Meliaceae-Cedreloideae)
    Extranuptial nectaries in Carapa Aubl. (Meliaceae-Cedreloideae) David KENFACK Center for Tropical Forest Science, MRC-166, Botany Department, Smithsonian Institution, P.O. Box 37012 Washington, DC 20013-7012 (USA) [email protected] Maurice TINDO Département de biologie des organismes animaux, Faculté des sciences de l’Université de Douala, BP 24157 Douala (Cameroun) Mathieu GUEYE Institut Fondamental d’Afrique Noire, Département de Botanique et Géologie, Laboratoire de Botanique et Unité Mixte Internationale 3189 BP 206 Dakar (Sénégal) Kenfack D., Tindo M. & Gueye M. 2014. — Extranuptial nectaries in Carapa Aubl. (Meliaceae- Cedreloideae). Adansonia, sér. 3, 36 (2): 335-349. http://dx.doi.org/10.5252/a2014n2a13 ABSTRACT Ant-plant interactions mediated by special structures provided by plants such as domatia, extrafloral nectaries (EFNs) and food bodies, are very frequent in tropical ecosystems. To understand why ants are frequently encountered on most species of Carapa Aubl. (Meliaceae), we investigated the presence of ex- tranuptial nectaries (ENNs) in all 27 species of the genus, spanning its entire distributional range in tropical Africa and America. We report for the first time in the genus the occurrence of extrafloral nectaries (at the base of the petiole, along the rachis of the pinnately compound leaf, on bracts) petaline nectaries (on the outer surface of petals), and pericarpial nectaries (on the surface of fruits), and confirm the presence of nectaries on leaflets in Carapa. Petiolar nectaries are the most common, occurring in 85% of the species. Nectaries were mainly active in young developing plant organs. Ants were observed foraging on exu- dates from these nectaries. e secretions from these glands help to explain the KEY WORDS abundance of ants on Carapa trees.
    [Show full text]
  • Biogeography and Ecology in a Pantropical Family, the Meliaceae
    Gardens’ Bulletin Singapore 71(Suppl. 2):335-461. 2019 335 doi: 10.26492/gbs71(suppl. 2).2019-22 Biogeography and ecology in a pantropical family, the Meliaceae M. Heads Buffalo Museum of Science, 1020 Humboldt Parkway, Buffalo, NY 14211-1293, USA. [email protected] ABSTRACT. This paper reviews the biogeography and ecology of the family Meliaceae and maps many of the clades. Recently published molecular phylogenies are used as a framework to interpret distributional and ecological data. The sections on distribution concentrate on allopatry, on areas of overlap among clades, and on centres of diversity. The sections on ecology focus on populations of the family that are not in typical, dry-ground, lowland rain forest, for example, in and around mangrove forest, in peat swamp and other kinds of freshwater swamp forest, on limestone, and in open vegetation such as savanna woodland. Information on the altitudinal range of the genera is presented, and brief notes on architecture are also given. The paper considers the relationship between the distribution and ecology of the taxa, and the interpretation of the fossil record of the family, along with its significance for biogeographic studies. Finally, the paper discusses whether the evolution of Meliaceae can be attributed to ‘radiations’ from restricted centres of origin into new morphological, geographical and ecological space, or whether it is better explained by phases of vicariance in widespread ancestors, alternating with phases of range expansion. Keywords. Altitude, limestone, mangrove, rain forest, savanna, swamp forest, tropics, vicariance Introduction The family Meliaceae is well known for its high-quality timbers, especially mahogany (Swietenia Jacq.).
    [Show full text]