Classification of CITES-Listed and Other Neotropical Meliaceae Wood Images Using Convolutional Neural Networks

Total Page:16

File Type:pdf, Size:1020Kb

Classification of CITES-Listed and Other Neotropical Meliaceae Wood Images Using Convolutional Neural Networks Ravindran et al. Plant Methods (2018) 14:25 https://doi.org/10.1186/s13007-018-0292-9 Plant Methods METHODOLOGY Open Access Classifcation of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks Prabu Ravindran1,2, Adriana Costa1,2, Richard Soares1,2 and Alex C. Wiedenhoeft1,2,3,4* Abstract Background: The current state-of-the-art for feld wood identifcation to combat illegal logging relies on experi- enced practitioners using hand lenses, specialized identifcation keys, atlases of woods, and feld manuals. Accumula- tion of this expertise is time-consuming and access to training is relatively rare compared to the international demand for feld wood identifcation. A reliable, consistent and cost efective feld screening method is necessary for efective global scale enforcement of international treaties such as the Convention on the International Trade in Endagered Species (CITES) or national laws (e.g. the US Lacey Act) governing timber trade and imports. Results: We present highly efective computer vision classifcation models, based on deep convolutional neural networks, trained via transfer learning, to identify the woods of 10 neotropical species in the family Meliaceae, includ- ing CITES-listed Swietenia macrophylla, Swietenia mahagoni, Cedrela fssilis, and Cedrela odorata. We build and evaluate models to classify the 10 woods at the species and genus levels, with image-level model accuracy ranging from 87.4 to 97.5%, with the strongest performance by the genus-level model. Misclassifed images are attributed to classes consistent with traditional wood anatomical results, and our species-level accuracy greatly exceeds the resolution of traditional wood identifcation. Conclusion: The end-to-end trained image classifers that we present discriminate the woods based on digital images of the transverse surface of solid wood blocks, which are surfaces and images that can be prepared and cap- tured in the feld. Hence this work represents a strong proof-of-concept for using computer vision and convolutional neural networks to develop practical models for feld screening timber and wood products to combat illegal logging. Keywords: Wood identifcation, Illegal logging, CITES, Forensic wood anatomy, Deep learning, Transfer learning, Convolutional neural networks Background among laboratory scientists, one of the primary road- In the last decade, international interest in combating blocks to meaningful enforcement of these laws is the illegal logging has been on the rise (e.g. the US Lacey Act availability of efcient feld-deployable tools for screen- 2008; the Australian Illegal Logging Prohibition Act 2012; ing timber outside the laboratory [4]. Conceptually sepa- the European Union Timber Regulation 2013; Japan’s rating laboratory-based forensic analysis of specimens Act on Promotion of Distribution and Use of Legally submitted as evidence and feld-screening of wood and Logged Wood Products 2016) as has interest in forensic wood products at ports and border crossings is central methods to support them [1–3]. Although emphasis on to defning the context of the problem to be solved and laboratory-based forensic science is common, especially the degree of specifcity necessary to solve it in a way that is meaningful in the real world. Because feld law *Correspondence: [email protected] enforcement agents are, in most jurisdictions, required to 2 Center for Wood Anatomy Research, USDA Forest Service, Forest establish some form of probable cause to detain or seize Products Laboratory, Madison, WI 53726, USA a shipment of wood, tools intended for feld deployment Full list of author information is available at the end of the article © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Ravindran et al. Plant Methods (2018) 14:25 Page 2 of 10 should be designed to meet this need efciently [4]. Te pre-trained networks, e.g. ones that have been trained threshold of evidence for probable cause or its interna- on the ImageNet dataset [19]. Convolutional neural net- tional analogs is much lower than forensic-level thresh- works trained on the ImageNet dataset have been shown olds, so tools for feld screening to establish probable to be powerful of-the-shelf feature extractors [20] and cause can provide results with coarser resolution and transfer learning efectively leverages these general pur- lesser certainty than laboratory forensic methods. A typi- pose feature extractors, with parameter fne tuning, and cal feld screening evaluates the veracity of a claim on a permits the use of smaller application-specifc datasets import-export form or shipping manifest. For example, a for training powerful classifers. Successfully developing shipping manifest may claim that the wood is Khaya but a feld-deployable computer vision model for commercial a feld agent determines that the wood is anatomically wood species that are threatened or endangered [e.g. spe- inconsistent with Khaya and in fact is a better match for cies proteted by the Convention on the Trade in Endan- Swietenia and so the shipment could be detained while gered Species (CITES)] is a step toward generating a a specimen is submitted for full laboratory forensic scalable tool for law enforcement to use to combat global analysis. illegal logging. Tis kind of feld screening of wood has historically Te botanical issue of species delimitation is not a mat- been done, if done at all, by human beings with hand ter purely of taxonomy when it comes to illegal logging lenses and keys, atlases of woods, or feld manuals and species conservation through vehicles such as (e.g. [5–10] and others). Such keys are based on the fact CITES. Any law or treaty that identifes and protects that wood structure observed macroscopically shows organisms at the species level necessarily depends on the abundant, characteristic variation typically permitting taxonomic circumscription of those species as a founda- identifcation at the suprageneric or generic level, with tional predicate for defning the protected organisms greater specifcity possible by highly trained experts or by themselves. Te complex interplay of laws for conserva- accessing microscopic characters in the laboratory. tion, taxonomy, species circumscription, and the viability Humans with hand lenses are still the state-of-the-art in of feld-level screening and forensic-level identifcation of the feld in most countries,1 but the time and cost embod- those organisms or their derived products has prompted ied in establishing and maintaining this human-based practical changes to species protection levels in CITES biological domain knowledge, and the variability of skill (e.g. the promotion of Swietenia macrophylla to be at the and accuracy among those applying such knowledge, same protection level as Swietenia mahagoni and Swiete- means this approach is difcult to scale up to keep pace nia humilis in 20032). Prior to this elevation, unscrupu- with increased international interest in and demand for lous traders had the ability to claim a shipment was the feld screening of timber and other wood products. less-protected species and forensics could not prove Computer vision has the potential to provide a practi- otherwise. cal and cost efective way to replace human-based bio- In a real-world practical context, not all woods can or logical domain knowledge for feld screening of wood in need to be identifed to the species level. For example, the trade. One of the primary advantages of this potential is trade name African mahogany includes several species of the ability to generate reproducible identifcations not Khaya that are frequently sold interchangeably under this dependent on individual human training [11], as long as trade name and separating them at the species level may sufcient images of the woods in question are available not be meaningful in trade—the more important ques- for training classifers and can be captured in the feld. tion is likely to be whether they are Khaya or the genuine In computer vison terms, the problem of image-based mahogany genus, Swietenia. Figure 1 shows a “confusion wood identifcation is one of texture-based image clas- cladogram”, a depiction of the expected nested likelihoods sifcation [12, 13]. Convolutional neural networks have of woods (at the genus level) that could be confused with achieved state-of-the-art [14–17] results for image clas- each other based on traditional hand lens wood identica- sifcation in the past few years. While in general convolu- tion. Te relative anatomical distinctness of each genus tional neural networks require large datasets (historically (vertical axis) and the relative variability within the genus not readily available in the context of wood identifca- (extent of the black bars along the horizontal axis) are pro- tion), transfer learning [18] (“Methods” section) provides vided as representations of traditional wood identifcation a pathway to train competitive image classifcation domain knowledge. Based on the relationships
Recommended publications
  • African Mahogany Anegre Birdseye Maple Black Walnut
    African Mahogany African Mahogany (Khaya) is a genus of seven species of trees in the mahogany family Meliaceae, native to tropical Africa and Madagascar. All species become big trees 30-35 m tall, rarely 45 m, with a trunk over 1 m trunk diameter, often buttressed at the base. The leaves are pinnate, with 4-6 pairs of leaflets, the terminal leaflet absent; each leaflet is 10-15 cm long abruptly rounded toward the apex but often with an acuminate tip. The leaves can be either deciduous or evergreen depending on the species. The flowers are produced in loose inflorescences, each flower small, with four or five yellowish petals and ten stamens. The timber of Khaya is called African mahogany, the only timber widely accepted as mahogany besides that of the true mahogany, of the genus Swietenia. Khaya senegalensis, also known as the African dry zone mahogany is also used for its non timber parts. In West Africa, Fulani herdsmen prune the tree during the dry season to feed cattle. Anegre Anegre is milled from the Tawa tree (Beilschmiedia tawa) is a New Zealand broadleaf tree common in the central parts of the country. Tawa is often the dominant canopy species in lowland forests in the North Island and north east of the South Island, Individual specimens may grow up to 30 meters or more in height with trunks up to 1.2 meters in diameter, and they have smooth dark bark. The word "tawa" is the Maori name for the tree. One of the few hardwood trees in the country with good timber, the wood of this tree can be used for attractive and resilient floor boarding.
    [Show full text]
  • Flexible Mating System in a Logged Population of Swietenia Macrophylla King (Meliaceae): Implications for the Management of a Threatened Neotropical Tree Species
    Plant Ecol (2007) 192:169–179 DOI 10.1007/s11258-007-9322-9 ORIGINAL PAPER Flexible mating system in a logged population of Swietenia macrophylla King (Meliaceae): implications for the management of a threatened neotropical tree species Maristerra R. Lemes Æ Dario Grattapaglia Æ James Grogan Æ John Proctor Æ Roge´rio Gribel Received: 21 February 2007 / Accepted: 22 May 2007 / Published online: 19 June 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Microsatellites were used to evaluate the crossed matings and that the remaining 6.75% had mating system of the remaining trees in a logged genotypes consistent with self-fertilisation. Apomixis population of Swietenia macrophylla, a highly valu- could be ruled out, since none of the 400 seedlings able and threatened hardwood species, in the Brazil- analysed had a multi-locus genotype identical to ian Amazon. A total of 25 open pollinated progeny its mother tree. The high estimate of the multi-locus arrays of 16 individuals, with their mother trees, were outcrossing rate (tm = 0.938 ± 0.009) using the mixed genotyped using eight highly polymorphic microsat- mating model also indicated that the population in ellite loci. Genotypic data analysis from the progeny this remnant stand of S. macrophylla was predomi- arrays showed that 373 out of the 400 seedlings nantly allogamous. The relatively large difference (93.25%) were unambiguously the result of out- between the multi-locus and single-locus outcrossing estimates (tmÀts = 0.117 ± 0.011) provides evidence that, in spite of the high outcrossing rate, a consid- & M. R. Lemes ( ) Á R.
    [Show full text]
  • Analysis on Trade Trend of CITES Regualted Tree Species and Its Impact on Chinese Smes
    Analysis on Trade Trend of CITES Regualted Tree Species and its Impact on Chinese SMEs 2017.6 1 2 Preface The Convention on International Trade in Endangered Species of Wild Fauna and Flora (hereinafter referred to as CITES) is signed in Washington D.C. on 3 March 1973, also known as the Washington Convention. It entered into force on 1 July 1975. As an international convention on the control of international trade and the protection of wild flora and fauna, it aims to fully control the import and export of wild animals and plants as well as products thereof and manufactured goods through the regulation system, to promote protection and rational utilization of wild animals and plants resources to ensure that international trade in specimens of wild animals and plants does not threaten their survival. As of December 2016, CITES has 183 member countries where CITES legal framework and trade procedures are applied to regulate and monitor the international trade of species listed in CITES appendices. CITES has been in force for more than 40 years. It has been attracting more and more countries to jointly protect endangered wild animals and plants. At the same time, more and more fauna and flora species have been included in CITES appendices. Up to now, about 5,600 species of animals and 30,000 species of plants are protected by CITES against over-exploitation through international trade. In recent years, the sharp decline of endangered tree species has aroused widespread concern around the world, and over-exploitation is one of the main factors leading to this situation.
    [Show full text]
  • SC69 Doc. 69.1
    Original language: English SC69 Doc. 69.1 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Sixty-ninth meeting of the Standing Committee Geneva (Switzerland), 27 November – 1 December 2017 Species specific matters Maintenance of the Appendices Annotations ESTABLISHMENT OF A WORKING GROUP ON ANNOTATIONS 1. This document has been submitted by Canada, on behalf of Namibia and Canada as joint leads for the Standing Committee on the issue of Annotations.* Background 2. At the 17th meeting, (CoP17; Johannesburg, 2016) the Conference of the Parties adopted Decision 16.162 (Rev. CoP17) which directs the Standing Committee to re-establish the working group on annotations, in close collaboration with the Animals and Plants Committees. At its 68th meeting (Johannesburg, 2016), the Standing Committee agreed that Canada and Namibia would lead on the issue of annotations. 4. After discussion with the Chair of the Standing Committee in February 2017 and consultation between Canada and Namibia, it was agreed to engage members of the previous Standing Committee Annotations Working Group in advance of the 69th meeting of the Standing Committee (November 2017; SC69), to continue discussions relating to the work included in the working group terms of reference contained in Decision 16.162 (Rev. CoP17). In April 2017, in response to concerns raised by the Secretariat in advance of CoP17 regarding a lack of regional diversity in the working group in its discussions during the CoP16/CoP17 intersessional period, the Chair of the CITES Plants Committee confirmed that ten members or alternate members of the Plants Committee had expressed interest in participating in the Standing Committee’s work on annotations.
    [Show full text]
  • Development of Nuclear SNP Markers for Mahogany (Swietenia Spp.)
    Conservation Genetics Resources (2020) 12:585–587 https://doi.org/10.1007/s12686-020-01162-8 TECHNICAL NOTE Development of nuclear SNP markers for Mahogany (Swietenia spp.) Birte Pakull1 · Lasse Schindler1 · Malte Mader1 · Birgit Kersten1 · Celine Blanc‑Jolivet1 · Maike Paulini1 · Maristerra R. Lemes2 · Sheila E. Ward3 · Carlos M. Navarro4 · Stephen Cavers5,8 · Alexandre M. Sebbenn6 · Omar di Dio6 · Erwan Guichoux7 · Bernd Degen1 Received: 6 April 2020 / Accepted: 23 July 2020 / Published online: 12 August 2020 © The Author(s) 2020 Abstract Swietenia species are the most valuable American tropical timbers and have been heavily overexploited for decades. The three species are listed as either vulnerable or endangered by IUCN and are included on Appendix II of CITES, yet illegal exploitation continues. Here, we used restriction associated DNA sequencing to develop a new set of 120 SNP markers for Swietenia sp., suitable for MassARRAY®iPLEX™ genotyping. These markers can be used for population genetic studies and timber tracking purposes. Keywords SNPs · Mahogany · Swietenia spp. · MassARRAY®iPLEX™ The genus Swietenia includes the species: Swietenia mahag- commercially because of past overexploitation, S. macro- oni (L.) Jacq. (Small-leaved mahogany, native to Florida phylla is now the most valuable and economically important and the Caribbean islands), Swietenia macrophylla King. American tropical timber (Louppe et al. 2008). Swietenia (Big-leaved mahogany, native to Central and South Amer- wood is used for high-class furniture, boat building, musical ica) and Swietenia humilis Zucc. (Pacifc Coast mahogany, instruments etc. All three mahogany species are listed on native to the relatively dry Central American Pacifc coast) CITES (Convention on International Trade in Endangered (Schütt et al.
    [Show full text]
  • PC19 Doc. 11.5
    PC19 Doc. 11.5 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Nineteenth meeting of the Plants Committee Geneva (Switzerland), 18-21 April 2011 Annotations TREE SPECIES: ANNOTATIONS FOR SPECIES INCLUDED IN APPENDICES II AND III [DECISION 14.149, 15.35 AND 14.148 (REV.COP15)] 1. This document has been submitted by the interim Vice-chair and the observer from Canada at request of the interim Chair of the Plants Committee*. Background 2. At CoP15 (Doha, 2010) The Conference of the Parties adopted Decision 14.148 (Rev. CoP15), relating to annotations for tree species included in Appendices II and III: Directed to the Plants Committee a) Based on the results of the trade study, the Plants Committee shall review the annotations for tree species listed in Appendices II and III and, if appropriate, draft amendments to the annotations and prepare clear definitions for the terms used in those annotations in order to facilitate their use and understanding by CITES authorities, enforcement officers, exporters and importers. b) The amended annotations shall focus on articles that initially appear in international trade as exports from range States and those which dominate the trade in and demand for the wild resource. c) The Plants Committee shall draft, if necessary, proposals to amend Resolution Conf. 10.13 (Rev. CoP15) and/or to amend the Appendices accordingly so that the Depositary Government may submit them on its behalf for consideration at the 16th meeting of the Conference of the Parties. 3. The trade study referenced in Decision 14.148 (Rev.
    [Show full text]
  • TREE RING CHARACTERISTICS of 30-YEAR-OLD SWIETENIA MACROPHYLLA PLANTATION TREES Cheng-Jung Lin* Chih-Hsin Chung Chih-Lung Cho Te
    TREE RING CHARACTERISTICS OF 30-YEAR-OLD SWIETENIA MACROPHYLLA PLANTATION TREES Cheng-Jung Lin* Associate Researcher Department of Forest Utilization Taiwan Forestry Research Institute Taipei, Taiwan E-mail: [email protected] Chih-Hsin Chung Assistant Researcher Department of Forest Management Taiwan Forestry Research Institute Taipei, Taiwan E-mail: [email protected] Chih-Lung Cho Professor Department of Natural Resources National I-Lan University Ilan, Taiwan E-mail: [email protected] Te-Hsin Yang Assistant Professor Department of Forestry College of Nature Resource and Agriculture National Chung Hsing University Taichung, Taiwan E-mail: [email protected] (Received October 2011) Abstract. Ring characteristics of mahogany (Swietenia macrophylla K.) plantation trees grown in Taiwan were explored. Significant differences in average ring width (RW) and ring density (RD) occurred among three tree-diameter classes and three radial stages of ring numbers. RW in the radial direction decreased from the pith outward to the bark and followed a distinctive three-stage variation pattern (juvenile, transition, and mature zones). RD in the radial direction increased slowly from the pith outward to the bark. Wider tree rings and lower density are associated with juvenile wood close to the pith, whereas narrower tree rings and higher density are typical for mature wood outward toward the bark. RD in overtopped trees was higher than that in dominant trees. However, RW in dominant trees was wider than that in intermediate and overtopped trees. Earlywood density, latewood density, maximum density, and minimum density were the most important factors determining overall RD. There was a weak relationship between RW and RD, indicating that it is unlikely for growth rates of mahogany plantation trees to have a significant impact on wood density.
    [Show full text]
  • Occurrence and Feeding Ecology of the Common Flicker on Grand Cayman Island
    Condor, 81:370375 @I The Cooper Ornithological Society 1979 OCCURRENCE AND FEEDING ECOLOGY OF THE COMMON FLICKER ON GRAND CAYMAN ISLAND ALEXANDER CRUZ AND DAVID W. JOHNSTON The Common Flicker (CoZaptes auratus) is with mangrove and buttonwood swamps. In wetter and widely distributed in the western hemi- more saline places, especially around North Sound (Fig. l), red mangrove (Rhizophora mangle) predomi- sphere from Alaska to Nicaragua and to the nates, but farther inland at seasonally drier sites white West Indies (Cuba and Grand Cayman). Al- mangrove (Lagunculariu rucemosa), black mangrove though mainland populations have been (Auicenniu nitida), and buttonwood (Conocarpus er- well studied (e.g., Noble 1936, Bent 1939, ecta) combine to form a thick forest. Near North Sound Short 1965a, 1967, Bock 1971), details on these mangrove-buttonwood swamps are best devel- oped and the trees often reach heights of 18-20 m. the abundance, life history, ecology, and Open pastures. In places, the limestone forest has behavior of Colaptes aurutus on Cuba (C. been cleared for pasture. Important introduced grasses a. chrysocudosus) and Grand Cayman (C. of these pastures are Guinea grass (Punicum maximum) a. gundluchi) have not been reported. Short and Seymour grass (Andropogon metusus), with scat- tered shrubs such as Comocladia dentata and trees (196513) discussed the variation, taxonomy, such as Bursera simaruba, Roystonea sp., and Man- and evolution of West Indian flickers, John- gifera indica. ston (1970, 1975) summarized some aspects Scrub woodland. Abandoned pastures and other of the ecology of the Grand Cayman Flicker, cleared areas revert to woods consisting of species such and Cruz (1974) examined the probable as maiden plum (Comocladia pinnatifolia), red birch (Burseru simaruba), and logwood (Huematoxylum evolution and fossil record of West Indian cumpechianum).
    [Show full text]
  • African Mahogany Wood Defects Detected by Ultrasound Waves
    General Technical Report FPL-GTR-239 • Proceedings: 19th International Nondestructive Testing and Evaluation of Wood Symposium African mahogany wood defects detected by ultrasound waves Tamara Suely Filgueira Amorim França Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi, United States, [email protected] Frederico Jose Nistal França Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi, United States, [email protected] Robert John Ross U.S. Forest Service, Forest Product Laboratory, Madison, Wisconsin, USA, [email protected] Xiping Wang U.S. Forest Service, Forest Product Laboratory, Madison, Wisconsin, USA, [email protected] Marina Donaria Chaves Arantes Departamento de Ciências Florestais e da Madeira, Universidade Federal do Espírito Santo, Jerônimo Monteira, Espírito Santo, Brasil, [email protected] Roy Daniel Seale Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi, United States, [email protected] Abstract This study aims to investigate the potential of ultrasound wave to detect defects in 19 years old of two species of African mahogany planted in Brazil. Were used five 76 x 5 x 5 cm samples from each species with different types of defects, and were conditioned to 12% moisture content. The samples were scanned with ultrasound wave in longitudinal direction and every 2,54 cm in radial and tangential directions along the samples. It was possible to identify end split and pin knots in Khaya ivorensis and reaction wood in Khaya senegalensis wood. Beetle galleries did not affect wave velocities in Khaya senegalensis wood. Grain angle had a large effect in ultrasound velocities in radial and tangential directions. Khaya senegalensis exhibit lower longitudinal velocities related to larger amount of interlocked grain in this species.
    [Show full text]
  • Lumber / Veneer Match
    Lumber Veneer Type of Cut Alder (Select) Alder Plain Sliced Face Alder (Knotty) Knotty Alder (Dark Putty in open knots) Plain Sliced Face Ash (Eastern White) Ash (Eastern White) Rotary Multi Piece Face Ash (Western) Ash (Eastern White) Rotary Multi Piece Face Beech (European Steamed) Beech (European Steamed) Plain Sliced Face Birch (Eastern Red) N/A N/A Birch (Eastern White) Birch (Eastern White) Rotary Multi Piece Face Birch (Western) N/A Cherry (Select) Cherry (Select) Plain Sliced Face Cherry (Rustic) Fir (CVG) Fir (CVG) Plain Sliced Face Hickory (Brown Heart) Hickory (Brown Heart) Plain Sliced Face Hickory (Calico) Hickory (Calico) Plain Sliced Face Hickory (Rustic Brown Heart) Hickory (Rustic Brown Heart) Plain Sliced Face Hickory (Rustic Calico) Hickory (Rustic Calico) Plain Sliced Face Lyptus Lyptus Plain Sliced Face Mahogany (African Khaya) Mahogany (African Khaya) Plain Sliced Face Mahogany (Edinam) Mahogany (African Khaya) Plain Sliced Face Maple (Eastern Hard White) Maple (Eastern Hard White) Rotary Whole Piece Face Maple (Eastern Soft Rustic) Maple (Eastern Hard Rustic) Plain Sliced Face Maple (Eastern Soft White) Maple (Eastern Hard White) Rotary Whole Piece Face Maple (Western) Alder Plain Sliced Face Paint Grade (Lumber Panel) DCD's Choice Rotary Whole Piece Face Paint Grade (MDF Panel) MDF N/A Pine (Eastern Clear) Pine (Eastern Clear) Plain Sliced Face Pine (Eastern Knotty) Pine (Eastern Knotty) Plain Sliced Face Poplar N/A N/A Red Oak (Natural) Red Oak (Natural) Plain Sliced Face Red Oak (Qtr Sawn) Red Oak (Qtr Sawn) Quarter Sawn Face Red Oak (Rift) Red Oak (Rift) Rift Sawn Face Red Oak (Select) Red Oak (Select) Plain Sliced Face Sapele (Flat Sawn) Sapele (Flat Sawn) Plain Sliced Face Sapele (Qtr Sawn) Sapele (Qtr Sawn) Quarter Sawn Face Walnut Walnut Plain Sliced Face White Oak (Select) White Oak (Select) Plain Sliced Face White Oak (Qtr Sawn) White Oak (Qtr Sawn) Quarter Sawn Face White Oak (Rift) White Oak (Rift) Rift Sawn Face.
    [Show full text]
  • PC18 Doc. 11.6
    PC18 Doc. 11.6 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Eighteenth meeting of the Plants Committee Buenos Aires (Argentina), 17-21 March 2009 Annotations TREE SPECIES: ANNOTATIONS FOR SPECIES INCLUDED IN APPENDICES II AND III 1. This document has been submitted by the regional representative of North America as Chair of the working group on Tree species: annotations for species included in Appendices II and III (PC17 WG3)*. 2. The Conference of the Parties adopted Decision 14.148 directed to the Plants Committee as follows: a) The Plants Committee shall review and, if appropriate, draft amendments to the annotations to the tree species listed in Appendices II and III and/or shall prepare clear definitions for the terms used in those annotations in order to facilitate their use and understanding by CITES authorities, enforcement officers, exporters and importers. b) The amended annotations shall focus on the articles that initially appear in international trade as exports from the range States and on those which dominate the trade in and demand for the wild resource. c) The Plants Committee shall draft, if necessary, proposals to amend Resolution Conf. 10.13 (Rev. CoP14) and/or to amend the Appendices accordingly so that the Depositary Government may submit them on its behalf for consideration at the 15th meeting of the Conference of the Parties. 3. A working group (WG3) was established at the 17th meeting of the Plants Committee (PC17) to undertake a review of tree annotations. The mandate
    [Show full text]
  • Luthier's Dictionary
    LUTHIER’S DICTIONARY ©2014 The European Guitar Builders Association ©2014 The European Guitar Builders Association Woods ENGLISH DUTCH GERMAN FINNISH FRENCH ITALIAN SPANISH SWEDISH LATIN Alder Elzen Erle Leppä Aulne Ontano Aliso Al Alnus Alder / european, black, Elzen / Europees, Erle Leppä / eurooppalainen Aulne européen Ontano europeo Aliso Europeo Al (Klibbal) Alnus glutinosa common zwart, gewoon Alder / red, western red Elzen Erle Leppä / amerikkalainen Aulne rouge, Aulne Ontano americano Aliso Rojo Rödal Alnus rubra américain Arctic Birch Berken Birke Jääkoivu Bouleau arctique Betulla artica (bianca) Abedul del Ártico Björk Betula pendula Ash Essen Esche Saarni Frêne Frassino Fresno Ask Fraxinus Ash / american Amerikaans essen Esche Saarni / amerikkalainen Frêne américain Frassino americano Fresno Americano Vitask Fraxinus americana Ash / European Europees essen Esche Saarni / eurooppalainen Frêne européen Frassino europeo Fesno europeo Europeisk ask Fraxinus excelsior Ash / Swamp Ash Moeras essen Sumpfesche Suosaarni Frêne des marais Frassino palustre Fesno del Pantano Svartask Fraxinus nigra Basswood Linden Linde Lehmus Tilleul Tiglio Tilo Lind Tilia americana Bubinga Bubinga Bubinga Bubinga Bubinga Bubinga Bubinga Bubinga Guibourtia spp. (G. demeusei, G. pellegriniana, G. tessmannii, etc.) Cocobolo Cocobolo Cocobolo Cocobolo Coccobolo Cocobolo Cocobolo Mexikansk jakaranda Dalbergia retusa Ebony / African Afrikaans ebben Ebenholz Eebenpuu / Ébène Ebano africano Ébano Africano Ebenholts Diospyros crassiflora afrikkalainen Ebony /
    [Show full text]