Development of Nuclear SNP Markers for Mahogany (Swietenia Spp.)

Total Page:16

File Type:pdf, Size:1020Kb

Development of Nuclear SNP Markers for Mahogany (Swietenia Spp.) Conservation Genetics Resources (2020) 12:585–587 https://doi.org/10.1007/s12686-020-01162-8 TECHNICAL NOTE Development of nuclear SNP markers for Mahogany (Swietenia spp.) Birte Pakull1 · Lasse Schindler1 · Malte Mader1 · Birgit Kersten1 · Celine Blanc‑Jolivet1 · Maike Paulini1 · Maristerra R. Lemes2 · Sheila E. Ward3 · Carlos M. Navarro4 · Stephen Cavers5,8 · Alexandre M. Sebbenn6 · Omar di Dio6 · Erwan Guichoux7 · Bernd Degen1 Received: 6 April 2020 / Accepted: 23 July 2020 / Published online: 12 August 2020 © The Author(s) 2020 Abstract Swietenia species are the most valuable American tropical timbers and have been heavily overexploited for decades. The three species are listed as either vulnerable or endangered by IUCN and are included on Appendix II of CITES, yet illegal exploitation continues. Here, we used restriction associated DNA sequencing to develop a new set of 120 SNP markers for Swietenia sp., suitable for MassARRAY®iPLEX™ genotyping. These markers can be used for population genetic studies and timber tracking purposes. Keywords SNPs · Mahogany · Swietenia spp. · MassARRAY®iPLEX™ The genus Swietenia includes the species: Swietenia mahag- commercially because of past overexploitation, S. macro- oni (L.) Jacq. (Small-leaved mahogany, native to Florida phylla is now the most valuable and economically important and the Caribbean islands), Swietenia macrophylla King. American tropical timber (Louppe et al. 2008). Swietenia (Big-leaved mahogany, native to Central and South Amer- wood is used for high-class furniture, boat building, musical ica) and Swietenia humilis Zucc. (Pacifc Coast mahogany, instruments etc. All three mahogany species are listed on native to the relatively dry Central American Pacifc coast) CITES (Convention on International Trade in Endangered (Schütt et al. 2014). While S. mahagoni is no longer traded Species, Appendix II) and on the IUCN red list, where S. macrophylla and S. humilis are listed as vulnerable and S. mahagoni Electronic supplementary material The online version of this is classifed as endangered. article (https ://doi.org/10.1007/s1268 6-020-01162 -8) contains Illegal logging is a major threat to the sustainable use of supplementary material, which is available to authorized users. natural forests. Laws like the European Union Timber Regu- lation and an amendment of the Lacey Act in the US prohibit * Birte Pakull [email protected] the trade of illegally sourced timber. However, existing tim- ber-tracking/chain-of-custody systems are based mainly on 1 Thünen Institute of Forest Genetics, Sieker Landstrasse 2, electronic tags or paper-based documentation, and are vul- 22927 Grosshansdorf, Germany nerable to falsifcation. Therefore, eforts to establish genetic 2 Laboratório de Genética e Biologia Reprodutiva de Plantas, methods for timber tracking are being undertaken. Several Instituto Nacional de Pesquisas da Amazônia, Av André academic studies documenting population genetic structure Araújo 2936, Manaus, AM 69057-375, Brazil in Swietenia species have been completed, based on the anal- 3 Mahogany for the Future Inc., San Juan, PR 00928, USA ysis of nuclear and chloroplast microsatellite (SSR) mark- 4 Universidad Nacional, Calle 9, Avenidas 0 y 9, Heredia, ers (e.g. Degen et al. 2013; Lemes et al. 2010; Lemes et al. Costa Rica 2003; Novick et al. 2003). However, genotyping of SSR 5 UK Centre for Ecology & Hydrology, Midlothian, Penicuik, loci from timber material can be difcult as DNA extracts Scotland EH6 0QB, UK are often low quality, which impedes the amplifcation of 6 Instituto Florestal de São Paulo, CP 1322, São Paulo, relatively long SSR-fragments (typically 100–300 bp). Con- SP 01059-970, Brazil sequently, single nucleotide polymorphism (SNP) markers 7 University of Bordeaux, INRAE, BIOGECO, 33610 Cestas, have become the marker of choice for timber forensics, as France they can be characterized in much shorter fragments, are 8 Bush Estate, Midlothian, Penicuik, Scotland EH6 0QB, UK Vol.:(0123456789)1 3 586 Conservation Genetics Resources (2020) 12:585–587 simple to standardize among laboratories, and are fast and or contaminated negative control were removed from the low-cost to develop in large numbers (Blanc-Jolivet et al. dataset, leaving a total of 384 loci for further analysis. Indi- 2017). SNP sets have been developed for timber tracking viduals were then grouped according to: (1) species (all purposes in other commercially important tropical tree spe- individuals) and (2) country of origin (individuals of each cies, e.g., Hymenaea spp. (Chaves et al. 2019), Dipteryx species separately). For each grouping we calculated: the spp. (Honorio Coronado et al. 2019), Cedrela spp. (Paredes- percentage of analyzable individuals per marker, the fxation Villanueva et al. 2019), Jacaranda copaia (Sebbenn et al. index (FIS) as an indicator of potential null alleles or allele 2019), Carapa spp. (Tysklind et al. 2019), Entandrophragma fxation within a group (Nei and Chesser 1983), the efective cylindricum (Blanc-Jolivet et al. 2018), Handroanthus spp. number of alleles (A e), the genetic diferentiation (δ) among (Meyer-Sand et al. 2018) and Milicia spp. (Blanc-Jolivet groups (Gregorius 1987), the correlation between genetic et al. 2017). and geographic distance (only when grouped according to Here, we describe a new set of 120 SNPs for Swietenia country of origin), and population fxation index FST (Nei spp., which can be used for population genetic studies and and Chesser 1983), using GDANT (Degen, unpublished, timber tracking purposes. Suppl. 2). A fnal marker set of 120 SNPs was determined, Tissues (predominantly leaves) from S. macrophylla, prioritizing markers with high rates of amplifcation, high S. humilis and S. mahagoni were harvested in Central and diferentiation power among groups, and—if available— South American countries (Brazil, Belize, Bolivia, Costa high correlation between genetic and geographic distance. Rica, El Salvador, Guatemala, Honduras, Mexico, Nicara- The list of the 120 SNP loci included in the fnal marker set gua, and Panama). Samples were dried with silica gel. DNA is in Suppl. 3. isolation from dried cambium and leaf material was car- ried out according to Dumolin et al. (1995). DNA isolation from wood material was carried out according to Lowe et al. Acknowledgements Open Access funding provided by Projekt DEAL. This research was supported by the German Federal Ministry of Food (2015). SNP discovery was based on restriction-associated and Agriculture (“Large scale project on genetic timber verifcation”, DNA sequencing (RADseq, Miller et al. 2007). RADseq was project No. 28I-001-01). Genotyping was performed at the Genome carried out by Floragenex (Portland, USA) using genomic Transcriptome Facility of Bordeaux Genomic and Sequencing Facil- DNA from fve individuals of S. macrophylla originating ity of Bordeaux (grants from Investissements d’Avenir, Convention attributive d’aide EquipEx Xyloforest: ANR-10-EQPX-16-01grants from Bolivia, Brazil, Costa Rica, Honduras and Mexico. from the Conseil Regional d’Aquitaine no. 20030304002FA and Libraries were prepared with SbfI and sequenced using 20040305003FA, the European Union, FEDER no. 2003227 and Inves- 2 × 100 bp paired-end Illumina HiSeq. The Brazilian sam- tissements d’avenir, no. ANR-10-EQPX-16-01 and CEBA: ANR-10- ple was used for reference assembly. A total of 2450 SNPs LABX-25-01 to the UMR EcoFoG), with the help of Marie Massot. (variant call format 4.1) were identifed on 1011 reference Open Access This article is licensed under a Creative Commons Attri- contigs (stringent mapping conditions). An initial set of 480 bution 4.0 International License, which permits use, sharing, adapta- SNP markers was compiled based on the results of the RAD- tion, distribution and reproduction in any medium or format, as long seq approach. Selection criteria were: strictly no other SNP as you give appropriate credit to the original author(s) and the source, present within at least 50 bp on both sides of a selected SNP, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are location on diferent scafolds, sufcient sequence coverage included in the article’s Creative Commons licence, unless indicated and diferent patterns of allele distribution among the difer- otherwise in a credit line to the material. If material is not included in ent individuals used for sequencing. The 480 selected SNPs the article’s Creative Commons licence and your intended use is not were used for MassARRAY®iPLEX™ (Agena Biosciences, permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a Hamburg, Germany) genotyping. Alleles were called using copy of this licence, visit http://creativeco mmons .org/licen ses/by/4.0/ . Typer Viewer v.4.0.24.71 (Agena Biosciences). The screen- ing included 94 samples (Suppl. 1), representing all three species (S. macrophylla: 69 individuals, S. humilis: 11 indi- viduals, S. mahagoni: 10 individuals), two wood samples References and two individuals of the related species Carapa guianen- sis and Carapa procera. The individuals originated from at Blanc-Jolivet C, Kersten B, Daïnou K, Hardy O, Guichoux E, Del- least 13 diferent countries (Brazil, Belize, Bolivia, Costa camp A, Degen B (2017) Development of nuclear SNP markers for genetic tracking of Iroko, Miliciaexcelsa and Miliciaregia. Rica, Dominican Republic, El Salvador,
Recommended publications
  • Inventario De Plagas Y Enfermedades En Viveros Forestales En Costa Rica
    Revista Forestal Mesoamericana Kurú (Enero-Junio, 2021) 18 (42): 17-29 DOI: 10.18845/rfmk.v16i42.5543 Inventario de plagas y enfermedades en viveros forestales en Costa Rica Review of pests and diseases in forest nurseries in Costa Rica Marcela Arguedas Gamboa1 • María Rodríguez-Solís1 • Jaume Cots Ibiza2 • Adrián Martínez Araya3 Recibido: 24/4/2020 Aceptado: 6/8/2020 Publicado: 17/12/2020 Abstract Forest nurseries are the sites of intensive plant production for reforestation and arboriculture programs, which must be of high quality and free from pests and diseases. A sanitary evaluation was carried out in seven forest nurseries in Costa Rica, to prepare the diagnosis of phytosanitary problems. 15 species of insects were diagnosed, 44 of pathogens and 5 of mites, in a total of 80 forest species under production. At the apex, the most important damages are caused by the borer Hypsipila grandella and the cutter Trigona sp. and as pathogens Botrytis sp., Cylindrocladium sp. and Phomopsis sp.; in the foliage, by the insects Eulepte concordalis, Dictyla monotropidia and Austropuccinia psidii, Colletotrichum spp., Dothistroma septosporum, Melampsoridium alni, Oidium sp., Olivea tectonae, and Phyllachora balansae as pathogens. These problems are described and the principles and practices contemplated in Integrated Pest Management (IPM) are recommended for their control. Key words: Seedlings, pathogens, insects, mites, phytosanitary diagnosis. 1. Escuela de Ingeniería Forestal, Instituto Tecnológico de Costa Rica, Cartago Costa Rica; [email protected], [email protected] 2. BC Fertilis, Valencia, España; [email protected] 3. Instituto Costarricense de Electricidad, Cartago, Costa Rica; [email protected] 17 Revista Forestal Mesoamericana Kurú (Enero-Junio, 2021) 18 (42): 17-29 Resumen [8], [9].
    [Show full text]
  • Tuscan Solid Wood Worksurfaces
    solid wood worksurfaces Tuscan solid wood worksurfaces Touch a solid wood worksurface and you can feel the beauty with your fingertips. Solid wood worksurfaces are an investment in timeless quality and natural beauty. Tuscan worksurfaces are crafted from the finest quality hardwoods, so you can always be confident about their performance and durability. And the extensive choice of colours and species, available in different sizes and thicknesses, gives you unrivalled design freedom. Your choice of timber will be instinctive. But the look and feel of your worksurface will always be special. Bamboo 3 Species & Trees Bamboo - Phyllostachys Pubescens European Oak - Quercus Robur, Quercus Petrea Technically not a wood but a species of grass, it is widely European Oak is light to yellowish-brown in colour with used in a vast number of applications due to its structural distinctive silver grain figure due to the broad medullary and durable qualities. It is very dense and strong with rays that can appear. Renowned for it’s strength, durability excellent resistance to moisture. Due to its exceptional and aesthetic character, it is a preferred choice in a wide growth rate, bamboo is now widely regarded as one range of applications. of the most sustainable and environmentally friendly options available. Iroko - Chlorophora Excelsa The excellent strength and natural oil durability properties Brown Ash - Fraxinus Excelsior of Iroko make it an excellent choice for worktops, as well European Ash is of medium weight, with freshly cut as being one of the most interesting and striking timbers wood being a creamy white to pale brown, turning to to use.
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Flexible Mating System in a Logged Population of Swietenia Macrophylla King (Meliaceae): Implications for the Management of a Threatened Neotropical Tree Species
    Plant Ecol (2007) 192:169–179 DOI 10.1007/s11258-007-9322-9 ORIGINAL PAPER Flexible mating system in a logged population of Swietenia macrophylla King (Meliaceae): implications for the management of a threatened neotropical tree species Maristerra R. Lemes Æ Dario Grattapaglia Æ James Grogan Æ John Proctor Æ Roge´rio Gribel Received: 21 February 2007 / Accepted: 22 May 2007 / Published online: 19 June 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Microsatellites were used to evaluate the crossed matings and that the remaining 6.75% had mating system of the remaining trees in a logged genotypes consistent with self-fertilisation. Apomixis population of Swietenia macrophylla, a highly valu- could be ruled out, since none of the 400 seedlings able and threatened hardwood species, in the Brazil- analysed had a multi-locus genotype identical to ian Amazon. A total of 25 open pollinated progeny its mother tree. The high estimate of the multi-locus arrays of 16 individuals, with their mother trees, were outcrossing rate (tm = 0.938 ± 0.009) using the mixed genotyped using eight highly polymorphic microsat- mating model also indicated that the population in ellite loci. Genotypic data analysis from the progeny this remnant stand of S. macrophylla was predomi- arrays showed that 373 out of the 400 seedlings nantly allogamous. The relatively large difference (93.25%) were unambiguously the result of out- between the multi-locus and single-locus outcrossing estimates (tmÀts = 0.117 ± 0.011) provides evidence that, in spite of the high outcrossing rate, a consid- & M. R. Lemes ( ) Á R.
    [Show full text]
  • Analysis on Trade Trend of CITES Regualted Tree Species and Its Impact on Chinese Smes
    Analysis on Trade Trend of CITES Regualted Tree Species and its Impact on Chinese SMEs 2017.6 1 2 Preface The Convention on International Trade in Endangered Species of Wild Fauna and Flora (hereinafter referred to as CITES) is signed in Washington D.C. on 3 March 1973, also known as the Washington Convention. It entered into force on 1 July 1975. As an international convention on the control of international trade and the protection of wild flora and fauna, it aims to fully control the import and export of wild animals and plants as well as products thereof and manufactured goods through the regulation system, to promote protection and rational utilization of wild animals and plants resources to ensure that international trade in specimens of wild animals and plants does not threaten their survival. As of December 2016, CITES has 183 member countries where CITES legal framework and trade procedures are applied to regulate and monitor the international trade of species listed in CITES appendices. CITES has been in force for more than 40 years. It has been attracting more and more countries to jointly protect endangered wild animals and plants. At the same time, more and more fauna and flora species have been included in CITES appendices. Up to now, about 5,600 species of animals and 30,000 species of plants are protected by CITES against over-exploitation through international trade. In recent years, the sharp decline of endangered tree species has aroused widespread concern around the world, and over-exploitation is one of the main factors leading to this situation.
    [Show full text]
  • Outdoor Upholstery
    OUTDOOR UPHOLSTERY FABRICS: FRAMES: MECHANISMS: Base covers are made from an outdoor performance mesh The frames are CNC cut from a marine Outdoor swivels, swivel glider and pop fabric. This allows the piece to breathe! It allows moisture to grade 18mm Baltic Birch plywood. This up sleeper mechanisms are powder escape and aids in drying. Slipcovers and upholstered pieces are plywood is engineered for the outdoors! coated or epoxy coated for durability. wrapped in outdoor performance fabrics. Outdoor performance They are assembled using exterior grade All bearings are stainless steel. fabrics are UV and fade resistant plus bleach cleanable. This adhesives and stainless steel fasteners. Mechanisms are salt tested for 500 assures you to have the best in the business! hours! Outdoor casters are zinc plated to help prevent corrosion. BACKS/THROWS: Backs and throws are made of polyester fiber in the SMS waterproof ticking. SEAT CUSHIONS: Seat cushions are made of High Resiliency polyurethane foam with a fiber wrap in a 3 layer SMS (spun bond/ melt blown/spun bond) waterproof tick designed for medical use. The tick contains 6% UV additive. Seams are sonic welded by radio frequency to eliminate needle holes. PADDING: Seat deck, arm and back poly are made from Reticulated foam. An open cell FEET: SUPPORT: foam designed to allow moisture to Exposed wood feet are made of Iroko. A wood that is Interlaced polypropylene webbing escape and air flow to maximize drying! naturally resistant to rot and decay. Iroko has a nice provides the support in the seat. Sheet Reticulated foam has anti-microbial brown/gold color.
    [Show full text]
  • John Lewis Wood Worktops
    Wood worktop A4 2014 2_. 15/01/2014 10:53 Page 1 John Lewis Features and benefits Wood worktops John Lewis solid wood worksurfaces provide a natural, highly durable product which Range characteristics is easy to maintain. FS C® certified wood available in 7 hardwood species and 5 finishes Wood is also an environmentally responsible choice of material – because the timber used has no waste; all material is either used into other products or recycled into Heat resistance heat during the manufacturing process. Advisable to use trivets Features Water resistance • All of our wood worktops are made from FSC ® certified timber, which means Water resistant with oil finish each worktop can be traced back to the original forest where it grew. • Wood has been proven to be the most hygienic work surface for food preparation. Wear resistance • Simple to maintain with natural oils, creating a water resistant surface easily kept Supplied with an oiled finish to protect the surface clean with soapy water. No bleach or special cleaning products required. With a choice of more than 7 different species of tree, available in 5 finishes and with Maximum length a variety of edge profiles, wood is a versatile choice for any kitchen. 4 metres (Standard) or 3.6 metres (Classic) Available in lengths up to 4.0m in a single run of units and widths to 1.5m for islands and peninsulars. Edge profile and upstand availability Guarantee Different edge profiles and upstands are available Our wood is guaranteed for 2 years and can be installed anywhere in mainland UK.
    [Show full text]
  • Phytochemical Diversity of Insect Defenses in Tropical and Temperate Plant Families
    Cambridge University Press 0521792754 - Advances in Insect Chemical Ecology - Edited by Ring T. Carde and Jocelyn G. Millar Excerpt More information 1 Phytochemical diversity of insect defenses in tropical and temperate plant families John T. Arnason, Gabriel Guillet and Tony Durst Faculty of Science, University of Ottawa, Canada Phytochemical diversity and redundancy One of the most intriguing features of the chemical ecology of plant–insect interac- tions is the remarkable number of different phytochemical defenses found in plants. A single plant may contain five or six biosynthetic groups of secondary metabolites and within each group these defenses may include many structurally related analogs and derivatives. Across the different species of higher plants, there is a bewilder- ing array of different substances and modes of actions of substances. During the course of our research on phytochemical defenses in specific plant families, we have become interested in the raison d’ˆetrefor this diversity, as have many other researchers (Romeo et al., 1996). How much do we know about different types of defenses in plants? How did they arise? Are some of these secondary metabolites “redundant,” with no function? How do they interact with one another? In this chapter, we will address some of these issues with observations on the defenses of several plant families against insects, using results from our own research and the published literature. In general, we do not have a comprehensive picture of the different types of defenses in plants. Over a decade ago, Soejarto and Farnsworth (1989) esti- mated that of the 250 000 species of flowering plants, only 5000 species had been thoroughly investigated according to the Natural Product Alert (NAPRALERT) database, leaving 98% of species with potential for phytochemical discovery.
    [Show full text]
  • Program & Abstracts
    PROGRAM & ABSTRACTS CONGRESS OFFICE 23/25, rue Notre-Dame des Victoires 75002 Paris | France www.hopscotchcongres.com ABSTRACTS / ORAL PRESENTATIONS O9-03 – S9 Retrospective analysis of the growth of trees from their anatomy and morphology (ragtag) O9-05 – S9 Retrospective analysis of the growth of trees from their anatomy and morphology (ragtag) Monday 20 June 20 / 11:00-15:30 – Antigone3 Monday 20 June 20 / 11:00-15:30 – Antigone3 Current tree-ring research and potential in tropical Africa: case-study on commercial timber Studying phenology of tropical forest trees using a morphological and anatomical retrospective species from the Democratic Republic of Congo analysis: the case of Moronobea coccinea Aubl. (Clusiaceae) MAAIKE DE RIDDER1, 2, JAN VAN DEN BULCKE2, NILS BOURLAND1, 3, 4, CÉDRIC ILUNGA1, 5, HÉLÈNE MOREL1, THOMAS MANGENET2, PATRICK HEURET3, ERIC NICOLINI4 EMMANUEL KASONGO1, 5, JORIS VAN ACKER2, HANS BEECKMAN1 1CIRAD, UMR EcoFoG, 97379, Kourou, French Guiana 1Royal Museum for Central Africa, Wood Biology Service, 3080, Tervuren, Belgium 2CIRAD, UMR AMAP, 34398, Montpellier, French 2Ghent University, Department of Forest and Water Management, 9000, Ghent, Belgium 3INRA, UMR EcoFoG, 97379, Kourou, French Guiana 3CIFOR, na, 16115, Bogor, Indonesia 4CIRAD, UMR AMAP, 97379, Kourou, French Guiana 4R&SD, na, 048581, Singapore, Singapore 5 Université de Kisangani, Faculté des Sciences, na, Kisangani, Democratic Republic of Congo Most studies on tropical plant phenology have focused on patterns of flowering, fruiting and leaf-shedding. They are based on time- consuming continuous surveys over seasons or years and the basic considered scale is the tree integrated within a population or a Background: Although many dendrochronological studies in the tropics were successful, studies in the Democratic Republic of Congo community.
    [Show full text]
  • Hypsipyla Shoot Borers in Meliaceae
    Hypsipyla Shoot Borers in Meliaceae Proceedings of an International Workshop held at Kandy, Sri Lanka 20–23 August 1996 Editors: R.B. Floyd and C. Hauxwell Australian Centre for International Agricultural Research Canberra, 2001 i The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601 Floyd, R.B. and Hauxwell, C., ed. 2001. Hypsipyla Shoot Borers in Meliaceae. Proceedings of an International Workshop, Kandy, Sri Lanka 20–23 August 1996. ACIAR Proceedings No. 97, 189pp. ISBN 0 642 45621 6 (print) ISBN 0 642 45624 0 (electronic) Editorial management: P.W. Lynch Production editing: PK Editorial Services Pty Ltd, Brisbane Typesetting, page layout and illustrations: Sun Photoset Pty Ltd, Brisbane Printing: Brown Prior Anderson, Melbourne ii CONTENTS Foreword v Country Reports Hypsipyla Shoot Borers of Meliaceae in Sri Lanka D. Tilakaratna 3 Hypsipyla Shoot Borers of Meliaceae in India R.V. Varma 7 Hypsipyla Shoot Borers of Meliaceae in Bangladesh M.W. Baksha 10 Hypsipyla Shoot Borers of Meliaceae in Philippines E.B.
    [Show full text]
  • Wood Preservation Manual Wood Preservation Manual
    Wood preservation manual Wood preservation manual Mechanical Wood Products Branch Forest I ndustries Division FAD Forestry Department The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-34 ISBN 92-5-102470-7 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy. © FAD 1986 - i - CONTENTS Page CHAPTER 1 INTRODUCTION 1 Background and the purpose of the manual CHAPTER 2 WHAT IS PRESERVATION? 2 Importance, benefits and economics of wood preservation, protective measures, protection by specification, protection by design detailing CHAPTER 3 NATURE OF WOOD 13 Wood structure, classes of wood, moisture content and natural durability CHAPTER 4 DECAY HAZARDS 21 Fungi, insects, borers, weathering, fire CHAPTER 5 WOOD PRESERVATIVES 32 Properties, ideal preservative, types of preservatives, tar oils,
    [Show full text]
  • Population Genetic Structure of Mahogany (Swietenia Macrophylla
    Molecular Ecology (2003) 12,2875-2883 doi: 10.1046/j.l365-294X.2003.01950.x Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation MARISTERRA R. LEMES,*t ROGERIO GRIBEL,*JOHN PROCTORt and DARIO GRATTAPAGLIAJ§ *Laboratorio de Genetica e Biologia Reprodutiva de Plantas, Institute) National de Pesquisas da Amazonia, C.P. 478, 69011-970 Manaus-AM, Brazil, ^Department of Biological Sciences, University of Stirling, Stirling FK9 4LA, UK, \haboraiorio de Genetica de Plantas, EMBRAPA-Recursos Geneticos e Biotecnologia, C.P. 02372, 70770-900 Brastlia-DF, Brazil, %Laboratorio de Biotecnologia Genomica, Pos-Graduaqao em Ciencias Genomicas, Universidade Catolica de Brasilia, SGAN 916 Mod. B, Asa Norte, 70790-160, Brasilia-DF, Brazil Abstract Mahogany (Swietenia macrophylla, Meliaceae) is the most valuable and intensively exploited Neotropical tree. No information is available regarding the genetic structure of mahogany in South America, yet the region harbours most of the unlogged populations of this prized hardwood. Here we report on the genetic diversity within and the differentiation among seven natural populations separated by up to 2100 km along the southern arc of the Brazilian Amazon basin. We analysed the variation at eight microsatellite loci for 194 adult individuals. All loci were highly variable, with the number of alleles per locus ranging from 13 to 27 (mean = 18.4). High levels of genetic diversity were found for all populations at the eight loci (mean ffE = 0.781, range 0.754-0.812). We found moderate but statistically significant genetic differentiation among populations considering both estimators of FST and RST, 9 = 0.097 and p = 0.147, respectively.
    [Show full text]