Fine-Scale Genetic Structure and Gene Flow Within Costa Rican Populations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inventario De Plagas Y Enfermedades En Viveros Forestales En Costa Rica
Revista Forestal Mesoamericana Kurú (Enero-Junio, 2021) 18 (42): 17-29 DOI: 10.18845/rfmk.v16i42.5543 Inventario de plagas y enfermedades en viveros forestales en Costa Rica Review of pests and diseases in forest nurseries in Costa Rica Marcela Arguedas Gamboa1 • María Rodríguez-Solís1 • Jaume Cots Ibiza2 • Adrián Martínez Araya3 Recibido: 24/4/2020 Aceptado: 6/8/2020 Publicado: 17/12/2020 Abstract Forest nurseries are the sites of intensive plant production for reforestation and arboriculture programs, which must be of high quality and free from pests and diseases. A sanitary evaluation was carried out in seven forest nurseries in Costa Rica, to prepare the diagnosis of phytosanitary problems. 15 species of insects were diagnosed, 44 of pathogens and 5 of mites, in a total of 80 forest species under production. At the apex, the most important damages are caused by the borer Hypsipila grandella and the cutter Trigona sp. and as pathogens Botrytis sp., Cylindrocladium sp. and Phomopsis sp.; in the foliage, by the insects Eulepte concordalis, Dictyla monotropidia and Austropuccinia psidii, Colletotrichum spp., Dothistroma septosporum, Melampsoridium alni, Oidium sp., Olivea tectonae, and Phyllachora balansae as pathogens. These problems are described and the principles and practices contemplated in Integrated Pest Management (IPM) are recommended for their control. Key words: Seedlings, pathogens, insects, mites, phytosanitary diagnosis. 1. Escuela de Ingeniería Forestal, Instituto Tecnológico de Costa Rica, Cartago Costa Rica; [email protected], [email protected] 2. BC Fertilis, Valencia, España; [email protected] 3. Instituto Costarricense de Electricidad, Cartago, Costa Rica; [email protected] 17 Revista Forestal Mesoamericana Kurú (Enero-Junio, 2021) 18 (42): 17-29 Resumen [8], [9]. -
Seed Ecology Iii
SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst -
Flexible Mating System in a Logged Population of Swietenia Macrophylla King (Meliaceae): Implications for the Management of a Threatened Neotropical Tree Species
Plant Ecol (2007) 192:169–179 DOI 10.1007/s11258-007-9322-9 ORIGINAL PAPER Flexible mating system in a logged population of Swietenia macrophylla King (Meliaceae): implications for the management of a threatened neotropical tree species Maristerra R. Lemes Æ Dario Grattapaglia Æ James Grogan Æ John Proctor Æ Roge´rio Gribel Received: 21 February 2007 / Accepted: 22 May 2007 / Published online: 19 June 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Microsatellites were used to evaluate the crossed matings and that the remaining 6.75% had mating system of the remaining trees in a logged genotypes consistent with self-fertilisation. Apomixis population of Swietenia macrophylla, a highly valu- could be ruled out, since none of the 400 seedlings able and threatened hardwood species, in the Brazil- analysed had a multi-locus genotype identical to ian Amazon. A total of 25 open pollinated progeny its mother tree. The high estimate of the multi-locus arrays of 16 individuals, with their mother trees, were outcrossing rate (tm = 0.938 ± 0.009) using the mixed genotyped using eight highly polymorphic microsat- mating model also indicated that the population in ellite loci. Genotypic data analysis from the progeny this remnant stand of S. macrophylla was predomi- arrays showed that 373 out of the 400 seedlings nantly allogamous. The relatively large difference (93.25%) were unambiguously the result of out- between the multi-locus and single-locus outcrossing estimates (tmÀts = 0.117 ± 0.011) provides evidence that, in spite of the high outcrossing rate, a consid- & M. R. Lemes ( ) Á R. -
Development of Nuclear SNP Markers for Mahogany (Swietenia Spp.)
Conservation Genetics Resources (2020) 12:585–587 https://doi.org/10.1007/s12686-020-01162-8 TECHNICAL NOTE Development of nuclear SNP markers for Mahogany (Swietenia spp.) Birte Pakull1 · Lasse Schindler1 · Malte Mader1 · Birgit Kersten1 · Celine Blanc‑Jolivet1 · Maike Paulini1 · Maristerra R. Lemes2 · Sheila E. Ward3 · Carlos M. Navarro4 · Stephen Cavers5,8 · Alexandre M. Sebbenn6 · Omar di Dio6 · Erwan Guichoux7 · Bernd Degen1 Received: 6 April 2020 / Accepted: 23 July 2020 / Published online: 12 August 2020 © The Author(s) 2020 Abstract Swietenia species are the most valuable American tropical timbers and have been heavily overexploited for decades. The three species are listed as either vulnerable or endangered by IUCN and are included on Appendix II of CITES, yet illegal exploitation continues. Here, we used restriction associated DNA sequencing to develop a new set of 120 SNP markers for Swietenia sp., suitable for MassARRAY®iPLEX™ genotyping. These markers can be used for population genetic studies and timber tracking purposes. Keywords SNPs · Mahogany · Swietenia spp. · MassARRAY®iPLEX™ The genus Swietenia includes the species: Swietenia mahag- commercially because of past overexploitation, S. macro- oni (L.) Jacq. (Small-leaved mahogany, native to Florida phylla is now the most valuable and economically important and the Caribbean islands), Swietenia macrophylla King. American tropical timber (Louppe et al. 2008). Swietenia (Big-leaved mahogany, native to Central and South Amer- wood is used for high-class furniture, boat building, musical ica) and Swietenia humilis Zucc. (Pacifc Coast mahogany, instruments etc. All three mahogany species are listed on native to the relatively dry Central American Pacifc coast) CITES (Convention on International Trade in Endangered (Schütt et al. -
Phytochemical Diversity of Insect Defenses in Tropical and Temperate Plant Families
Cambridge University Press 0521792754 - Advances in Insect Chemical Ecology - Edited by Ring T. Carde and Jocelyn G. Millar Excerpt More information 1 Phytochemical diversity of insect defenses in tropical and temperate plant families John T. Arnason, Gabriel Guillet and Tony Durst Faculty of Science, University of Ottawa, Canada Phytochemical diversity and redundancy One of the most intriguing features of the chemical ecology of plant–insect interac- tions is the remarkable number of different phytochemical defenses found in plants. A single plant may contain five or six biosynthetic groups of secondary metabolites and within each group these defenses may include many structurally related analogs and derivatives. Across the different species of higher plants, there is a bewilder- ing array of different substances and modes of actions of substances. During the course of our research on phytochemical defenses in specific plant families, we have become interested in the raison d’ˆetrefor this diversity, as have many other researchers (Romeo et al., 1996). How much do we know about different types of defenses in plants? How did they arise? Are some of these secondary metabolites “redundant,” with no function? How do they interact with one another? In this chapter, we will address some of these issues with observations on the defenses of several plant families against insects, using results from our own research and the published literature. In general, we do not have a comprehensive picture of the different types of defenses in plants. Over a decade ago, Soejarto and Farnsworth (1989) esti- mated that of the 250 000 species of flowering plants, only 5000 species had been thoroughly investigated according to the Natural Product Alert (NAPRALERT) database, leaving 98% of species with potential for phytochemical discovery. -
Hypsipyla Shoot Borers in Meliaceae
Hypsipyla Shoot Borers in Meliaceae Proceedings of an International Workshop held at Kandy, Sri Lanka 20–23 August 1996 Editors: R.B. Floyd and C. Hauxwell Australian Centre for International Agricultural Research Canberra, 2001 i The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601 Floyd, R.B. and Hauxwell, C., ed. 2001. Hypsipyla Shoot Borers in Meliaceae. Proceedings of an International Workshop, Kandy, Sri Lanka 20–23 August 1996. ACIAR Proceedings No. 97, 189pp. ISBN 0 642 45621 6 (print) ISBN 0 642 45624 0 (electronic) Editorial management: P.W. Lynch Production editing: PK Editorial Services Pty Ltd, Brisbane Typesetting, page layout and illustrations: Sun Photoset Pty Ltd, Brisbane Printing: Brown Prior Anderson, Melbourne ii CONTENTS Foreword v Country Reports Hypsipyla Shoot Borers of Meliaceae in Sri Lanka D. Tilakaratna 3 Hypsipyla Shoot Borers of Meliaceae in India R.V. Varma 7 Hypsipyla Shoot Borers of Meliaceae in Bangladesh M.W. Baksha 10 Hypsipyla Shoot Borers of Meliaceae in Philippines E.B. -
Population Genetic Structure of Mahogany (Swietenia Macrophylla
Molecular Ecology (2003) 12,2875-2883 doi: 10.1046/j.l365-294X.2003.01950.x Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation MARISTERRA R. LEMES,*t ROGERIO GRIBEL,*JOHN PROCTORt and DARIO GRATTAPAGLIAJ§ *Laboratorio de Genetica e Biologia Reprodutiva de Plantas, Institute) National de Pesquisas da Amazonia, C.P. 478, 69011-970 Manaus-AM, Brazil, ^Department of Biological Sciences, University of Stirling, Stirling FK9 4LA, UK, \haboraiorio de Genetica de Plantas, EMBRAPA-Recursos Geneticos e Biotecnologia, C.P. 02372, 70770-900 Brastlia-DF, Brazil, %Laboratorio de Biotecnologia Genomica, Pos-Graduaqao em Ciencias Genomicas, Universidade Catolica de Brasilia, SGAN 916 Mod. B, Asa Norte, 70790-160, Brasilia-DF, Brazil Abstract Mahogany (Swietenia macrophylla, Meliaceae) is the most valuable and intensively exploited Neotropical tree. No information is available regarding the genetic structure of mahogany in South America, yet the region harbours most of the unlogged populations of this prized hardwood. Here we report on the genetic diversity within and the differentiation among seven natural populations separated by up to 2100 km along the southern arc of the Brazilian Amazon basin. We analysed the variation at eight microsatellite loci for 194 adult individuals. All loci were highly variable, with the number of alleles per locus ranging from 13 to 27 (mean = 18.4). High levels of genetic diversity were found for all populations at the eight loci (mean ffE = 0.781, range 0.754-0.812). We found moderate but statistically significant genetic differentiation among populations considering both estimators of FST and RST, 9 = 0.097 and p = 0.147, respectively. -
Suicknia Macrophylla Uric
MAIVICGANY (Suicknia macrophylla Uric) November 1939 uRiv, ION RE _WED AND REAFF1:.:ED 1965 No. 2167 NO1110111n111111n11111.0.- UNITED STATES DEPARTMENT OF AGRICULTURE FOREST 'PRODUCTS LABORATORY MAON 5, WISCONSIN Cooperation with the University of Wisconsin MAHOGANY Swietenia E221221alla King Meliaceae By B. FRANCIS KUKACHKA Forest Products Technologist Forest Products Laboratory- I — Forest Service U.S. Department of Agriculture Introduction Mahogany has long been used as a standard of comparison for other fine woods, and an indication of the esteem in which the true mahoganies are held in the woodworking field throughout the world is evident by the scores of timbers that have been called mahogany. The many and varied uses for this wood stem from the fact that it combines such desirable characteristics as attractive appearance, good dimensional stability, ease of working with both hand and machine tools, excellent finishing qualities, and a high degree of natural durability. Species At the present.time, three distinct species of mahogany are recognized and, on the basis of their distribution, can be assigned distinctive ranges. Swietenia piallozoni Jacq. is found in the West Indies and southern Florida; Swietenia humilis Zucc. occurs in dry areas along the Pacific Coast from southwestern Mexico to Costa Rica; and Swietenia macrophylla King exists in regions of abundant rainfall from southern Mexico, through Central America, Colombia, Venezuela, the Amazon Basin, eastern Peru, and northern Bolivia. Other species that have been described by botanists are Swietenia cirrhata Blake, which is now regarded as a synonym of Swietenia humilis; and Swietenia candollei Pittier, Swietenia tessmannii Harms, and Swietenia Krukovii Gleason and Panshin, all of which are synonymous with Swietenia macrophylla. -
NIRS Identification of Swietenia Macrophylla Is Robust Across Specimens from 27 Countries
420 IAWAIAWA Journal Journal 37 (3), 37 2016: (3), 2016 420–430 NIRS IDENTIFICATION OF SWIETENIA MACROPHYLLA IS ROBUST ACROSS SPECIMENS FROM 27 COUNTRIES Maria C. J. Bergo1,2, Tereza C.M. Pastore2,*, Vera T.R. Coradin2, Alex C. Wiedenhoeft3, and Jez W.B. Braga1 1Chemistry Institute, University of Brasília, 70910-000 Brasília, DF, Brazil 2Forest Products Laboratory, Brazilian Forest Service, 70818-970 Brasília, DF, Brazil 3Forest Products Laboratory, Madison, WI 53726, U.S.A. *Corresponding author; e-mail: [email protected] ABSTRACT Big-leaf mahogany is the world’s most valuable widely traded tropical timber species and Near Infrared Spectroscopy (NIRS) has been applied as a tool for discriminating its wood from similar species using multivariate analysis. In this study four look-alike timbers of Swietenia macrophylla (mahogany or big-leaf mahogany), Carapa guianensis (crabwood), Cedrela odorata (cedar or cedro) and Micropholis melinoniana (curupixá) have been successfully discriminated using NIRS and Partial Least Squares for Discriminant Analysis using solid block and milled samples. Species identification models identified 155 samples of S. macrophylla from 27 countries with a correct classification rate higher than 96.8%. For these specimens, the NIRS spectrum variation was more powerful for species identification than for determining provenance of S. macrophylla at the country level. Keywords: Near infrared spectroscopy, Carapa guianensis, Cedrela odorata, Micropholis melinoniana, Swietenia macrophylla, provenance. INTRODUCTION Big-leaf mahogany (Swietenia macrophylla King) is one of the world’s most valu- able and widely traded tropical timber species (Grogan & Barreto 2005; Grogan et al. 2014). It occurs naturally from North to South America starting in Mexico and ending in Bolivia and south of Brazilian Amazon (Tomaselli & Hirakuri 2008; Pastore et al. -
CITES and Timber (PDF)
This guide covers the main timber species regulated CITES and Timber by the Convention on International Trade in Endangered Species (CITES). It provides information CITES and Timber on the key issues regarding the implementation of the Convention for this important group of plants. A guide to CITES-listed tree species Written for the non-expert, individual sections cover the species found in significant trade, with details on their distribution, uses, traded parts and derivatives, and scientific and common names. Madeleine Groves Madeleine Groves Additional sections cover timber identification and measurement, guidance on CITES documentation and key resources. and Catherine Rutherford shop.kew.org/kewbooksonline Madeleine Groves Catherine Rutherford CITES and Timber A guide to CITES-listed tree species Madeleine Groves Catherine Rutherford © The Board of Trustees of the Royal Botanic Gardens, Kew 2015 Illustrations and photographs © Royal Botanic Gardens, Kew, unless otherwise stated in the captions The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without written permission of the publisher unless in accordance with the provisions of the Copyright Designs and Patents Act 1988. Great care has been taken to maintain the accuracy of the information contained in this work. However, neither the publisher, the editors nor authors can be held responsible for any consequences arising from use of the information contained herein. -
Biogeography and Ecology in a Pantropical Family, the Meliaceae
Gardens’ Bulletin Singapore 71(Suppl. 2):335-461. 2019 335 doi: 10.26492/gbs71(suppl. 2).2019-22 Biogeography and ecology in a pantropical family, the Meliaceae M. Heads Buffalo Museum of Science, 1020 Humboldt Parkway, Buffalo, NY 14211-1293, USA. [email protected] ABSTRACT. This paper reviews the biogeography and ecology of the family Meliaceae and maps many of the clades. Recently published molecular phylogenies are used as a framework to interpret distributional and ecological data. The sections on distribution concentrate on allopatry, on areas of overlap among clades, and on centres of diversity. The sections on ecology focus on populations of the family that are not in typical, dry-ground, lowland rain forest, for example, in and around mangrove forest, in peat swamp and other kinds of freshwater swamp forest, on limestone, and in open vegetation such as savanna woodland. Information on the altitudinal range of the genera is presented, and brief notes on architecture are also given. The paper considers the relationship between the distribution and ecology of the taxa, and the interpretation of the fossil record of the family, along with its significance for biogeographic studies. Finally, the paper discusses whether the evolution of Meliaceae can be attributed to ‘radiations’ from restricted centres of origin into new morphological, geographical and ecological space, or whether it is better explained by phases of vicariance in widespread ancestors, alternating with phases of range expansion. Keywords. Altitude, limestone, mangrove, rain forest, savanna, swamp forest, tropics, vicariance Introduction The family Meliaceae is well known for its high-quality timbers, especially mahogany (Swietenia Jacq.). -
NIRS Identification of Swietenia Macrophylla Is Robust Across Specimens from 27 Countries
420 IAWAIAWA Journal Journal 37 (3), 37 2016: (3), 2016 420–430 NIRS IDENTIFICATION OF SWIETENIA MACROPHYLLA IS ROBUST ACROSS SPECIMENS FROM 27 COUNTRIES Maria C. J. Bergo1,2, Tereza C.M. Pastore2,*, Vera T.R. Coradin2, Alex C. Wiedenhoeft3, and Jez W.B. Braga1 1Chemistry Institute, University of Brasília, 70910-000 Brasília, DF, Brazil 2Forest Products Laboratory, Brazilian Forest Service, 70818-970 Brasília, DF, Brazil 3Forest Products Laboratory, Madison, WI 53726, U.S.A. *Corresponding author; e-mail: [email protected] ABSTRACT Big-leaf mahogany is the world’s most valuable widely traded tropical timber species and Near Infrared Spectroscopy (NIRS) has been applied as a tool for discriminating its wood from similar species using multivariate analysis. In this study four look-alike timbers of Swietenia macrophylla (mahogany or big-leaf mahogany), Carapa guianensis (crabwood), Cedrela odorata (cedar or cedro) and Micropholis melinoniana (curupixá) have been successfully discriminated using NIRS and Partial Least Squares for Discriminant Analysis using solid block and milled samples. Species identification models identified 155 samples of S. macrophylla from 27 countries with a correct classification rate higher than 96.8%. For these specimens, the NIRS spectrum variation was more powerful for species identification than for determining provenance of S. macrophylla at the country level. Keywords: Near infrared spectroscopy, Carapa guianensis, Cedrela odorata, Micropholis melinoniana, Swietenia macrophylla, provenance. INTRODUCTION Big-leaf mahogany (Swietenia macrophylla King) is one of the world’s most valu- able and widely traded tropical timber species (Grogan & Barreto 2005; Grogan et al. 2014). It occurs naturally from North to South America starting in Mexico and ending in Bolivia and south of Brazilian Amazon (Tomaselli & Hirakuri 2008; Pastore et al.