ON the ORIGIN of INTERCELLULAR CANALS in the SECONDARY XYLEM of SELECTED MELIACEAE SPECIES* Oliver Dünisch1,2 & Pieter Baas

Total Page:16

File Type:pdf, Size:1020Kb

ON the ORIGIN of INTERCELLULAR CANALS in the SECONDARY XYLEM of SELECTED MELIACEAE SPECIES* Oliver Dünisch1,2 & Pieter Baas IAWA Journal, Vol. 27 (3), 2006: 281–297 ON THE ORIGIN OF INTERCELLULAR CANALS IN THE SECONDARY XYLEM OF SELECTED MELIACEAE SPECIES* Oliver Dünisch1,2 & Pieter Baas3 SUMMARY The anatomy, frequency, and origin of intercellular canals in the xylem of ten Meliaceae species (Carapa guianensis Aubl., Carapa procera DC., Cedrela odorata L., Cedrela fissilis Vell., Entandrophragma cilindricum Sprague, Entandrophragma utile Sprague, Khaya ivorensis A. Chev., Khaya senegalensis (Desr.) A. Juss., Swietenia macrophylla King, Swietenia mahagoni (L.) Jacq.) were investigated using 327 samples from institutional wood collections, 398 plantation grown trees, and 43 pot cultivated plants. Tangential bands of intercellular canals and single canals were found in the xylem of all ten species. Staining of microtome sections indicated that the chemical composition of the secretion is similar to that of “wound-gums”. Studying the origin of the intercellular canals along the stem axis, it became obvious that the formation of the canals can be induced by wounding of the primary meristems (in particular by insect attacks of Hypsipyla spp., wounding of root tips) and by wounding of the cambium (formation of 43–100% of the intercellular canals). In fast growing trees of Carapa spp., Entandrophragma utile, and Khaya ivorensis, planted at an experimental site near Manaus, Brazil, numerous canals were found which were not induced by wounding of the meristems. In these trees an out of phase sequence of xylem cell development and high growth stresses were observed, which are hypothesised to be a fur- ther trigger for the traumatic formation of intercellular canals. Key words: Traumatic canals, mechanical injury, meristem, xylem cell de- velopment, growth stresses. INTRODUCTION Most studies on structure and formation of canals in wood have concentrated on resin canals in gymnosperms. In gymnosperms resin canals are classified into two groups, namely, non-traumatic and traumatic resin canals (Richter et al. 2004). The formation of non-traumatic resin canals is considered to be under genetic control (Werker & 1) Institute of Applied Botany, University of Hamburg, Ohnhorststr. 18, D-22609 Hamburg, Germany. 2) Institute for Wood Biology and Wood Preservation, Federal Research Centre for Forestry and For- est Products, Leuschnerstr. 91, D-21031 Hamburg, Germany. – Corresponding address [E-mail: [email protected]]. 3) Nationaal Herbarium Nederland, Leiden University branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands. *) Dedicated to Prof. Dr. J. Bauch on the occasion of his 70th birthday. Downloaded from Brill.com10/01/2021 03:45:57AM via free access 282 IAWA Journal, Vol. 27 (3), 2006 Dünisch & Baas — Intercellular canals in Meliaceae 283 Fahn 1969), while the formation of traumatic resin canals is induced by exogenous factors, in particular by wounding (Lenely & Moore 1977; Fahn et al. 1979) and other environmental stressors (Wimmer & Grabner 1997). In contrast, information on the structure, the distribution, and factors influencing the formation of intercellular canals in the wood of dicotyledonous trees is very fragmen- tary, although in some dicotyledonous species intercellular canals are so frequent that they are important diagnostic features for wood identification (e.g., Dipterocarpaceae, Gottwald & Parameswaran 1966; Gottwald 1980; Wheeler et al. 1989). Intercellular canals are frequent in the Meliaceae (Record 1926; Wagenführ 2000; Dünisch et al. 2002a), but there is no standard term for them (terms used have been: resin ducts, gum ducts, traumatic resin canals and others). Because there are many high quality timber species within the Meliaceae (mahogany group), special attention has been given to the occurrence of intercellular canals with regard to wood quality and utilisation (e.g., Gottwald 1961; Wagenführ & Steiger 1963). Information on factors influencing the formation of these intercellular canals is rare. The first anatomical descriptions of intercellular canals in Meliaceae wood are in the pioneering works of Moeller (1876), Janssonius (1908), and Groom (1926). These studies indicated that the secretion in the canals is of a “wound-gum type” and that the “distances between suc- cessive intercellular canals or arcs is uneven and the formation is not periodic” (Groom 1926); yet these authors stated that the origin of this secretory tissue is unknown. Other publications considered intercellular canals in the xylem of Meliaceae species to be traumatic (Normand & Sallenave 1958; Normand & Paquis 1976). We studied the structure, frequency, and origin of the intercellular canals in the xylem of ten selected Meliaceae species (five genera). Special attention was given to 1) the impact of wounding, 2) the development and differentiation of xylem cells during the formation of the intercellular canals, and 3) growth stresses and their possible effect on the formation of intercellular canals. MATERIAL AND METHODS Selected species and plant material Ten tree species from five genera of the family Meliaceae were selected: Carapa guianensis Aubl., Carapa procera DC., Cedrela odorata L., Cedrela fissilis Vell., Entandrophragma cilindricum Sprague, Entandrophragma utile Sprague, Khaya ivorensis A. Chev., Khaya senegalensis (Desr.) A. Juss., Swietenia macrophylla King, and Swietenia mahagoni (L.) Jacq. The occurrence of intercellular canals in the sec- ondary xylem of all ten species is documented in the literature (Richter & Dallwitz 2000; Wheeler et al. [www.insidewood.lib.ncsu.edu/search]). 327 samples from wood collections (Table 1), stem and branch samples of 398 plantation grown trees (age: 4 years; Table 2) and of 43 pot cultivated plants (age: 2 years; Table 3) were examined. Samples from wood collections — Wood samples and samples from slide collections of the selected species were available from the collections of the National Herbarium of the Netherlands (Leiden - Lw / Utrecht - Uw), of the Federal Research Centre for Forestry and Forest Products, Hamburg, Germany (RBHw), and of the Federal Uni- Downloaded from Brill.com10/01/2021 03:45:57AM via free access 282 IAWA Journal, Vol. 27 (3), 2006 Dünisch & Baas — Intercellular canals in Meliaceae 283 Table 1. Number of wood samples from the wood collections of the National Herbarium of the Netherlands (Leiden/Utrecht), the Federal Research Centre for Forestry and Forest Products, Hamburg, Germany, and the Federal University of Paraná State, Curitiba, Brazil examined for this study. Number and portion (%) of samples with intercellular canals. Frequency (number per cm2 cross section area) of canals (local or in tangential bands) in the wood samples. Values followed by different letters differ significantly between species atp < 0.05 (Fisherʼs F-test). Species No. of samples No. of samples Frequency of inter- with intercellular cellular canals canals (%) (no. cm-2) Carapa guianensis 53 30 (57) 0.0160 a Carapa procera 43 26 (60) 0.0225 b Cedrela odorata 69 18 (26) 0.0180 a Cedrela fissilis 30 12 (40) 0.0143 c Entandrophragma cilindricum 23 6 (26) 0.0092 d Entandrophragma utile 23 5 (22) 0.0125 c Khaya ivorensis 16 15 (94) 0.0375 e Khaya senegalensis 10 6 (60) 0.0371 e Swietenia macrophylla 28 5 (18) 0.0090 d Swietenia mahagoni 32 8 (25) 0.0060 f versity of Paraná State, Curitiba, Brazil. As far as possible the samples were cross- checked for duplication within and between the collections. For the statistical analyses on the occurrence of intercellular canals only one of duplicated samples was included. Plantation grown trees — Trees from 4-year-old plantations located in the region of Manaus, Amazonas (03° 08' S, 59° 52' W; Carapa guianensis, Carapa procera, Cedrela odorata, Khaya ivorensis, Khaya senegalensis, Swietenia macrophylla, Swietenia mahagoni), in the region of Santarem, Para (02° 52' S, 54° 45' W; Entan- drophragma cilindricum, Entandrophragma utile), and in the region of Ponta Grossa, Paraná, Brazil (25° 15' S, 50° 45' W; Cedrela fissilis) were selected. The Manaus site (tropical) is located at approximately 30–50 m above sea level with an annual precipitation of about 2500 mm (min. 110 mm [August], max. 295 mm [February] per month), a mean air temperature of 26.4 °C, and a mean air humidity of 87%. The soil is a poor oxisol (FAO-UNESCO 1990) with a low cation exchange capacity (Schroth et al. 2000). Edaphic factors of the Santarem region (30 m above sea level) correspond to the Manaus region, but the soil of the plantation near Santarem is more fertile than that in the plantation near Manaus (Dünisch et al. 2002b). In addition, the drier period is more distinct on the Santarem site than on the Manaus site. The subtropical site near Ponta Grossa is located 870 m above sea level. The annual precipitation is about 1570 mm and the mean air temperature is 19.1 °C. July and August are the driest and coldest months of the year with a monthly precipitation of about 70 mm and a mean air temperature of about 14 °C. The soil is of the cambisol type (EMBRAPA-SNLS 1984). The plantations near Manaus and Santarem /Belterra were installed at the research stations of the Brazilian Federal Research Centre EMBRAPA, while the plantation near Downloaded from Brill.com10/01/2021 03:45:57AM via free access 284 IAWA Journal, Vol. 27 (3), 2006 Dünisch & Baas — Intercellular canals in Meliaceae 285 Ponta Grossa was installed by private owners (Fazenda Bitumirim). All species were planted in open plots (spacing: 3 × 3 m) of 12 to 100 trees each (Bauch et al. 1999; experiment 1). In addition Carapa guianensis and Khaya ivorensis were planted in a line enrichment of a secondary vegetation and in a mixed agroforestry plantation, re- spectively (Dünisch 2001; Schroth & Sinclair 2003; experiment 2). In these plantations the growth rate of the trees was reduced compared to trees grown in open plantations (Table 2). For the study on the occurrence and on the origin of intercellular canals, 4-year-old trees of the plantations were completely harvested by excavation (Fig. 1). The trees were divided into segments of 1 m length. After that each root/shoot segment was cut in the longitudinal direction into 2 parts (radial cut, Fig.
Recommended publications
  • EVOLUTIONARY HISTORY of Cedrela (MELIACEAE) in CENTRAL BRAZIL
    ALEXANDER HUAMÁN-MERA EVOLUTIONARY HISTORY OF Cedrela (MELIACEAE) IN CENTRAL BRAZIL Thesis submitted to the Botany Graduate Program of the Universidade Federal de Viçosa, as part of the requirements to obtain the title of Doctor Scientiae. VIÇOSA MINAS GERAIS – BRAZIL 2018 i To my parents, Mardóneo and Yolanda and my family in my country, Peru, to my own family, Yuriko and Akira, And to Scientia amabilis ii ACKNOWLEDGMENTS To my wife Yuriko and my little son Alexander Akira, for their support, patient and constantly love. To the Programa de Pós-graduação em Botânica and its professors of the Universidade Federal de Viçosa (UFV) for the new aknowlegments I acquired during my stage as doctoral student. To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the grants and scholarship fundings. To my Professor Luiz Orlando de Oliviera for the guidance, dedication and especially by stimulated my interest in the Evolutionary Biology. To Juan Manuel Díaz-Soto who unceasingly supported in fieldwork and lab work of the present study, as well as for his friendship and scientific support. To my friends and colleagues in the Laboratory of Biologia Molecular e Filogeografia: Jefferson, Rafaela, Thaís, Thamyres, and Tiago; and to my friends who are no more in the laboratory: Érica, Hugo, Khalid, Leandro, and Thiago, for their companionship and friendship. To my professors of the Departamento Académico de Botánica of the Universidad Nacional Pedro Ruiz Gallo: Guillermo Delgado Paredes, Consuelo Rojas Idrogo, Leopoldo Vásquez Nuñes, and Josefa Escurra Puicón for their support and teachings during my undergraduate course.
    [Show full text]
  • African Mahogany Anegre Birdseye Maple Black Walnut
    African Mahogany African Mahogany (Khaya) is a genus of seven species of trees in the mahogany family Meliaceae, native to tropical Africa and Madagascar. All species become big trees 30-35 m tall, rarely 45 m, with a trunk over 1 m trunk diameter, often buttressed at the base. The leaves are pinnate, with 4-6 pairs of leaflets, the terminal leaflet absent; each leaflet is 10-15 cm long abruptly rounded toward the apex but often with an acuminate tip. The leaves can be either deciduous or evergreen depending on the species. The flowers are produced in loose inflorescences, each flower small, with four or five yellowish petals and ten stamens. The timber of Khaya is called African mahogany, the only timber widely accepted as mahogany besides that of the true mahogany, of the genus Swietenia. Khaya senegalensis, also known as the African dry zone mahogany is also used for its non timber parts. In West Africa, Fulani herdsmen prune the tree during the dry season to feed cattle. Anegre Anegre is milled from the Tawa tree (Beilschmiedia tawa) is a New Zealand broadleaf tree common in the central parts of the country. Tawa is often the dominant canopy species in lowland forests in the North Island and north east of the South Island, Individual specimens may grow up to 30 meters or more in height with trunks up to 1.2 meters in diameter, and they have smooth dark bark. The word "tawa" is the Maori name for the tree. One of the few hardwood trees in the country with good timber, the wood of this tree can be used for attractive and resilient floor boarding.
    [Show full text]
  • Flexible Mating System in a Logged Population of Swietenia Macrophylla King (Meliaceae): Implications for the Management of a Threatened Neotropical Tree Species
    Plant Ecol (2007) 192:169–179 DOI 10.1007/s11258-007-9322-9 ORIGINAL PAPER Flexible mating system in a logged population of Swietenia macrophylla King (Meliaceae): implications for the management of a threatened neotropical tree species Maristerra R. Lemes Æ Dario Grattapaglia Æ James Grogan Æ John Proctor Æ Roge´rio Gribel Received: 21 February 2007 / Accepted: 22 May 2007 / Published online: 19 June 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Microsatellites were used to evaluate the crossed matings and that the remaining 6.75% had mating system of the remaining trees in a logged genotypes consistent with self-fertilisation. Apomixis population of Swietenia macrophylla, a highly valu- could be ruled out, since none of the 400 seedlings able and threatened hardwood species, in the Brazil- analysed had a multi-locus genotype identical to ian Amazon. A total of 25 open pollinated progeny its mother tree. The high estimate of the multi-locus arrays of 16 individuals, with their mother trees, were outcrossing rate (tm = 0.938 ± 0.009) using the mixed genotyped using eight highly polymorphic microsat- mating model also indicated that the population in ellite loci. Genotypic data analysis from the progeny this remnant stand of S. macrophylla was predomi- arrays showed that 373 out of the 400 seedlings nantly allogamous. The relatively large difference (93.25%) were unambiguously the result of out- between the multi-locus and single-locus outcrossing estimates (tmÀts = 0.117 ± 0.011) provides evidence that, in spite of the high outcrossing rate, a consid- & M. R. Lemes ( ) Á R.
    [Show full text]
  • Analysis on Trade Trend of CITES Regualted Tree Species and Its Impact on Chinese Smes
    Analysis on Trade Trend of CITES Regualted Tree Species and its Impact on Chinese SMEs 2017.6 1 2 Preface The Convention on International Trade in Endangered Species of Wild Fauna and Flora (hereinafter referred to as CITES) is signed in Washington D.C. on 3 March 1973, also known as the Washington Convention. It entered into force on 1 July 1975. As an international convention on the control of international trade and the protection of wild flora and fauna, it aims to fully control the import and export of wild animals and plants as well as products thereof and manufactured goods through the regulation system, to promote protection and rational utilization of wild animals and plants resources to ensure that international trade in specimens of wild animals and plants does not threaten their survival. As of December 2016, CITES has 183 member countries where CITES legal framework and trade procedures are applied to regulate and monitor the international trade of species listed in CITES appendices. CITES has been in force for more than 40 years. It has been attracting more and more countries to jointly protect endangered wild animals and plants. At the same time, more and more fauna and flora species have been included in CITES appendices. Up to now, about 5,600 species of animals and 30,000 species of plants are protected by CITES against over-exploitation through international trade. In recent years, the sharp decline of endangered tree species has aroused widespread concern around the world, and over-exploitation is one of the main factors leading to this situation.
    [Show full text]
  • BEATRICE MISSAH.Pdf
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI COLLEGE OF HEALTH SCIENCES FACULTY OF PHARMACY AND PHARMACEUTICAL SCIENCES DEPARTMENT OF PHARMACOGNOSY LARVICICAL AND ANTI-PLASMODIAL CONSTITUENTS OF CARAPA PROCERA DC. (MELIACEAE) AND HYPTIS SUAVEOLENS L. POIT (LAMIACEAE) BY BEATRICE MISSAH SEPTEMBER, 2014 LARVICICAL AND ANTI-PLASMODIAL CONSTITUENTS OF CARAPA PROCERA DC. (MELIACEAE) AND HYPTIS SUAVEOLENS L. POIT (LAMIACEAE) A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MPHIL PHARMACOGNOSY IN THE DEPARTMENT OF PHARMACOGNOSY, FACULTY OF PHARMACY AND PHARMACEUTICAL SCIENCES BY BEATRICE MISSAH KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI SEPTEMBER, 2014 DECLARATION I hereby declare that the experimental work described in this thesis is my own work towards the award of an MPhil and to the best of my knowledge, it contains no material previously published by another person or material which has been submitted for any other degree of the university, except where due acknowledgement has been made in the test. ……………………………………… ………………………… Beatrice Missah Date Certified by ………………………………………… …………………………… Dr. (Mrs.) Rita A. Dickson Date (Supervisor) …………………………………………… ………………………….. Dr. Kofi Annan Date (Supervisor) Certified by ………………………………………… ………………………….. Prof. Abraham Yeboah Mensah Date (Head of Department) ii DEDICATION I dedicate this work to my dear father Mr. Bernard Missah for his immense support and care for me. iii ABSTRACT Malaria is a serious health problem worldwide due to the emergence of parasite resistance to well established antimalarial drugs. This has heightened the need for the development of new antimalarial drugs as well as other control methods. Plant based antimalarial drugs continue to be used in many tropical areas for the treatment and control of malaria and hence the need for scientific investigation into their usefulness as alternatives to conventional treatment.
    [Show full text]
  • SC69 Doc. 69.1
    Original language: English SC69 Doc. 69.1 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Sixty-ninth meeting of the Standing Committee Geneva (Switzerland), 27 November – 1 December 2017 Species specific matters Maintenance of the Appendices Annotations ESTABLISHMENT OF A WORKING GROUP ON ANNOTATIONS 1. This document has been submitted by Canada, on behalf of Namibia and Canada as joint leads for the Standing Committee on the issue of Annotations.* Background 2. At the 17th meeting, (CoP17; Johannesburg, 2016) the Conference of the Parties adopted Decision 16.162 (Rev. CoP17) which directs the Standing Committee to re-establish the working group on annotations, in close collaboration with the Animals and Plants Committees. At its 68th meeting (Johannesburg, 2016), the Standing Committee agreed that Canada and Namibia would lead on the issue of annotations. 4. After discussion with the Chair of the Standing Committee in February 2017 and consultation between Canada and Namibia, it was agreed to engage members of the previous Standing Committee Annotations Working Group in advance of the 69th meeting of the Standing Committee (November 2017; SC69), to continue discussions relating to the work included in the working group terms of reference contained in Decision 16.162 (Rev. CoP17). In April 2017, in response to concerns raised by the Secretariat in advance of CoP17 regarding a lack of regional diversity in the working group in its discussions during the CoP16/CoP17 intersessional period, the Chair of the CITES Plants Committee confirmed that ten members or alternate members of the Plants Committee had expressed interest in participating in the Standing Committee’s work on annotations.
    [Show full text]
  • COMPARATIVE ECOLOGICAL WOOD ANATOMY of AFRICAN MAHOGANY KHAYA IVORENSIS with SPECIAL REFERENCE to DAMAGE CAUSED by HYPSIPYL ROBUSTA SHOOTBORER Rinne E., Hakkarainen J
    Структурные и функциональные отклонения от нормального роста и развития растений COMPARATIVE ECOLOGICAL WOOD ANATOMY OF AFRICAN MAHOGANY KHAYA IVORENSIS WITH SPECIAL REFERENCE TO DAMAGE CAUSED BY HYPSIPYL ROBUSTA SHOOTBORER Rinne E., Hakkarainen J. A., Rikkinen J. Department of Biosciences, University of Helsinki, PO Box 65, FI-00014 University of Helsinki, Finland, E-mail: [email protected] Abstract. This study focuses on the wood anatomy of 60 Khaya ivorensis A. Chev. (Meliaceae) trees from natural forests in three forest zones of southern Ghana. The arrangement, grouping, density and diameter of vessel elements in stem wood were measured and theoretical hydraulic conductivities were calculated for each site. Also anatomical characteristics of thin branches damaged by mahogany shootborer (Hypsipyla robusta Moore) were studied with special reference to effects on vessel element diameter, vessel density and hydraulic conductivity. Our study revealed that there were significant differences in vessel element diameters and hydraulic conductivities between the sites, and that the water conduction efficiency of K. ivorensis wood increased with increasing annual precipitation. In shootborer damaged branches mean vessel element diameters were consistently smaller and mean theoretical hydraulic conductivities lower than in undamaged branches. This suggests that Hypsipyla damage can have a negative effect on the growth rates of mature African mahogany trees in natural forests. Introduction. Khaya ivorensis A. Chev. is distributed throughout the moist lowlands of tropical West Africa. The species has a wide habitat tolerance, but it favors the banks of rivers and streams. The wood is highly valued especially for furniture, cabinet work and light flooring [10]. The species has become commercially extinct in large parts of its original range.
    [Show full text]
  • TREE RING CHARACTERISTICS of 30-YEAR-OLD SWIETENIA MACROPHYLLA PLANTATION TREES Cheng-Jung Lin* Chih-Hsin Chung Chih-Lung Cho Te
    TREE RING CHARACTERISTICS OF 30-YEAR-OLD SWIETENIA MACROPHYLLA PLANTATION TREES Cheng-Jung Lin* Associate Researcher Department of Forest Utilization Taiwan Forestry Research Institute Taipei, Taiwan E-mail: [email protected] Chih-Hsin Chung Assistant Researcher Department of Forest Management Taiwan Forestry Research Institute Taipei, Taiwan E-mail: [email protected] Chih-Lung Cho Professor Department of Natural Resources National I-Lan University Ilan, Taiwan E-mail: [email protected] Te-Hsin Yang Assistant Professor Department of Forestry College of Nature Resource and Agriculture National Chung Hsing University Taichung, Taiwan E-mail: [email protected] (Received October 2011) Abstract. Ring characteristics of mahogany (Swietenia macrophylla K.) plantation trees grown in Taiwan were explored. Significant differences in average ring width (RW) and ring density (RD) occurred among three tree-diameter classes and three radial stages of ring numbers. RW in the radial direction decreased from the pith outward to the bark and followed a distinctive three-stage variation pattern (juvenile, transition, and mature zones). RD in the radial direction increased slowly from the pith outward to the bark. Wider tree rings and lower density are associated with juvenile wood close to the pith, whereas narrower tree rings and higher density are typical for mature wood outward toward the bark. RD in overtopped trees was higher than that in dominant trees. However, RW in dominant trees was wider than that in intermediate and overtopped trees. Earlywood density, latewood density, maximum density, and minimum density were the most important factors determining overall RD. There was a weak relationship between RW and RD, indicating that it is unlikely for growth rates of mahogany plantation trees to have a significant impact on wood density.
    [Show full text]
  • The Wood Cross Sections of Hermann Nördlinger (1818–1897)
    IAWA Journal, Vol. 29 (4), 2008: 439–457 THE WOOD CROSS SECTIONS OF HERMANN NÖRDLINGER (1818–1897) Ben Bubner Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Landschaftsstoffdynamik, Eberswalder Str. 84, 15374 Müncheberg, Germany [E-mail: [email protected]] SUMMARY Hermann Nördlinger (1818–1897), forestry professor in Hohenheim, Germany, published a series of wood cross sections in the years 1852 to 1888 that are introduced here to the modern wood anatomist. The sec- tions, which vary from 50 to 100 μm in thickness, are mounted on sheets of paper and their quality is high enough to observe microscopic details. Their technical perfection is as remarkable as the mode of distribution: sections of 100 wood species were presented in a box together with a booklet containing wood anatomical descriptions. These boxes were dis- tributed as books by the publisher Cotta, from Stuttgart, Germany, with a maximum circulation of 500 per volume. Eleven volumes comprise 1100 wood species from all over the world. These include not only conifers and broadleaved trees but also shrubs, ferns and palms representing a wide variety of woody structures. Excerpts of this collection were also pub- lished in Russian, English and French. Today, volumes of Nördlingerʼs cross sections are found in libraries throughout Europe and the United States. Thus, they are relatively easily accessible to wood anatomists who are interested in historic wood sections. A checklist with the content of each volume is appended. Key words: Cross section, wood collection, wood anatomy, history. INTRODUCTION Wood scientists who want to distinguish wood species anatomically rely on thin sec- tions mounted on glass slides and descriptions in books that are illustrated with micro- photographs.
    [Show full text]
  • EL GENERO CARAPA AUBL. (Mellaceae) EN COLOMBIA
    Caldasia 19(3): 397-407 EL GENERO CARAPA AUBL. (MELlACEAE) EN COLOMBIA MARíA EUGENIA MORALES-PUENTES Programa de Botánica Económica, Instituto de Ctencle« Naturales, Universidad Nacional de Colombia, Apartado 7495, Bogotá, Colombia. CElect: [email protected] Resumen Se complementan las descripciones e ilustran las especies de Carapa para Colombia, se incluye información sobre distribución geográfica, fenología, usos y nombres vulgares. Se registra C. procera DC. por primera vez para Colombia. Palabras claves: Meliaceae, Carapa, Colombia, distribución, usos. Abstract The species of Carapa known from Colombia are iIIustrated and their descriptions are complemented. Information on their geographical distribution, phenology, uses and common names is presented. C. procera DC. is recorded for the first time in Colombia. Key words: Meliaceae, Carapa, Colombia, distribution, uses. Introducción tract y CDROM Index Kewensis. Se realizaron sa- lidas de campo para precisar la información obte- El objetivo de este trabajo es actualizar la informa- nida en la revisión de las colecciones al Trapecio ción sobre la diversidad y distribución de Carapa Amazónico y al Chocó. El material examinado per- en Colombia y aportar algunos datos sobre hábitat, mitió complementar las descripciones e introducir ecología, nombres vulgares y usos. modificaciones al tratamiento del género y las es- Las especies de la familia Meliaceae son de gran im- pecies a partir de la última revisión de Pennington portancia económica gracias a la alta calidad de sus & Styles (198 1). La información obtenida se pro- maderas. Entre las más importantes encontramos cesó y analizó a través de la base interelacional Cedrela odorata L. (cedro), Swietenia macrophy- SPICA del programa de Botánica Económica del l/a King (caoba) y Carapa guianensis Aubl.
    [Show full text]
  • African Mahogany Wood Defects Detected by Ultrasound Waves
    General Technical Report FPL-GTR-239 • Proceedings: 19th International Nondestructive Testing and Evaluation of Wood Symposium African mahogany wood defects detected by ultrasound waves Tamara Suely Filgueira Amorim França Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi, United States, [email protected] Frederico Jose Nistal França Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi, United States, [email protected] Robert John Ross U.S. Forest Service, Forest Product Laboratory, Madison, Wisconsin, USA, [email protected] Xiping Wang U.S. Forest Service, Forest Product Laboratory, Madison, Wisconsin, USA, [email protected] Marina Donaria Chaves Arantes Departamento de Ciências Florestais e da Madeira, Universidade Federal do Espírito Santo, Jerônimo Monteira, Espírito Santo, Brasil, [email protected] Roy Daniel Seale Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi, United States, [email protected] Abstract This study aims to investigate the potential of ultrasound wave to detect defects in 19 years old of two species of African mahogany planted in Brazil. Were used five 76 x 5 x 5 cm samples from each species with different types of defects, and were conditioned to 12% moisture content. The samples were scanned with ultrasound wave in longitudinal direction and every 2,54 cm in radial and tangential directions along the samples. It was possible to identify end split and pin knots in Khaya ivorensis and reaction wood in Khaya senegalensis wood. Beetle galleries did not affect wave velocities in Khaya senegalensis wood. Grain angle had a large effect in ultrasound velocities in radial and tangential directions. Khaya senegalensis exhibit lower longitudinal velocities related to larger amount of interlocked grain in this species.
    [Show full text]
  • Carapa Guianensis Aublet Meliaceae Crabwood, Bastard Mahogany, Andiroba
    Carapa guianensis Aublet Meliaceae crabwood, bastard mahogany, andiroba LOCAL NAMES English (bastard mahogany,crabwood,carapa); French (cabirma de Guinea,bois rouge,carapa,andiroba); Spanish (andiroba,caobilla,najesi,cedro macho,masábalo,cabrima de guiana); Trade name (bastard mahogany,crabwood,andiroba) BOTANIC DESCRIPTION Carapa guianensis is a deciduous or semi-evergreen, monoecious, medium-sized to large trees up to 35 (max. 55) m tall; bole straight and cylindrical; branchless up to 20 (max. 30) m; up to 100 (max. 200) cm in diameter, sometimes fluted, with short buttresses up to 2 m high. Bark surface flaking into squarish scales or in horizontal strips, light grey to greyish brown or dark brown, sometimes reddish; inner bark fibrous, red or pinkish brown. Young plants produce taproots but the trees tend to become surface rooted. Leaves alternate, paripinnate with a dormant glandular leaflet at the apex, exstipulate; leaflets opposite, entire. Shows gigantic leaves in the monocaulous juvenile stage, decreasing in size when branching is initiated. Flowers small, white, borne in a large, axillary or subterminal thyrse; unisexual but with well-developed vestiges of the opposite sex; tetramerous to pentamerous (max. sextamerous); calyx lobed almost to the base; petals slightly contorted. Fruit dehiscent, 4-lobed, pendulous, subglobose, woody capsule containing 2-4 seeds in each lobe. Seeds smooth, pale brown, angular, with woody sarcotesta. BIOLOGY Flowering period depends heavily on the climate but is usually concentrated in 1 short period per year. Pollination is probably by insects; trees are often found swarming with ants visiting extrafloral nectaries at shoot apices and leaflet tips. Usually only 1-2 fruits in an inflorescence mature in 8-12 months.
    [Show full text]