The Purus Project Implementation Report a Tropical Forest Conservation Project in Acre, Brazil

Total Page:16

File Type:pdf, Size:1020Kb

The Purus Project Implementation Report a Tropical Forest Conservation Project in Acre, Brazil The Purus Project Implementation Report A Tropical Forest Conservation Project in Acre, Brazil Prepared by Brian McFarland from: 3 Bethesda Metro Center, Suite 700 Bethesda, Maryland 20814 (240) 247-0630 With significant contributions from: James Eaton, TerraCarbon Normando Sales and Wanderley Rosa, Moura & Rosa Pedro Freitas, Carbon Securities D E D I C A T Ó R I A "A voz é a única arma que atinge a alma." (Chico Mendes) Ao iniciar sua luta mostrando ao mundo uma nova forma de impedir a devastação da floresta, com seus "empates", surgia um novo líder, questionado e combatido por muitos, compreendido por poucos. Passados trinta anos, verifica-se que aqueles empates não foram em vão. Hoje estamos cientes da necessidade de preservarmos mais e melhor, valorizando os Povos da Floresta, verdadeiros guardiões da mata e sua biodiversidade, estes, verdadeiros tesouros passíveis de remuneração e compensação, em busca de um mundo melhor para enfrentar a necessidade de conter o aquecimento global. Parabéns Chico, você não era um visionário: o Projeto Purus é a materialização deste sonho. Page 2 of 143 A Climate, Community and Biodiversity Standard Project Implementation Report TABLE OF CONTENTS TABLE OF CONTENTS ………………………….………………………………..…………… Page 3 COVER PAGE ................................................................................................................................. Page 6 INTRODUCTION ………………………………………………………….…………………….. Page 7 G1. ORIGINAL CONDITIONS IN THE PROJECT AREA 1. General Information ………………………………………….…………….……………………... Page 9 2. Climate Information …………………………………………..…..………….……..…………… Page 11 3. Community Information ……………………………………..………………..…..……………... Page 12 4. Biodiversity Information ………………………………………..…………….…………………. Page 17 G2. BASELINE PROJECTIONS 1. Land Use without Project …………………………………….……………….…………………. Page 25 2. Carbon Stock Exchanges without Project …………………………………….…..……………... Page 26 3. Local Communities without Project …………………………………………..……………….… Page 27 4. Biodiversity without Project ………………………………………………….….…………….… Page 28 G3. PROJECT DESIGN and GOALS 1. Scope and Project Goals ………………………………………….………….…….…………….. Page 28 2. Major Activities …………………………………………………….……….…………………… Page 30 3. Project Timeframe ………………………………………………………….……………………. Page 53 4. Risks to Climate, Community and Biodiversity Benefits ………….……….…..……………….. Page 57 5. Enhancement of Climate, Community and Biodiversity Benefits …..……….………………….. Page 62 6. Stakeholder Identification and Involvement ……………………….………….……………….... Page 65 7. Project Transparency ………………………………………………..………….…………...…… Page 80 8. Financial Mechanisms and Project Implementation …………………………….………………. Page 81 G4. MANAGEMENT CAPACITY and BEST PRACTICES 1. Roles and Responsibilities of Project Proponents ……………….…………….….……………... Page 81 2. Key Technical Skills and Staff …………………………………………………….…………..… Page 86 3. Orientation and Training ………………………………………..………………….…...……….. Page 86 4. Community Involvement …………………………………………………………….…..………. Page 87 5. Relevant Laws and Regulations ……………………………………………………….…...……. Page 88 6. Worker Safety Assurance ……………………………………………………………….……….. Page 89 7. Financial Status of Organizations ……………………………………………………….………. Page 91 G5. LEGAL STATUS and PROPERTY RIGHTS 1. Compliance with Laws ………………………………………………………………….….……. Page 91 2. Approval from Appropriate Authorities ………………………………………………….…..….. Page 99 3. Non-Involuntary Relocation ……………………………………………………………….…….. Page 99 4. Identification of Illegal Activities and Mitigation Strategy …………………………….….……. Page 100 5. Property Rights and Carbon Rights …………………………………………..…………….…… Page 100 Page 3 of 143 TABLE OF CONTENTS CL1. NET POSITIVE CLIMATE IMPACTS 1. Estimation of Net Changes in Carbon Stocks ………………………….....…………………..…. Page 101 2. Other non-CO2 Greenhouse Gases ……………………………………….………………..……. Page 101 3. Project Activities’ GHG Emissions ……………………………………..…….………….…….. Page 101 4. Net Climate Impact ………………………………………………………..…..…………..……. Page 102 5. Avoidance of Double Counting ……………………………………………..…………….……. Page 102 CL2. OFFSITE CLIMATE IMPACTS (“LEAKAGE”) 1. Types of Leakage ……………………………………………………………..…………..…….. Page 102 2. Mitigation of Leakage …………………………………………………………...………..…….. Page 102 3. Subtraction of Unmitigated Negative Offsite Climate Impacts …………………………….…… Page 103 CL3. CLIMATE IMPACT MONITORING 1. Initial Monitoring Plan ………………………….…………………..…………..…………..…... Page 103 2. Full Monitoring Plan ………………………………………………..…………..…………..…... Page 103 CM1. NET POSITIVE COMMUNITY IMPACTS 1. Community Impacts ………………………………..……………………………..………….… Page 104 2. Impact on High Conservation Values ………………………..…………..…………………..…. Page 116 CM2. OFFSITE STAKEHOLDER IMPACTS 1. Potential Negative Offsite Stakeholder Impacts ………………..………..…….……………...... Page 117 2. Mitigation Plans ………………………………..…….....……………......………….………..… Page 117 3. Net Effect of Project on Stakeholders …………………...……..………..…..………..……….... Page 118 CM3. COMMUNITY IMPACT MONITORING 1. Initial Community Monitoring Plan ……………………………..………..…..………………… Page 118 2. Initial High Conservation Values Plan …………………...……...………..….…………………. Page 119 3. Full Monitoring Plan ……………………………………….……..………..……..…………….. Page 119 B1. NET POSITIVE BIODIVERSITY IMPACTS 1. Biodiversity Impacts ……………………………………….……………..…………………….. Page 123 2. Impact on High Conservation Values ……………………….……………..…………………… Page 124 3. Identify All Species to be used by the Project ………………...……………..….………………. Page 125 4. Possible Adverse Effects of Non-Native Species ……………...……………..…..…………..… Page 125 5. Non-Use of GMOs ………………………………………………….………………………..…. Page 125 B2. OFFSITE BIODIVERSITY IMPACTS 1. Potential Negative Offsite Biodiversity Impacts ……………………….………..…..….…….… Page 125 2. Mitigation Plans ………………………………………………………...…………..………...… Page 126 3. Net Effect of Project on Biodiversity ………………………………………………..…….....…. Page 127 B3. BIODIVERSITY IMPACT MONITORING 1. Initial Biodiversity Monitoring Plan ……………………………………...………………..…… Page 128 2. Initial High Conservation Values Plan ……………………………………………………..…… Page 128 3. Full Monitoring Plan ………………………………………………………….……………..….. Page 129 Page 4 of 143 TABLE OF CONTENTS GL3. EXCEPTIONAL BIODIVERSITY BENEFITS 1. Project Zone’s High Biodiversity Conservation Priority ………………...………...…..…….…. Page 135 BIBLIOGRAPHY ………………………….……………………………………...…..….….... Page 136 Page 5 of 143 COVER PAGE I. Project Name: The Purus Project II. Project Location: Near the city of Manoel Urbano, State of Acre, Brazil III. Project Proponent: The three main Project Proponents are CarbonCo, LLC (“CarbonCo”), Freitas International Group, LLC (“Freitas International Group” or “Carbon Securities”), and Moura e Rosa Empreendimentos Imobiliários LTDA (“Moura & Rosa” or “M&R”). CarbonCo’s contact information is: Brian McFarland, Director CarbonCo, LLC 3 Bethesda Metro Center, Suite 700 Bethesda, Maryland, 20814, United States of America Phone: +1 (240) 247-0630 Email: [email protected] IV. Auditor: Environmental, Services Inc. (ESI) is the auditor. ESI’s contact information and physical address is: Shawn McMahon, Lead Auditor Environmental Services, Inc. 7220 Financial Way, Suite 100, Jacksonville, Florida, 32256 Phone: +1 (330) 833-9941 Email: [email protected] V. Project Start Date, GHG Accounting Period and Lifetime: The Purus Project’s State Date is May 23, 2011. The initial GHG Accounting Period is 10 years and the Project Lifetime is 60 years. VI. Project Implementation Period Covered by the PIR: January 1, 2015 to December 31, 2015. VII. History of CCB Status: The Purus Project was validated to the CCBS in January 2013 and the Purus Project’s initial verification was achieved in December 2013. The Purus Project’s second verification was achieved in October 2014 and the third verification was achieved in November 2015. This PIR covers the fourth verification. VIII. Edition of the CCB Standards being used for Verification: Second Edition IX. Brief Summary of Climate, Community and Biodiversity Benefits Generated by the Project Since the Start Date and During Current Implementation Period Covered by the PIR: The Purus Project successfully achieved net positive climate, community and biodiversity benefits between May 23, 2011 and December 31, 2012 which included, but were not limited to: a reduction in the Project Area’s deforestation; preservation of biologically diverse habitats; local hires and transfer of technical knowledge; and the overall development of the first-ever, VCS- CCBS validated REDD+ project in the State of Acre, Brazil. Page 6 of 143 Net positive climate, community and biodiversity benefits between January 1, 2013 and December 31, 2013 included, but were not limited to: a reduction in the Project Area’s deforestation; preservation of biologically diverse habitats; deployment of motion-sensitive, wildlife camera traps; offering of agricultural extension courses to local communities; continuing progress towards legalization of local communities’ land tenure; and achievement of the first- ever, VCS-CCBS verified REDD+ project in the State of Acre, Brazil. Net positive climate, community and biodiversity benefits between January 1, 2014 and December 31, 2014 included, but were not limited to: a reduction in the Project Area’s deforestation; preservation of biologically diverse habitats; completion of study using motion- sensitive wildlife camera traps; installation of a permanent phone at the Project headquarters; medical assistance provided to local communities; and initiation of granting official land title to several
Recommended publications
  • SURINAME: COUNTRY REPORT to the FAO INTERNATIONAL TECHNICAL CONFERENCE on PLANT GENETIC RESOURCES (Leipzig,1996)
    S U R I N A M E c o u n t r y r e p o r t 1 SURINAME: COUNTRY REPORT TO THE FAO INTERNATIONAL TECHNICAL CONFERENCE ON PLANT GENETIC RESOURCES (Leipzig,1996) Prepared by: Ministry of Agriculture Animal Husbandry and Fisheries Paramaribo, May 31 1995 S U R I N A M E c o u n t r y r e p o r t 2 Note by FAO This Country Report has been prepared by the national authorities in the context of the preparatory process for the FAO International Technical Conference on Plant Genetic Resources, Leipzig, Germany, 17-23 June 1996. The Report is being made available by FAO as requested by the International Technical Conference. However, the report is solely the responsibility of the national authorities. The information in this report has not been verified by FAO, and the opinions expressed do not necessarily represent the views or policy of FAO. The designations employed and the presentation of the material and maps in this document do not imply the expression of any option whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. S U R I N A M E c o u n t r y r e p o r t 3 Table of contents CHAPTER 1 INTRODUCION TO SURINAME AND ITS AGRICULTURAL SECTOR 5 1.1 GEOGRAPHY AND POPULATION 5 1.2 CLIMATE AND GEOMORPHOLOGICAL LAND-DIVISION 6 1.2.1 Agriculture 7 CHAPTER 2 INDIGENOUS PLANT GENETIC RESOURCES 9 2.1 FORESTRY GENETIC RESOURCES 9 2.2 AGRICULTURAL PLANT GENETIC RESOURCES 10 2.2.1 Ananas
    [Show full text]
  • Rheological Properties of Asphalt Binders Modified with Natural Fibers and Oxidants
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 4 Issue 10, October - 2017 Rheological Properties of Asphalt Binders Modified With Natural Fibers and Oxidants T. M. F. Cunha G. Cardoso C. A. Frota Petrobras – REMAN Federal University of Sergipe Federal University of Amazonas Manaus - AM, Brazil Aracaju - SE, Brazil Manaus - AM, Brazil E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Abstract—The thermal and rheological A. Objective and Scope behaviors of asphalt binder modified with natural The aim of the present work is to improve the fibers and antioxidants obtained from the Amazon rheological characteristics (complex modulus, phase rain forest are analyzed through angle and viscosity) of the asphalt binder AC 50/70, Thermogravimetry (TG), Differential Scanning modifying it with raw materials from the Ama-zon Calorimetry (DSC) and Dynamical Shear biodiversity, with the perspective of sustainable use of Rheometer (DSR) tests. The addition of modifiers natural resources. The mechanical properties of AC alters considerably the physical and rheological 50/70 modified with those materials were compared properties of the modified binders. The main with those of pure AC 50/70 and that modified with results are: a good thermal stability and styrene-butadiene-styrene (SBS) copolymer. miscibility with asphalt cement (AC), significant increase of G* at low frequencies, decrease of As one of the natural modifier material we used and increase of the viscosity. The results are natural fiber obtained from the shell of a fruit compared with that of asphalt binder modified popularly known as Cutia-Chesnut (Couepia Edulis - with SBS polymer.
    [Show full text]
  • Dispersal of a Neotropical Nutmeg (Virola Sebifera) by Birds
    DISPERSAL OF A NEOTROPICAL NUTMEG (VIROLA SEBIFERA) BY BIRDS HENRY F. HOWE Program in Evolutionary Ecologyand Behavior, Department of Zoology, University of Iowa, Iowa City, Iowa 52242 USA Al•ST•CT.--Feeding assemblagesof birds were observedat a Panamanian population of Virola sebifera (Myristicaceae) in order to test the hypothesisthat plants producing especiallynutritious fruits in limited supply should be efficiently dispersedby a small set of obligate frugivores. Virola sebifera producesan encapsulatedarillate seedthat is swallowed by birds shortly after dehiscence. The aril (54% lipid, 7% protein, 8% usable carbohydrate) is retained; the seed is regurgitated intact within 10-30 min. The plant produces 1-96 (Yc= 24) ripe arillate seedseach day, of which 40-89% (Yc= 76%) are taken within a few hours of dawn. The visitor assemblageconsists of six resident frugivores. Three [Chestnut-mandibledToucan (Ramphastosswainsonii), Keel-billed Toucans (R. sulfuratus), and Masked Tityra (Tityra semifasciata)] are "regulars," likely to visit all trees; three [Slaty-tailed Trogon (2•rogonmassena), Rufous Motmot (Baryphthengus martii), and Collared Aracari (Pteroglossustorquatus) are common throughout the Barro Colorado Forest but do not consistently use Virola sebifera. The Chestnut-mandibled Toucan is responsiblefor 43% of the seedsremoved by birds, although it is also responsiblefor more seedwaste (regurgi- tation under the tree crown) than other visitors. Rapid depletion of available fruits each morning and active defense of the crowns by toucans suggest a limited and preferred food resource for "regulars"in the assemblage. A review of recent work indicatesthat the assemblagevisiting Virola sebiferais similar to that frequenting its larger congener (V. surinamensis) but is far smaller and more specialized than those visiting other fruiting trees in the same forest.
    [Show full text]
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Matses Indian Rainforest Habitat Classification and Mammalian Diversity in Amazonian Peru
    Journal of Ethnobiology 20(1): 1-36 Summer 2000 MATSES INDIAN RAINFOREST HABITAT CLASSIFICATION AND MAMMALIAN DIVERSITY IN AMAZONIAN PERU DAVID W. FLECK! Department ofEveilltioll, Ecology, alld Organismal Biology Tile Ohio State University Columbus, Ohio 43210-1293 JOHN D. HARDER Oepartmeut ofEvolution, Ecology, and Organismnl Biology Tile Ohio State University Columbus, Ohio 43210-1293 ABSTRACT.- The Matses Indians of northeastern Peru recognize 47 named rainforest habitat types within the G61vez River drainage basin. By combining named vegetative and geomorphological habitat designations, the Matses can distinguish 178 rainforest habitat types. The biological basis of their habitat classification system was evaluated by documenting vegetative ch<lracteristics and mammalian species composition by plot sampling, trapping, and hunting in habitats near the Matses village of Nuevo San Juan. Highly significant (p<:O.OOI) differences in measured vegetation structure parameters were found among 16 sampled Matses-recognized habitat types. Homogeneity of the distribution of palm species (n=20) over the 16 sampled habitat types was rejected. Captures of small mammals in 10 Matses-rc<:ognized habitats revealed a non-random distribution in species of marsupials (n=6) and small rodents (n=13). Mammal sighlings and signs recorded while hunting with the Matses suggest that some species of mammals have a sufficiently strong preference for certain habitat types so as to make hunting more efficient by concentrating search effort for these species in specific habitat types. Differences in vegetation structure, palm species composition, and occurrence of small mammals demonstrate the ecological relevance of Matses-rccognized habitat types. Key words: Amazonia, habitat classification, mammals, Matses, rainforest. RESUMEN.- Los nalivos Matslis del nordeste del Peru reconacen 47 tipos de habitats de bosque lluvioso dentro de la cuenca del rio Galvez.
    [Show full text]
  • An Update on Ethnomedicines, Phytochemicals, Pharmacology, and Toxicity of the Myristicaceae Species
    Received: 30 October 2020 Revised: 6 March 2021 Accepted: 9 March 2021 DOI: 10.1002/ptr.7098 REVIEW Nutmegs and wild nutmegs: An update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species Rubi Barman1,2 | Pranjit Kumar Bora1,2 | Jadumoni Saikia1 | Phirose Kemprai1,2 | Siddhartha Proteem Saikia1,2 | Saikat Haldar1,2 | Dipanwita Banik1,2 1Agrotechnology and Rural Development Division, CSIR-North East Institute of Prized medicinal spice true nutmeg is obtained from Myristica fragrans Houtt. Rest spe- Science & Technology, Jorhat, 785006, Assam, cies of the family Myristicaceae are known as wild nutmegs. Nutmegs and wild nutmegs India 2Academy of Scientific and Innovative are a rich reservoir of bioactive molecules and used in traditional medicines of Europe, Research (AcSIR), Ghaziabad, 201002, Uttar Asia, Africa, America against madness, convulsion, cancer, skin infection, malaria, diar- Pradesh, India rhea, rheumatism, asthma, cough, cold, as stimulant, tonics, and psychotomimetic Correspondence agents. Nutmegs are cultivated around the tropics for high-value commercial spice, Dipanwita Banik, Agrotechnology and Rural Development Division, CSIR-North East used in global cuisine. A thorough literature survey of peer-reviewed publications, sci- Institute of Science & Technology, Jorhat, entific online databases, authentic webpages, and regulatory guidelines found major 785006, Assam, India. Email: [email protected] and phytochemicals namely, terpenes, fatty acids, phenylpropanoids, alkanes, lignans, flavo- [email protected] noids, coumarins, and indole alkaloids. Scientific names, synonyms were verified with Funding information www.theplantlist.org. Pharmacological evaluation of extracts and isolated biomarkers Council of Scientific and Industrial Research, showed cholinesterase inhibitory, anxiolytic, neuroprotective, anti-inflammatory, immu- Ministry of Science & Technology, Govt.
    [Show full text]
  • A Review of Animal-Mediated Seed Dispersal of Palms
    Selbyana 11: 6-21 A REVIEW OF ANIMAL-MEDIATED SEED DISPERSAL OF PALMS SCOTT ZoNA Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711 ANDREW HENDERSON New York Botanical Garden, Bronx, New York 10458 ABSTRACT. Zoochory is a common mode of dispersal in the Arecaceae (palmae), although little is known about how dispersal has influenced the distributions of most palms. A survey of the literature reveals that many kinds of animals feed on palm fruits and disperse palm seeds. These animals include birds, bats, non-flying mammals, reptiles, insects, and fish. Many morphological features of palm infructescences and fruits (e.g., size, accessibility, bony endocarp) have an influence on the animals which exploit palms, although the nature of this influence is poorly understood. Both obligate and opportunistic frugivores are capable of dispersing seeds. There is little evidence for obligate plant-animaI mutualisms in palm seed dispersal ecology. In spite of a considerable body ofliterature on interactions, an overview is presented here ofthe seed dispersal (Guppy, 1906; Ridley, 1930; van diverse assemblages of animals which feed on der Pijl, 1982), the specifics ofzoochory (animal­ palm fruits along with a brief examination of the mediated seed dispersal) in regard to the palm role fruit and/or infructescence morphology may family have been largely ignored (Uhl & Drans­ play in dispersal and subsequent distributions. field, 1987). Only Beccari (1877) addressed palm seed dispersal specifically; he concluded that few METHODS animals eat palm fruits although the fruits appear adapted to seed dispersal by animals. Dransfield Data for fruit consumption and seed dispersal (198lb) has concluded that palms, in general, were taken from personal observations and the have a low dispersal ability, while Janzen and literature, much of it not primarily concerned Martin (1982) have considered some palms to with palm seed dispersal.
    [Show full text]
  • Reproductive Success in a Tropical Tree Species, Virola Surinamensis Undergraduate Research Thesis Presented in Partial Fulfillm
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KnowledgeBank at OSU Reproductive success in a tropical tree species, Virola surinamensis Undergraduate Research Thesis Presented in Partial Fulfillment of the Requirements for graduation “with Research Distinction in Evolution, Ecology and Organismal Biology” in the undergraduate colleges of The Ohio State University by Megan Sullivan The Ohio State University March 2014 Project Advisor: Dr. Liza Comita, Department of Evolution, Ecology, and Organismal Biology 1 Introduction Tropical forests are a haven for biodiversity. Determining the driving forces behind this pattern of high diversity in tropical forests has been a question that researchers have been investigating for quite some time. It is thought that violations of the competitive exclusion principle allow for greater diversity (Wright 2002, Connell 1971, Janzen 1970). Tropical tree species violate this principle in different ways and persist in competition against one another through a variety of mechanisms, ultimately, to obtain reproductive success. Reproductive success is when an individual is more successful at surviving and reproducing respective to other individuals of the species (Bergstrom and Dugatkin, 2012). Many different mechanisms can affect reproductive success and many different characteristics can drive these mechanisms. Reproductive success in plants results from a number of processes. Fruit production (the number of seeds that the tree produces initially) is the starting point for measuring reproductive potential. Fruit production in individuals can be affected by factors such as the amount of available resources (e.g., light, water, and nutrients) and competition by the surrounding neighborhood of plants for those resources (Lee and Bazzaz, 1982, Graham and Wright et.
    [Show full text]
  • Counting on Forests and Accounting for Forest Contributions in National
    OCCASIONAL PAPER Agouti on the wedding menu Bushmeat harvest, consumption and trade in a post-frontier region of the Ecuadorian Amazon Ian Cummins Miguel Pinedo-Vasquez Alexander Barnard Robert Nasi OCCASIONAL PAPER 138 Agouti on the wedding menu Bushmeat harvest, consumption and trade in a post-frontier region of the Ecuadorian Amazon Ian Cummins Runa Foundation Miguel Pinedo-Vasquez Center for International Forestry Research (CIFOR) Earth Institute Center for Environmental Sustainability (EICES) Alexander Barnard University of California Robert Nasi Center for International Forestry Research (CIFOR) Center for International Forestry Research (CIFOR) Occasional Paper 138 © 2015 Center for International Forestry Research Content in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/ ISBN 978-602-387-009-7 DOI: 10.17528/cifor/005730 Cummins I, Pinedo-Vasquez M, Barnard A and Nasi R. 2015. Agouti on the wedding menu: Bushmeat harvest, consumption and trade in a post-frontier region of the Ecuadorian Amazon. Occasional Paper 138. Bogor, Indonesia: CIFOR. Photo by Alonso Pérez Ojeda Del Arco Buying bushmeat for a wedding CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] cifor.org We would like to thank all donors who supported this research through their contributions to the CGIAR Fund. For a list of Fund donors please see: https://www.cgiarfund.org/FundDonors Any views expressed in this publication are those of the authors. They do not necessarily represent the views of CIFOR, the editors, the authors’ institutions, the financial sponsors or the reviewers.
    [Show full text]
  • Myristicaceae
    1762 TROPICAL FORESTS / Myristicaceae Burtt Davy J (1938) Classification of Tropical Woody importance. Fruit of the Myristicaceae, particularly Vegetation Types. Oxford, UK: Imperial Forestry In- the lipid-rich aril surrounding the seed in some stitute. species, are important as food for birds and mam- Champion HG and Seth SK (1968) Revised Survey of the mals of tropical forests. Numerous species are valued Forest Types of India. New Delhi, India: Manager of by humans as sources of food, medicine, narcotics, Publications, Government of India. and timber, including Myristica fragrans, the source Collins NM, Sagyer JA, and Whitmore TC (eds) (1991) of nutmeg and mace, the spices of commerce. The Conservation Atlas of Tropical Forests: Asia and Pacific. London: Macmillan. Throughout the geographical range of Myristica- Edward MV (1950) Burma Forest Types. Indian Forest ceae, aromatic leaves, often stellate pubescence, a Records (new series). Silviculture 7(2). Dehra Dun, India: unique arborescent architecture (Figure 1), and sap Forest Research Institute. the color of blood (Figure 2) are characteristics that Holmer CH (1958) The broad pattern of climate and strongly enhance recognition of this family in the vegetation distribution in Ceylon. In Proceedings of a field. Species of this family are usually dioecious. Symposium on Humid Tropics Vegetation, Kanly. Paris: Flowers are tiny and found in paniculate inflores- UNESCO. cences, with filaments of stamens fused into a IUCN (1988) The Red Data Book. Switzerland: IUCN. column, giving rise to either free or fused anthers Kurz S (1877) Forest Flora of British Burma, 2 vols. (Figures 3 and 4). Fruits are one-seeded, dehiscent or Calcutta, India: Bishen Singh, Dehra Dun.
    [Show full text]
  • Non-Wood Forest Products
    Non-farm income wo from non- od forest prod ucts FAO Diversification booklet 12 FAO Diversification Diversification booklet number 12 Non-farm income wo from non- od forest products Elaine Marshall and Cherukat Chandrasekharan Rural Infrastructure and Agro-Industries Division Food and Agriculture Organization of the United Nations Rome 2009 The views expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders.
    [Show full text]
  • Instituto Nacional De Pesquisas Da Amazônia – Inpa Programa De Pós-Graduação Em Ecologia
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA USO DE HABITAT E OCORRÊNCIA DE ROEDORES CAVIOMORFOS NA AMAZÔNIA CENTRAL, BRASIL FERNANDA DE ALMEIDA MEIRELLES Manaus, Amazonas Novembro, 2012 1 FERNANDA DE ALMEIDA MEIRELLES USO DE HABITAT E OCORRÊNCIA DE ROEDORES CAVIOMORFOS NA AMAZÔNIA CENTRAL, BRASIL ORIENTADOR: Dr. EDUARDO MARTINS VENTICINQUE Co-orientador: Dr. Torbjørn Haugaasen Dissertação apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em Biologia (Ecologia). Manaus, Amazonas Novembro, 2012 ii Banca examinadora não-presencial: Dra. Camila Righetto Cassano – Universidade Estadual de Santa Cruz Parecer: Aprovada com correções Dra. Maria Luisa da Silva Pinto Jorge – Universidade Estadual Paulista Júlio Mesquita Filho Parecer: Aprovada com correções Dr. José Manuel Vieria Fragoso – Universidade de Standfor, Califórnia (EUA) Parecer: Aprovada Banca examinadora presencial em 26 de novembro de 2012: Dr. Marcelo Gordo – Universidade Federal do Amazonas Parecer: Aprovada Dr. Paulo Estefano Dineli Bobrowiec – Instituto Nacional de Pesquisas da Amazônia Parecer: Aprovada Dr. Pedro Ivo Simões – Instituto Nacional de Pesquisas da Amazônia Parecer: Aprovada iii Sinopse: Estudei o uso de habitat e o efeito da distribuição de castanhais sobre a ocorrência de pacas, cotias e cutiaras na Reserva de Desenvolvimento Sustentável Piagaçu - Purus. Para isso distribuímos 107 câmeras-trap em locais com e sem exploração de castanha- do-Brasil. As variáveis ambientais, utilizadas como preditoras da ocorrência das espécies, foram medidas em campo ou extraídas de bases geográficas digitais. Os resultados indicam que as três espécies de roedores ocorrem preferencialmente em áreas com alta densidade de drenagem e distantes de comunidades humanas.
    [Show full text]