<<

αPOLYLLYSINEASAPOTENTIALBIOSORBENTFOR REMOVALOFHEXAVALENTFROMINDUSTRIAL WASTEWATER ATHESIS SubmittedtotheFacultyof WORCESTERPOLYTECHNICINSTITUTE Inpartialfulfillmentoftherequirementsforthe DegreeofMasterofScience In Biotechnology By AmritaChakraborti MAY2009 Approved: ______ Dr.Alexander.A.DiIorio,MajorAdvisor ______ Dr.TheodoreC.Crusberg,CoAdvisor ______ Dr.DanielG.GibsonIII,CommitteeMember ______ Dr.Eric.W.Overström,HeadofDepartment ABSTRACT Remediationofheavyfromindustrialeffluentsandgroundwatersourcesposesa significant challenge. Hexavalent chromium is one such heavy , prevalent in industrialwastewaters, whichhasbeenproven tobetoxictohumansandotherliving organisms.Mostoftheconventionalmethodsavailable for dealing with chromium are either cost prohibitive or generate secondary effluentswhicharedifficulttodealwith.

The idea of bioremediation has gained much momentum over the last few decades becauseofitspotentiallowcostandminimumimpactontheenvironment.Thisstudy exploredthepotentialforhexavalentchromiumbioremediationusingasyntheticcationic biopolymer αpolyllysine (αPLL) as a biosorbent. In the present research work, equilibrium batch studies were performed in a specially designed dialysis apparatus to obtain preliminary information about the adsorption capacity of the polymer. Metal uptakebythepolymerwasfoundtobemaximumwhenthepHofchromiumsolution(pH

4.6)andthatofpolylysine(pH5.7)wasnotchangedatthebeginningoftheexperiment.

ApplyingtheLangmuiradsorptionisothermmodelshowedthat αPLLhasamaximum uptakecapacityof42.2gCr/mg αPLL,andabindingconstantof1.2 g/mL+10%.

ThemetaluptakeperformanceofthepolymerwasalsoevaluatedinaPolymerEnhanced

Diafiltration(PEDF)system.Thepolymermetalcomplexwasretainedandconcentrated bythePEDFsetupusingatangentialflowmembrane,whilethecleanfiltrate

2 flowed through. When 3.4 L of 10 mg/L chromium solution in the Cr 2O7 form was processedusing300mLof2gm/LPLL,theconcentrationofchromiuminthepermeate

reachedamaximumof0.79mg/L.When30mg/Lchromium solution was used, 2 L

2 couldbeprocessedusing300mLof2gm/LPLL, and 7.8 mg/L chromium could be detectedinthepermeateintheend.

3 ACKNOWLEDGEMENT Iwishtoextendmygratitudetoallthosewhohaveprovidedmewithguidanceand support.Thisthesiswouldnothavebeenpossiblewithoutthehelpofmanypeople.

Inparticular,IwouldliketothankDrAlexDiIorio,myMajorAcademicAdvisorand

Dr.TheodoreC.Crusberg,myCoAdvisorfortheircontinuoussupportandcommitment throughoutthisproject.Dr.DiIorioprovidedmuchneededdirectionandencouragement whenthingsdidnotworkasplanned.DrCrusberg’shasbeenaninvaluablesourceof informationregardingwastewaterpollutionandbioremediationtechniques.Hehasalso helpedimmenselywiththedevelopmentofthedialysisapparatusforbatchmodestudies, assaysforhexavalentchromiumdetectionandlastlyforthecritiqueofthisdocument.

Theybothhavebeenexcellentsourcesoflearningpracticalexperimentalskillsduringthe entireprocess.

IwouldalsoliketothankDr.Daniel.G.Gibson,forservingonmycommittee.

Finally,Iwouldliketoacknowledgeallmyfamilyandfriendsfortheirsupportand encouragement,myhusbandAnirbanforbeingtherethroughthethickandthinofthis process.

4 TABLEOFCONTENTS ABSTRACT……………………………………………………………………….2 ACKNOWLEDGEMENTS………………………………………………………..4 LISTOFABBREVIATIONS…………………………………..…………………6 LISTOFSYMBOLS…………………………………………………………….…7 LISTOFFIGURES…………………………………………………………………8 INTRODUCTION…………………………………………………………………..9 BACKGROUND…………………………………………………………………...11 MATERIAL&METHODS………………………………………………………..33 RESULT&DISCUSSION…………………………………………………………39 CONCLUSION…………………………………………………………………..…55 REFERENCES……………………………………………………………………...56 APPENDIX

5 LISTOFABBREVIATIONS Da Daltons dH 2O Deionizedwater EDTA EthylenediamineTetraacetate EPA EnvironmentalProtectionAgency MWCO MolecularWeightCutOff PEDF PolymerEnhancedDiafiltrationSystem αPLL αPolyLLysine εPLL εPolyLLysine γPGA γPolyGlutamicAcid TMP TransMembranePressure TFF TangentialFlowFiltartion UF UltraFiltration

6 LISTOFSYMBOLS Co Cr(III) Trivalentchromium Cr(VI) Hexavalentchromium Cu Pb pKa Negativelogarithmofacidionizationconstant q Metaluptakeconcentration(mg/gadsorbent) qmax Maximummetaluptake(mg/gadsorbent) KA Equilibriumassociationconstant(L/mg) KDEquilibriumdissociationconstant(mg/L) 1 KF Overallmasstransfercoefficient(mh ) C Bulkliquidphasemetalconcentration(mg/L) Zn 7 LISTOFFIGURES Figure 1. Schematic of hexavalent chromium taken up by cell membrane and its reductionmechanismwithinthemembrane……………………………………………..15 Figure2.Speciationdiagramofhexavalentchromium………………………………….16 Figure3.Structureofpolyglutamicacidandpolylysine………………………………21 Figure4.SchematicofPolymerEnhancedDiafiltrationSystem………………………..29 Figure5.Equilibriumbatchmodestudiesover24hrswith2gm/LαPLL……………..39 Figure6.ChromiumuptakebyαPLLatpH4…………………………………………..41 Figure7.ChromiumuptakebyαPLLatpH8…………………………………………..41 Figure8.ChromiumuptakebyαPLLwithnochangetopH…………………………...42 Figure9.EquilibriumadsorptionisothermforchromiumandαPLL…………………..45 Figure10.Doublereciprocalplotofequilibriumadsorptionisotherm………………….45 Figure11.Permeationcurveof20mg/Lchromiumintheabsenceofanypolymerina PEDFsystem……………………………………………………………………………..47 Figure12.Permeationcurvefor10mg/LchromiuminaPEDFsystemwith2gm/Lα PLL………………………………………………………………………………………48 Figure13.Permeationcurvefor20mg/LchromiuminaPEDFsystemwith2gm/Lα PLL………………………………………………………………………………………49 Figure14.Permeationcurvefor30mg/LchromiuminaPEDFsystemwith2gm/Lα PLL………………………………………………………………………………………49 Figure15.Permeationcurvefor20mg/Lchromiumwith2gm/LαPLLshowing observedandtheoreticalvalues………………………………………………………….52 Figure16.Rheologicalpropertiesof αPLLchromiumcomplex……………………….53 Figure17.Rheologicalpropertiesof αPLLChromiumcomplex(LogLogplot)……...53

8 1.INTRODUCTION

1.1ProblemStatementandObjective

Mostindustriessuchasmanufacturing,defense,powergeneration,pharmaceuticaluseor produce chemicals in efforts to improve human living standards, but the unplanned intrusion of those chemicals into the environment can reverse the same standards of livingthattheyareintendedtofoster(Dzantor,1999).

Theaccumulationofnonbiodegradableheavymetalsinsoilandgroundwaterresources hasreachedalarmingrates.In1980,EPA(U.S.environmentalprotectionagency)created theSuperfundprogramforhazardoussiteidentificationandcleanup.Sofar70%ofall thesiteslistedonSuperfund’sprioritylistashazardous,haveheavymetalcontamination ofonekindortheother.Manyoftheheavymetalssuchaslead,,chromiumand aretoxicandcancauseseveredamagetoanimalsandplantsalike.Hexavalent chromium is one such toxic heavy metal, which has widespread use in & steel, chrome plating, leather , wood and textile industries. Effluents from industries likethesearecontaminatedwithhexavalentchromiumandcanfindtheirwayintoground water.

Traditionalmethodsofcleanupsuchaslandfillsandincinerationdolittletoeliminatethe threat of heavy metal contamination. Methods that are currently employed for this purpose include precipitation, ion exchange, etc are ineffective at low metal concentrations, sometimes producing large amount of sludge, and are also cost prohibitiveforhandlinglargevolumes(WangandChen,2006).Theneedforalternative costeffectivestrategiesforcleanuppurposeshasneverbeengreater.

9 Bioremediation describes several technologies and strategies that take advantage of naturalsystemsalreadyinplacefortransformation,removalandstabilizationofchemical pollutants.Inthatregard,theuseofmicrobialbiopolymersandothersubstancesderived frommicrobesforheavymetalbiosorptionhasgainedconsiderableinterest.Severalsuch compoundshavebeentestedorarecurrentlybeinginvestigatedforthispurpose.Thelow costcombinedwithexcellentselectivityformetalmakebiopolymersalucrativechoice forcleanupcomparedtoconventionalmethods.

Thecandidatepolymerusedinthisstudywasthehomopolymer αpolyllysine.Br.Itis synthetically produced although another form of this polymer, εpolyllysine (εPLL) occurs in nature naturally. The high molecular weight of αPLL makes it suitable for metalsorptionapplications.Noresearchhassofarbeendonetoidentifythispolymerasa potentialbiosorbentforhexavalentchromium.

1.2MainObjectivesofStudy

The main purpose of this study was to study if αPLL can be successfully used as a biosorbent for hexavalent chromium. αPLL served as a model biopolymer in these

studies,andfurtherresearchisneededtoproduce thispolymernaturally whichwould

drivecostsdown.Thefirstgoalwastoestablishviaequilibriumbatchmodestudies,the

feasibility of this polymer for metal uptake and the second goal was to assess the

suitabilityofitsuseinaPEDFsystem.

Themainobjectiveswereasfollows:

1. Determinethemetaluptakecapacityofthepolymerinmg/gandalsoassessthe

optimumpHrequirementsusingequilibriumbatchmodestudies.

10 2. Determine the efficiency of the polymer enhanced diafiltration system in

removingchromiumfromaqueoussolution.

3. Studytherheologicalcharacteristicsofthemetalpolymercomplex.

2.BACKGROUND Theindustrialrevolutionchangedlifeonthisplanetforever.Therapidgrowthinindustry followingtherevolutionscalednewheightsafterWorldWarIIandhassincecontinued, promisingusabettertomorrow.

Buttomorrowisalsoriddledwithquestionsandconcernsabouthealthandwellbeing, globalwarmingandenvironmentalpollution.Questionsabouttheverysustainabilityof theplanetarenowbeingraised.Thethreatofpollutionisveryreal,andsomearguethat theapproachingdangeriscloserthanwethink.

Asourindustrieshaveevolvedandhavebecomecomplexovertime,sohasthewasteand toxic effluents they generate. Synthetic substances such as plastics, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), radioactive and metallic contaminantsarenotonlytoxic,butalsononbiodegradable.Oncetheyarereleasedinto theenvironment,theytendtoaccumulateoverlongperiodsoftimeandultimatelyfind theirwayintotheecologicalfoodchain.Themining,refining,electroplating,tanningand textile industries which generate a bulk of the hazardous waste usually discharge their waste into municipal sewerage which ultimately finds its way into the groundwater system.Infactsomeindustrialareashavebecomesohazardousthattheyarenolonger suitableforhumanandnonhumaninhabitation.

11 In 1980, the U.S. Environment Protection Agency created the Superfund program to hastentheidentification,cleanupandcontainmentofhazardouswastesites.AsofJuly

2008,therewere1255siteslistedonitsNationalPrioritieslist(source:EPA website )that requireimmediateattention.

Approximately70%ofthesesitesarecontaminatedwithheavymetals.Sitesmanagedby

Department of Defense and Department of Energy are also contaminated by heavy metals. It is estimated that federal, state and private industries will spend billions of dollarsannuallytocleanupsitescontaminatedwithhazardouswaste.Thisinvestment validates the need to research newer and more cost effective methods to clean up contaminatedsites.

2.1HeavyMetalContamination

Among toxic substances reaching hazardous levels are heavy metals (Vieira and

Volesky, 2000). Some debate exists as to what constitutes a heavy metal and which elementsshouldbeproperlyclassifiedasone.Mostrecentlytheterm“heavymetal”has beenusedasageneraltermforthosemetalsandsemimetalswithpotentialhumanor environmental toxicity (Soghoian and Sinert, 2008). This definition includes a broad sectionoftheperiodictablewithelementslikearsenic,chromium,lead,mercury,zinc, ironandcoppertonameafew.

Intraceamounts,someoftheseelementsareessentialtotheproperfunctioningofthe body,howeverabovecertainlevelstheyposesignificanthealthrisks.

12 Heavy metals are major pollutants in marine, ground, industrial and even treated wastewaters(DemirandArisoy2006).Ingestionofsomeoftheseheavymetalssuchas copper, chromium, arsenic etc. beyond permissible quantities causes various chronic disordersinhumanbeings.Heavymetalsalsotendtobioaccumulateinourbodiesovera longperiodoftimeposingserioushealthrisks.Majorindustrialactivitiessuchasmining, electroplatingandpowergenerationhaveproblemswiththeireffluentscontainingtoxic

2 3 heavymetals,ofteninanioniccomplexformssuchaschromate(CrO 4 ),vanadate(VO 4

2 ),selenate(Se0 4 )(NiuandVolesky,2004).

Althoughregulationsarestrictlyenforcedinmanydevelopedcountries,theseregulations arenotusuallyfollowedinmostdevelopingcountries.Manyhazardouswastedumpsites are unlined, with no barrier between the waste and groundwater. (Dua, et al., 2002).

Moreover,inmanyofthesecountries,theseuntreatedwastewatersareusedassources for , whereby heavy metals often make their way into the food chain. Many studies have been carried out worldwide which singularly point to this fact. Studies carried out in Ethiopia to identify the effect of using wastewater in irrigation found elevatedlevelsofPb,Zn,Cu,Cointhesoil.(Fitama,etal.,2006).Similarstudieshave been carried out in India, China, and Korea and have found much higher than recommendedlevelsofheavymetalsinrivers,soilsandaquaticplants.

2.2HexavalentChromium

Chromiumisonesuchtoxicheavymetalofwidespreaduse.Extensiveuseofchromium inmanyindustriessuchaselectroplating,steelproduction,woodpreservationandleather tanningresultsinreleasingchromiumcontainingeffluentsintotheenvironmentmaking

13 it a severe threat to the ecological system (DemirandArisoy,2006).Industrialwaste water rich in heavy metal ions remain an important cause of concern. Approximately

142,000metrictonesofchromiumaredischargedintowaterbodiesgloballyeveryyear

(MohanandPittman,2006).

Chromiumisatransitionmetal,andhasoxidationstatesfromCr(II)toCr(+VI).

Chromiumisthesixthmostabundantelementonearthbutelementalchromiumdoesnot occur naturally on earth. It usually occurs as halides, oxides or sulphides. The two environmentally relevant valence states of chromium, Cr (III) and Cr (VI) have contrasting impacts on environment and health (Compton, et al., 2004). Trivalent chromium is relatively harmless and is an essential trace element in mammalian . It is involved in glucose metabolism. Hexavalent chromium on the other handismuchmoretoxicduetoitshigh water solubility and mobility. Under normal physiological conditions, Cr 6+ interacts spontaneously with the intracellular reductants

(e.g.ascorbateandglutathione)togeneratetheshortlivedintermediatesCr 5+,Cr 4+,free

radicalsandendproductCr 3+(Costa2003;Xuetal2003,2004;Cheungetal,2006).The processproducesreactiveoxygenspecies(ROS)thateasilycombineswithDNA complexes(Cheung,etal.,2006).

14

Figure1.Schematicshowinghexavalentchromiumtakenupbycellmembraneand itsreductionmechanismwithinthemembrane.(Source:K.HCheung,JiDongGu 2006, Journal of Industrial biodevelopment )

The highest exposure to hexavalent chromium occurs during chromate production,

chromepigmentproduction,chromeplatingandstainlesssteelwelding.

AcuteexposuretoCr(VI)causes,,liverandkidneydamage,,

internal hemorrhage, and respiratory problems (Mohan, et al., 2006). In humans,

exposuretohexavalentchromiumsaltsforaperiodof2to26yearshasbeenimplicated

asacauseofofthelungsanddigestivetract(CostaandKlien,2006).

ThevalencestateofchromiuminwaterdependsonthepHandtheredoxpotentialinthe

solutionitisin.Cr(VI)predominatesunderhighoxidationconditions,suchasshallow

groundwater with pH 68, while trivalent chromium predominates under reducing

15 conditions like deep groundwater (Berceloux, 1999). The hexavalent species exists

– primarilyaschromicacid(H 2CrO 4)anditssalts,hydrogenchromateion(HCrO 4 )and

2– chromate ion (CrO 4 ),dependingonthepH(DionexTechnicalnote).The dichromate

2– – ion (Cr 2O7 ) is a dimer of (HCrO 4 ), less a water molecule, which forms when the

concentrationofchromiumexceedsapproximately1gm/L(DionexTechnicalnote).

Figure2.Speciationdiagramofhexavalentchromium(SourceDionextechnical

note,DionexCorp)

2.3TraditionalMethodsofChromiumRemediation

Several treatmenttechnologieshavebeendevelopedinthepastforremovalofhexavalent

chromium from water and wastewater. Some of these methods include chemical and

electrochemical precipitation, adsorption, membrane filtration, ion exchange, reverse

osmosis, air and steam stripping, flocculation and chelation. Though precipitation has beenwidelyusedinthepast,theprocesscreatessludge,andsludgedisposalisabig problem. Ion exchange is a better alternative but at the same time is expensive. Most

16 remediationmethodsareeffectiveinremovingchromiumfromcontaminatedwaterifthe initialconcentrationofchromiumishigh(>100mg/L)(MohanandPittmanJr,2006).As aresultoftheseandothershortcomingsofphysiochemicaltreatmentprocesses,lowcost and effective alternatives are actively being sought for the removal of trace concentrationsofenvironmentallytoxicmetals(Mark,2006).

2.3Bioremediation

Putsimply,bioremediationistheuseofbiologicalorganismstoreturntheenvironmentto itsoriginalstate(Hunter,2007).Organismssuchasbacteria,fungiandplantsareused directlyorindirectlytoprocesstoxicproductsintolesstoxicornontoxicforms.

Bioremediation approaches are popular because they are natural, considerably less expensiveandcanbeimplementedonamassscale.Agoodnumberofbioremediation strategieshavebeenexploredandsuccessfullyimplemented.

For treating toxic wastewater containing heavy metals, there exists four basic bioremediation strategies. Most of these strategies aim to reduce the mobility and bioavailabilityofthemetals:(1)Biosorptionusinglivingornonlivingbiomass.Insuch casesmetaluptakemostlyoccursbyadsorptionorionexchange.Seaweeds(Sargassum foruraniumuptake),fungi( Saccharomyces cerevisiae forleadanduraniumuptake)and bacterialcells( E. coli forcopper,chromiumand)havebeensuccessfullystudied.

(2)Extracellularprecipitationcausedbysulfateandphosphatereducingbacteria.When

amicroorganismoxidizesorreducesaheavymetalspecies,thereactioncausesmetalsto precipitate (National Research Council, 1993). Mercury and chromium can be precipitated in this way (3). Microbial metal transformations wherein microbes are

17 employed to transform metals from toxic form to the less toxic, stable forms and

(Pseudomonas aeruginosa converts hexavalent chromium to less toxic trivalent form)

(CheungandGu,2006)(4)biosorptionusingbiopoylmersandothermoleculessecreted

orderivedfrommicrobialcells( γPGAusedforcopperremediation)(Mark,2006).

2.3.1Biosorption

In the recent past adsorption has evolved as the frontline of defense for chromium

removal, (Mohan and Pittman Jr, 2006). Selective adsorption by biological materials

including viable as well as nonviable biomass has generated increasing excitement.

Metalsequesteringpropertiesofnonviablebiomassprovidethebasisforanewapproach

to remove heavy metals when they occur at low concentrations (Vieira and Volesky,

2000).

Heavymetalbiosorptionhasbeenextensivelyinvestigatedduringthelastseveral

decades(Volesky,1990).Severalreportshavebeenpublishedthathavelookedintothe

various aspects of heavy metal bioremediation (Wang and Chen, 2006). From these

reviewsitisclearthatthefocushasmainlybeenonthreeareasofbiosorption:

1.Thesearchforefficientandcheapbiosorbents.

2.Themechanismofmetaluptakebybiosobentsandthevariousinteractionsinvolvedon

amicrolevel.

3.Thelargescaleimplementationofbiosorptiontomakeitanindustriallyviableoption.

Thereareseveralchemicalgroupsinbiomassthatcouldpotentiallyattractandsequester

metal ions: acetamido groups in chitin, amino and phosphate groups in nucleic acids,

18 amino, amido, sulfhydryl and carboxyl groups in amino acids and hydroxyls in polysaccharides(HolanandVolesky,1995).

The importance of any given group for biosorption of a certain metal by a certain biomass depends on factors such as: number of sites in the biosorbent material, accessibilityofthesites,thechemicalstateofthesiteandtheaffinitybetweensiteand metal(VieiraandVolesky,2000).

The decision to use living biomass for metal removal vs. nonliving or biological moleculesderivedfromlivingbiomassdependsonavailabilityandabilityoftheliving biomasstotoleratehightoxicenvironment.Biopolymersorothernonviablebiomaterials provetobeeffectiveinplaceswherebacteriaandotherspeciescannotbemetabolically activeeitherduetotoxicityorotherenvironmentalconditions.

2.3.2BiopolymersasBiosorbents

Theuseofmicrobialbiopolymersforsequesteringheavymetalfromwastewaterorany othermetalofimportancehasbeeninvestigatedforsometimenow.Polymerswithahigh concentrationofionic groupshavethe abilitytochelate or exchange metal ions. This propertyfacilitatestheiruseintherecoveryandseparationofmetalionsfromaqueous solutions(Rivas,2004).

Many biopolymers are known to bind metals strongly and the use of biopolymers as adsorbentsfortherecoveryofmetalshasbeenstudied(Baysal,2006;Jeon,etal.,2002).

Forexamplechitinandchitosanarebiopolymerswhichhaveinterested researchersfor theirabilitytoformcomplexeswithmetalions,particularlytransitionandposttransition metal ions. Chitin is a homopolymer of α(1  4) linked Nacetyl –βDglucosamine

19 residues.Itisanaturalpolysaccharidefoundintheshellofcrabsandothercrustaceans.

Thesuccessofpolyγglutamicacid,anextracellularpolyaminoacidformedby Bacillus

licheniformis fortheremovalofcopperhasaddedenoughimpetustolookformoresuch

novelpolymers(Mark,2006)

The candidate polymer used in this study was the homopolymer αPLL. A cationic

polymeratneutralpH, αPLLisubiquitousinbiotechnologylabsasacelladhesionagent

for cell culturing experiments in plates and other solid substances (Krikorian, et al.,

2002).

This study focuses on the biosorption of anionic metal complex of chromium, the

chromateion,bybiopolymer, αPLL.

2.4PolyLLysine

PolyglutamicacidandPolylysine:acomparison

Polyaminoacids arereferredtoasmallgroupofpolyamidesthatconsistofonlyonetype

ofaminoacidlinkedbyamidebonds(Shih,etal.,2004).Theyformanimportantclassof

biodegradablebiopolymerswhicharebeinginvestigatedforavarietyofpharmaceutical

applications.Bothpolyglutamicacidandpolylysinehavetwodifferentstructures,one

thatisnaturallyoccurringandonethatischemicallysynthesized.Polyαglutamicacid

andpolyαlysinearesynthesizedchemically,bypolymerizationreactionhavingamide

linkages between αamino and αcarboxylic acid groups. Polyγglutamic acid is a

naturally occurring anionic polymer that is made of D and L glutamic acid units

connectedbyamidelinkagesbetweenαaminoandγcarboxylicacidgroups.Incontrast

εPLLisanaturallyoccurringcationicpolymermadeupofLlysineresiduesconnected

20 betweenεaminoandαcarboxylgroups(Shih,etal.,2004).Bothpolyglutamicacidand polylysine are water soluble, biodegradable and nontoxic towards humans and the environment(Shih,etal.,2004).Fig3.showsthe structure of polyglutamic acid and polylysine.

Figure3.Structureofpolyglutamicandpolylysine.(Source:Shih,etal.,2004, Mini reviews in medicinal chemistry )

21 εpolyllysineshowsawiderangeofantimicrobialandantiphageactivitiesandisstable athighandunderacidicandalkalineconditions(Ouyang,etal.,2006).Itis usedinthefoodindustryasafoodpreservative.Several strains of Streptomycetaceae have been reported to secrete εPL into the medium, and the production of εPL by

Streptomyces albulus hasbeenstudiedmostintensively(Ouyang,etal.,2006).However moststrainsproducealowmolecularweightεPLcomposedof36to40lysineresidues.

Due to its low molecular weight, εpolylysine is not suitable for metal sequestering applications.Formetaladsorption,ahighmolecularweightpolymerlikepolyγglutamic

(molwt10 6)acidismoreusefulasithasahighernumberofsitestoadsorbmetalions.

HerewefocusedonSigma’ssyntheticallymanufacturedαPLL,withamolecularweight

ofgreaterthan300,000Da.Thelowermolecularweight αPLL(30,000to70,000Da)

makes this reagent easier to use, as it is less viscous in solution and also far less

expensive. However, the higher molecular weight αPLL (>300,000Da),usedforthis project,providedmoreattachmentsitespermolecule.

Each lysine residue has molecular weight of 146.19 Da, hence this polymer has over

2000lysineresidues.ItspIis9.59andpKa’sareat2.2,8.9and10.3.

Itdissolvesinwaterproducingaviscousliquid.Itsapplicationsincludeglasscoatingto promotecellularadhesion,drugdelivery,cellmicroencapsulation (e.g. Islet cells) and

chromosomalpreparations(Shih,etal.,2004).PolymersofbothDandLlysineareused

to coat slides. When adsorbed to the surface, polylysine increases the number of positively charged sites available for cell binding (Sigma catalogue). Here, the metal

(anion) sequestering ability of the high molecular weight αpolyllysine is being

investigated.Althoughthebindingofmetalcationsbyαpolyllysineandεpolyllysine

22 hasbeenpublishedbyShima&Sakai(1985),nomajorworkhasbeendonewithregards toanions.

Efforts are ongoing to produce high molecular weight αPLL from bacterial fermentation, for use in the future. For now, the synthetic αpolyllysine serves as a suitablemodelforinvestigationofitsuseasabiosorbentforhexavalentchromiumand otheranioniccomplexes.

2.4.1MechanismofαPolyLLysineandMetalInteractions

Thepolymermetalioninteractionismostlyelectrostaticinnaturealthoughsometimesit canincludetheformationofcoordinativebonds. Variablesbothintrinsicandextrinsicto the polymer affect the interaction between the polymer and the metallic species. The formerincludesthepolymerstructureintermsofthecompositionandgeometry,which affecttheflexibilityofthechainsinthesolution,thebranchesofthechain,thechemical nature of the functional groups, their distribution at the polymer chain and so forth

(Rivas, 2006). Extrinsic factors include variables such as pH of the solution, ionic strength, the metallic ion itself, and presence of other competitive ionic species etc. Not much has been investigated about the structure of α polyllysine in aqueoussolution,whereamidelinkageexistsbetweenindividualmonomers.Howeverit is known that at low and neutral pH, the polymers assumes a random coil structure

(FernandezBarbero,etal.,2005).Someconstraintsexistduetotheamidelinkagesand repulsionbetweenthechargedaminegroupsbutinthecaseofαPLL,wheretheamine groupsareplacedfarawayfromoneother,suchrepulsionsarelikelytobeminimal.Ina polarmediumsuchaswater,theaminegroupsonthepolymerwouldbecharged , thenet

23 charge on the chain would depend on the ionic strength and pH of the surrounding medium. The interaction between the amine on the polymer and the chromate ion is electrostatic,althoughinformationabouttheexactinteractionbetweenthemetalandthe polymerisnotknownatthisstage.

2.5EquilibriumandKineticBatchModeStudies

Preliminary testing of a candidate material for consideration as a potential biosorbent begins with batch mode sorption studies which involved both equilibrium and kinetic tests. If successful, this is followed by continuous flow sorption studies. The sorption studygivestheveryfirstinsightintotheadsorption performance of a polymer, and is mandatoryforanynewbiosorbenttobeusedforthispurpose.

The determination of metal uptake rate by the biosorbent is often based on the equilibriumstateofthesorptionsystem(WangandChen,2006).Inbatchmodestudies, the biosorbent and the metal species are brought in contact in solution until metal is sequesteredbythesorbentinequilibriumwithfreemetalleftinthesolution,temperature beingconstant.

Therelationshipbetweenthemetaluptake(q)bythebiosorbentandtheremainingfree metal concentration (Ceq) is represented graphically with the help of adsorption isotherms. The resulting graph is mostly hyperbolic with the metal uptake increasing rapidlyinthebeginningandthenlevelingoffasmoreandmoremetalionsadsorbonthe availablesitesonthebiosorbentasitnearssaturation.

Metaluptake(U)inmilligramsofmetalpergramofbiomassisgivenby

U=V(C1–C2) M

24 WhereV=volumeofmetalbearingsolution

C1=initialmetalconcentration

C2=finalmetalconcentration

M=amountofbiomass

Themaximummetaluptakebythepolymerisanimportantparameterforconsideration as it reflects the maximum adsorption capacity of any given polymer, at a given concentrationofthemetal.Thehigherthevalueofq max ,whichisthemaximummetal uptake,thebetterthebiosorbent.Itisalsopreferredthattheisothermcurvehasasteep risewhichindicateshighaffinityofthebiosorbentforthemetal.

Anotherimportantfactortoconsideristhetimerequiredtoreachastateofequilibrium betweenthemetalboundbiosorbentandthefreeunboundmetalinsolution.Asmaller

timerequiredtoreachequilibriumtranslatesintoafasterprocesswhichcanbesignificant

forlargescaleoperations.

2.5.1LangmuirAdsorptionIsotherm

Therearetwowidelyusedadsorptionisotherms,proposedbyLangmuirandFreundlich

respectively.Thesehelptolinearizethehyperbolicisothermcurvesmakingitsimplerto

makequantitativedeductionsbasedonalinearplotofthedata.Forthepurposeofthis project,theLangmuirisothermwasfollowed.TheLangmuirisothermisbasedoncertain

assumptions:

1. Theadsorbatecoversthesurfaceuptocompletecoverageasamonolayeronthe

adsorbent.

2. Theadsorbedspeciesonlyreactwiththeadsorbentandnotwitheachother.

25 3. Onthesubstrate,allthebindingsitesareequivalent

ThegeneralformoftheLangmuirisothermisgivenby

q=q max KAC 1+K AC

Where q is the metal uptake concentration (mg/g adsorbent), q max is the asymptotic

maximum metal uptake (mg/g adsorbent), K A is the equilibrium association constant

(L/mg) and C is the bulk liquid phase metal concentration (mg/L solution). Another parameterwhichiscloselyrelatedisK D whichisthedissociationconstantandisthe

reciprocal of K A. It is the metal concentration corresponding to half saturation of biosorbent(FourestandRoux,1992).Theaboveequationcanbewrittenasfollows,in

theformofreciprocalequation.

1 =1 +1_ qq maxKACq max

Thereciprocalplotof1/qvs1/Callowsthehyperbolicgraphtobelinearizedandhence

thevaluesofqmaxandK Acanbeeasilyobtainedfromtheslopeandinterceptofstraight linegraph.

2.6PolymerEnhancedBiosorption

Filtration is a pressure driven separation process that separates molecules based principallyonsizeandsometimesalsooncharge.Membranefiltrationisawidelyused separation technique and the process can be successfully used for the separation of

26 inorganic species and for their enrichment from dilute solutions with the aid of water solublepolymers(Rivas,etal.,2000).

Ultrafiltration(UF)isaversatiletechniqueinconcentration,purificationandseparation processes.Theultrafiltrationofwatersolublehighmolecularweightpolymerswithlow

molecularweightionicspecies,allowsforadequateinteractionbetweenthemetalandthe polymer.

The concept of using water soluble polymers to retain small ionic species was first

discussedinthelate1960sbyMichaels(Jarvinen,etal.,2000).Sincethenmuchwork

hasbeendonetoimprovethetypeofpolymers,allowformorepolymermetalinteraction

andincreasetheefficiencyoftheprocessasawhole.Avarietyoftermsandassociated

acronyms have been used in the literature for this technology including polymer

supported ultrafiltration (Geckeler, 1996), liquid phase polymer based retention (LPR)

(Spivakov, 1989), polyelectrolyte enhanced ultrafiltration (PEUF) (Scamehorn, 1990)

and polymer assisted ultrafiltration (Smith, 1995). Some of the advantages of this

techniqueasnotedbyJarvinenetalinclude:

1. Thereactionbetweenthetargetspeciesandthereceptorsitesoccurinasingle

liquidphasewhichhelpsinrapidattainmentofequilibrium.

2. Dissolvingthepolymerinsolutionalsomeansthatallofthepolymerstructure

canbeusedforbindingsites

3. Amixtureofpolymerscanbeusedtotargetagroupofmetal/ionicspeciesin

solutionandtheycanbeseparatedinasingleUFstep

27 4. ThescaleupofaUFsystemissimpleandwellestablished

5. TheUFsystemrequiresrelativelylowpressures,around10psigtooperate

2.6.1PolymerEnhancedDiafiltrationUsingPolyLLysine

Broadly, PEDF involves two steps: binding of the polymer with the metal ion and retention of the polymer metal complex by the UF membrane. The pore size of the membraneischosensothatitallowsthepolymermetalcomplextoberetainedandother smallermoleulestopass.Themetalisconcentratedintheprocessandcanberecovered later for subsequent use. In the current thesis work retention of hexavalent chromium

(chromate) by αpolyllysine was examined using PEDF. In the set up, a solution of hexavalent chromium was pumped into a reservoir containing the polymer. The interaction between the metal and the polymer took place in the reservoir and this solution was then circulated over the UF membrane untilalltheavailablesitesonthe polymer were saturated and chromium started showing in the filtrate. The necessary transmembranepressurewascreatedusingasecondarypumptoflowthefeedintotheUF membranes.Aconstantvolumediafiltrationwasperformedwhereintheretentatevolume waskeptconstantthroughouttherun.

28 PR

TFFmembrane, PF 30KDa,Vchannel

Pf

Figure4.SchematicofPEDFunit(Source:AmeeshaShetty, Metal Anion Removal from Wastewater Using Chitosan in a Polymer Enhanced Diafiltration System )

2.6.2FactorsEffectingPEDF

Twooftheimportantparametersaffectingtheperformanceofatangentialflowfiltration

system are transmembrane pressure (TMP) and crossflow rate. The flow of the feed

alongthelengthofthemembranecausesapressuredropfromthefeedtotheretentate

endofthechannel;thisiscalledthetransmembranepressure.Thisistheprincipalforce

thatdrivestheflowofthefiltratethroughthemembrane.Additionalpressuredifference

29 canbecreatedbyapplyingpressureexternallyontheretentateside.Thetransmembrane pressureorTMPisgivenby

TMP=[P F+Pr/2]–Pf

Where,P Fisthefeedpressure,PristheretentatepressureandP fisthefiltratepressure.

Crossflowrateasthenamesuggestsistherateofflowofthefeedalongthemembrane surface.Usuallyatconstanttransmembranepressure,higherthecrossflowrate,higher thepermeateflux.Higherflowratesalsoreducemembranefoulingduetothesweeping actionofthefeed.However,iftheflowrateistoohighitmayexertunnecessaryforceon the polymer and cause it to shear. A low flow rate on the other hand can cause accumulationofmoleculesonthefiltersurfacewhichcanleadtomembranefouling.It therefore is important to strike a balance between crossflow rate and transmembrane pressureforoptimumperformance.

2.7RheologicalPropertiesof αααPLL

Rheology is the study of flow of matter and its deformation under applied stress and strain. Newtonian, nonNewtonian, viscoelastic etc are some of the attributes used to describe the rheological properties of fluid. Parameters such as viscosity, stress, shear stress, strain are used to quantify those attributes. Stress is defined as the force /area, shearstressiswherethestressisparalleltothefaceofthematerial.Viscositymeasures theresistanceofafluidtoshearstress.Newton’sequationstatesthattheresultingshear ofafluidisdirectlyproportionaltotheforceappliedandinverselyproportionaltothe

30 force applied. Viscosity is measured in Pa.s (Pascal second) or centipoise. A fluid is termedNewtonianwhenitcontinuestoflowregardlessoftheforcesactingonit,whose stressversusrateofstraincurveislinear.Theviscosityofsuchliquidsisconstant.Non

Newtonian fluids are those, whose viscosity changes with changing stress, and hence cannotbedefinedbyasinglevalueofviscosity.Additionallysomefluidshavememory, i.etheyflowundertheslighteststressbutrevertback,thetermviscoelasticisusedto describesuchfluids.

Rheometryreferstothesetoftechniquesthatareapplied to determine the rheological properties of matter (solid/fluid). In this a rheometer is usually employed to exert

torque/forceonamaterialanditsresponseovertimeismeasured.Therheometerexertsa

seriesofstressstepsofincreasingmagnitude,inarampfashiononthefluid,sandwiched betweenthetwoplatesoftherheometer,andtheresultingdeformationovertimeisused

todeterminetheflowcurveforthatfluid.Theflowcurvecanbeplottedasafunctionof

shearstressvsshearrate,bulkviscosityvsshearrate,orbulkviscosityasafunctionof

stress.Thelaterhasbeenappliedtoplottheflowcurveinthisstudy.

Rheologicalbehaviorsofpolymersareimportanttounderstandhowapolymerbehaves

insolutionandhowitsviscosityisrelatedtoitsmolecularweight.Manyhighmolecular

weightpolymericsolutionsarenonNewtonian.Mostpolymersexistinanentangledstate

governedbyphysicalconditionslikepH,temperature,ionicstrengthandconcentrationof

thepolymer.AtneutralpHandroomtemperaturePLLadoptsarandomcoilstructure,

with some constraints due to peptide bond and repulsion between charges of amine

groups.AsmetalisaddedtoaPLLsolution,itsviscosity drops significantly, which

indicatesthatasmetalstakeupthefreesitesavailableonthepolymer,theentanglements

31 are freed and the viscosity drops. It also suggests that metalpolymer interaction is intermolecularratherthanintramolecularincaseofPLLandchromium.

2.8RegenerationofBiosorbent

Thecostbenefitanalysisofanysorptionprocesstakesintoaccounthowwellthesorbent canbereusedforthepurposeofmetalremediation.Forthesorbenttobereused,the metalsorbent complex needs to be successfully decoupled, or the metal has to be desorbedfromthesorbent,inthiscasethepolymer.Insomecases,theregenerationof themetalisjustasimportantastheregenerationofthepolymer.Incaseswherethemetal ispreciouslikeandplatinum,electrochemicalmethodscanbeappliedtodepositthe puremetalonacathode/anode.However,suchpracticescannotbeappliedtoeveryday remediation practices, as they are very expensive. The sorption mechanism can help designadesorptionstrategy(Volesky,2001).SometimesincreasingthepHcanweaken the metalpolymer bonding, and the metal can be washed in a process similar to diafiltration.Similarlychangingtheionicstrengthofthesolutioncancausebondingto weakenultimatelyresultingindesorption.ChelatingagentslikeEDTAcanbeusedto desorp metal from polymer, and have been used in the case of chitosanchromate complex.Thedesorptionofchromiumfrom αPLLisbeyondthescopeofthisstudy,and

hasnotbeenpursuedanyfurther.

32 3. MATERIALANDMETHODS 3.1PreparationofChromiumsolution

AnalyticalgradeK 2Cr 2O7(MallinckordtChemicalWorks,St.Louis,MO)wasdissolved

indeionizedwater(2MOhm)tomakeallthechromiumsolutionsusedthroughoutthe

experiment.282.8mgofK 2Cr 2O7wasdissolvedto1Lofdeionizedwatertoyieldthe

stocksolutionofchromiumat100mg/L.Thestocksolutionwasappropriatelydilutedas

needed.

3.2PreparationofPolyLLysine(PLL)solution

PolyLLysinehydrobromidewaspurchasedfromSigma(molwt>300,000). αPLLwas weightedanddissolvedindH 2Otomakethesolution.Foramajorityofexperiments,2 gm/L αPLLsolutionwasused.Thesolutionwasfreshlypreparedforeachexperiment.

ThepHofdissolvedpolylysinewas5.6to5.7.Thedrypolymerwasstoredat20C.

3.3SpectrophotometricdeterminationofChromium

Theconcentrationofchromiumwasdeterminedusingacolorimetricmethodusingthe diphenylcarbazidedyetakenfrom Standards Methods for the Examination of Water and

Wastewater, method 7196A. Samplescontaininghexavalentchromium(volumewas usuallybelow2ml)weremixedwith10%(v/v)H 2SO 4.Theacidisrequiredbecausethe dyecanbindtochromiummoreeffectivelyinanacidicenvironment.Diphenylcarbazide

(SigmaAldrich)(0.5%)solutionwasmadebydissolvingitinacetone(HPLCgrade

99%).Totheacidifiedsample200Lofthedyewasaddedtogetadarkvioletcomplex whichwasdilutedto10mLwithdH 2O.Theabsorbanceofthesolutionwasmeasuredat

33 540nmusingasBeckmanUV/VISspectrophotometer.Thedyewasfreshlypreparedfor eachexperiment,in10mlbatches.Onceprepareditwaswrappedinfoiltoavoid exposuretosunlightandcouldbeusedfor23days.Thedyewasdiscardedifitturned yellowish.

3.4StudyofchromateBindingPropertiesofPolyLLysineUsingEquilibrium

Dialysis

3.4.1ConstructionofDialysisApparatus

Thedialysisapparatusismadeofpolycarbonatewhichconsistsoftwoidenticalunits.

Whenthetwounitsareattachedusingscrews,theyformsetofeightcellsorchambers whichcanholdliquid.Thecellsareseparatedusingasemipermeablemembraneplaced withthehelpofOringsbetweenthetwoidenticalunits.Eachcellholds2.5mlsolution, oneachsideofthemembrane.Thesemipermeablemembraneismadeofregenerated cellulose(Spectra/Pordialysismembrane,Spectrumlaboratories,MWcutoff1214

KDa).

Priortouse,thedialysisapparatusandtheOringswerethoroughlyrinsedfirstwith10%

(v/v)HNO 3toleachawayanymetalsandthenwithdH 2O.Thedialysismembraneswere firstcutincircularshapes1cmindiameterandthensoakedfor1hrinamixtureof

0.01MSodiumbicarbonateand0.001MNa 2EDTAat37C.Themembraneswererinsed

with3separatedH 2Owashesof30mineachat37C.

34 3.4.2EquilibriumBatchModeStudies

Twogm/L αPLLand100mg/Lchromiumsolutionswerepreparedasmentionedbythe abovemethods.2.5mLof αPLLsolution(pH5.7)waspipettedintoonesideofthe

dialysischamber(recoverycell)andanother2.5mlofchromiumsolution(pH4.5)was pipetted into the other side of the chamber (feed cell). The top of the apparatus was sealedwithscrewstopreventleaksandputonashakerat250rpm,25 oCfor24hours.

At the end of 24 hours, samples (100 uL) were removed from the feed cell and the

amountoffreeunboundchromiumwhichwasatequilibriumwithfreechromiumonthe

other side of the membrane was determined using spectrophotometric analysis as

discussed in section 3.3. A standard curve was drawn using known concentrations of

chromiumandtheunknownamountwasdeterminedfrom the equation of the straight

line.

3.4.3DeterminationofOptimumpHforChromiumUptake

Theuptakeof chromiumwasdetermined atpH4,8and without changing the pH of

Chromium solution and αPLL solution at all. αPLL has a pI of 9.59 and so it is protonatedatpH4and8.Inthiscase,thepHofbothchromiumand αPLLsolutions

wereadjustedinitiallyusing100mMNaOHor100mMHCl.2.5mL of αPLL was pipettedintoonesideofthedialysischamberand2.5mLofchromiumadjustedtothe

samepHwaspipettedontotheotherside.Theentiredialysisapparatuswasputon a

shakerat250rpm,25Cfor24hours.Samples(100L)wereperiodicallyremovedfrom

thefeedcellside,wherechromiumsolutionwasaddedandtheamountoffreechromium

wasdetermined.Equilibriumwasreachedafter24hoursandnosignificantdecreasein

35 the concentration of free chromium was observed after 48 hours. The uptake of chromiumwasalsodeterminedatnativepH,inwhichnochangetothepHofeitherof thesolutions( αPLLandChromium)wasdoneandwaskept“asis”.Chromiumsolution

hadapHof4.6approximatelyand αPLLwasatpH5.7tostartwith.ThepHofthe

solutionduringanyoftheexperimentswasnotcontrolled.Controlexperimentswithno

αPLLwerecarriedoutinthesameapparatustoeliminateanyexperimentalerrors.The

amount of metal bound to the polymer was determined by subtracting the free metal

concentrationfromthefreemetalconcentrationinthecontrolcellsatequilibrium.

3.4.4EquilibriumAdsorptionIsotherm

Equilibriumisothermstudieswerecarriedoutusingthedialysisapparatuswithvarying

concentration of chromium solution, at 10, 20,30, 40, 60, 80, 100 mg/L. The αPLL

solution was always at 2 gm/L. The same process was followed for the dialysis

experiment,wherein2.5mLof αPLLsolution(pH5.7)waspipettedintoonesideofthe

dialysischamber(recoverycell)andanother2.5mlofchromiumsolution(pH4.5)was pipettedintotheothersideofthechamber(feedcell).Howevereachcellhadadifferent

concentrationofchromium.Controlswithoutany αPLL were also run. Samples were takenatregularintervalsandtheamountoffreechromiumwasdetermined.Theisotherm was plotted as uptake by polymer in mg/g versus concentration of free chromium at equilibrium.

36 3.5PolymerEnhancedDiafiltrationSetup

TheexperimentalsetupofthePEDFisshowninFig4.300mLof αPLLat2gm/Lwas placedinashakeflaskwithoutletport.Thisactedasthefeedtank.Another1Lshake flask was used as the reservoir, holding the chromium solution. A variable speed

MilliporeperistalticpumpwithColeParmerpumpheadwasusedtopumpfluidfromthe reservoirtothefeedtank.Anotherpump(samemodel)wasusedastheinletpumpto pushfluidovertheTFFassembly.Thepressureatthe inlet and the retentate side was measuredusingpressuregauges.Ahandvalvewasplacedintheretentatelinetoadjust

TMP.Thefiltratewascollectedinatallmeasuringcylindertokeeptrackofthevolume being collected. The TFF membrane used was a Pellicon cassette from Millipore

(MWCO30K,Vchannel).Alltubing(Masterflex0648514)usedintheexperimentwas rinsedthroughoutindH 2O.

3.5.1OperationofPEDFEquipment

A constant volume diafiltration was performed during the experiment. The constant volumeinthefeedtankwasmaintainedbyhavingthechromiumsolutionflowintothe feedtankatthesamerateasthefiltrateflowrate.Thefeedtankwasplacedontopofa stirplateanditscontentswerecontinuouslystirredtokeepthesolutionhomogeneous.

TheTMPwasmaintainedbetween13to14psiusingthehandvalveontheretentateline.

AllPEDFexperimentswereconductedatroomtemperature.

37 3.6RhelogicalStudiestoCharacterize αPLLChromiumComplex

Rheologicalstudiesofthe αPLLchromiumcomplexwerestudiedusingaBohlinstress

rheometer.2gm/L αPLLsolutioncontaining0,1,2,10mMchromiumwasplacedon

thelowerplateoftheinstrumentandtheupperplatewasloweredtoapplystressonthe

liquid, sandwiched between the two plates. For each run, the instrument applied

stress/force(0.75to1.5mPa)ontheliquidinanincreasingorderandthereadingswere

storedinthecomputer.Stressviscometrysoftwarewasusedtomanipulatetheinstrument

andobtainreadings.Agraphofviscosityversusstresswasplottedtodeterminetheeffect

ofstresson αPLLsolution,andhowcomplexationwithmetalaltersthat.

38 4.RESULTS&DISCUSSION

4.1EquilibriumBatchModeStudies

Asmentionedearlier,equilibriumbatchmodeexperimentsprovideinsightintothe suitabilityofthepolymerforadsorptionpurposes.Equilibriumbatchmodestudieswere performedusingthepolycarbonatechamberseparatedbyasemipermeablemembrane.

Initialresultswereobtainedwitha αPLLconcentrationof2gm/Landachromium

solutionat100mg/L.Equilibriumwasreachedafter24hoursandsamplesweretaken

fromthefeedcell,towhichthemetalsolutionwasinitiallyadded.Thesamplewas

analyzedforthepresenceoffreeresidualchromiumusingthediphenycarbazidedye.

Equilibrium batch mode studies

120

100

80

Cr + PLL 60 Cr+dH2O mg/L 40

20

Concentration of free Chromium in free in of Chromium Concentration 0 01 242 Time (Hours) Figure5.Equilibriumbatchmodestudiesover24hourswith2gm/L αPLL. Startingconcentrationofchromiumwas100mg/L,dH 20usedasnegativecontrol

39 Fig5showstheconcentrationofchromiuminthefeedcellafter24hours.dH 20wasused as control to substitute for αPLL. Without any polymer, the concentration of free chromiumstartingwith100mg/Lreached48mg/Linthecontrolcell.Inthepresenceof

αPLL (2gm/L), however, the concentration of chromiuminthe feedcellreached5.7

mg/L.ThepHinthisexperimentwasnotcontrolledoradjusted.ThepHofthechromium

solutionatthestartoftheexperimentwas4.67,andthatof αPLLwas5.5.ThepHafter thedialysisexperimentwasrecordedat4.96inthefeedcellwithpolymerintherecovery cell. This experiment gave the first insight into the performance of the polymer for biosorption.Therewasasignificantdecreaseintheconcentrationoffreechromiumwhen

αPLLwaspresentcomparedtono αPLLpresent.Thisdecreaseinconcentrationoffree chromiumindicatesastrongmetaluptakebythepolymerandhelpstoidentify αPLLas

apotentiallygoodbiosorbent.

4.2OptimumpHforChromiumUptake

Figs6and7showthetimecoursedecreaseinchromiumconcentrationinthefeedcell

during equilibrium dialysis experiments at pH 4 and 8. The initial concentration of

chromiumwas100mg/Landthatof αPLLwas2gm/L.InthecontrolcellswheredH 20

was used instead of αPLL,theequilibriumconcentrationofchromiumafter 24 hours

was found to be 48 mg/L in case of pH 4. In the presence of 2 gm/L αPLL, the

equilibrium concentration of chromium was 9.5 mg/L. For pH 8, the concentration of

chromiuminthecontrolcellswasfoundtobe47.5mg/Lafter24hours.Inthepresence

of 2 gm/L αPLL, the equilibrium concentration of chromium was 7.3 mg/L. In both

40 cases dialysis was continued for another 24 hours to determine if there is a further increaseinuptake,butnosignificantchangeinvalueswereobserved.

Figure6.Chromiumuptakeby αPLLatpH4

Figure7.Chromiumuptakeby αPLLatpH8

41 Fig8showsthetimecoursedecreaseinchromiumconcentrationinthefeedcellduring equilibriumdialysisexperimentatnativepH,i.etheinitialpHofthesolutionswerenot adjusted.ThepHofchromiumsolutionatthestartoftheexperimentwas4.6,andthatof

αPLLwas5.7.ThepHafterthedialysisexperimentwasrecordedat4.9inthefeedcell

withpolymerintherecoverycell.Theinitialconcentrationofchromiumwas100mg/L

andthatof αPLLwas2gm/L.InthecontrolcellswheredH 20wasusedinsteadof α

PLLtheequilibriumconcentrationofchromiumafter24hourswasfoundtobe47mg/L.

In the presence of 2 gm/L αPLL,theequilibriumconcentrationofchromiumwas 5.7

mg/L.

Figure8.Chromiumuptakeby αPLLwithnochangetopH 42 Table1EffectofpHonuptakebyEquilibriumDialysis InitialpH Uptake(mg/gm) FinalpH 4 46.2 4.2 8 47.08 8.1 Cr4.6,PLL5.7 47.72 4.9 FromtheaboveplotsandthetablesummarizingtheuptakeatdifferentpH,itisevident thatmaximumuptakeofchromiumby αPLLtakesplacewhenthepHofthesolutionis

not adjusted and is kept as is. The concentration of free chromium in the feed cell

decreasedmorerapidlyinthiscasethanobservedpreviously.ThepIof αPLLisvery

high at 9.59, so at any pH lower than that, the amine groups on the polymer are protonatedandcansuccessfullyattractthenegatively chargedchromateions.However

wedoseethatuptakeisonlyslightlyhigheratpH8thanitisat4,aphenomenonwhich

at this time could not be properly explained due to lack of any published literature

dealingwiththemechanismofpolylysinechromiumbinding.

4.3Modelingofsorptionkinetics :

Therateofchangeofmetalconcentrationinthefeedcellcanbeexpressedapproximately bythefollowingequation(TomidaandIkawa,1993)

dC1 =KfA(C 1–C2)(1) dtV 1 WhereC 1andC 2aretheconcentrationsofmetalionsinthefeedcellandtherecovery cellrespectively.K fistheoverallmasstransfercoefficient,Aistheeffectivemembrane

surfaceareaandV1isthesolutionvolumeinthefeedcell.Inthepresenceofwateralone

withnopolymerpresenttheequationcanbewrittenas

43 V1(C 0–C1)=V 2C2 (2)

Withpolylysinepresentintherecoverycell,themassbalanceforthemetalions permeatingintotherecoverycellthroughthemembraneis

V1(C 0 –C1)=V 2C2+mq(3)

WheremisthemassofPLLintherecoverycellandqistheuptakeofchromiumby α

PLLinmg/gofPLL.Assumingthatbindingofchromiumto αPLLfollowsLangmuir’s isothermmodel:

q=qmax KAC 1+K AC(4)

Whereq max isthemaximummetaluptakebythepolymer.K AandCasstatedearlier

representassociationconstantandequilibriumbulkphasemetalconcentrationinmg/L.

4.3.1EquilibriumAdsorptionIsotherm

As mentioned in the previous section, the uptake to chromium by αPLL can be mathematicallydescribedintermsoftheLangmuiradsorptionisotherm.Theisothermis aplotofuptakeofchromiumbypolymering/mg vs. equilibriumconcentrationoffree chromiuminug/ml.TheexperimentwascarriedoutwithoutanychangetotheinitialpH ofbothchromiumand αPLLsolutions.AsshowninFig6,initiallytheuptakeoffree chromiumincreasedwithincreasingavailabilityofthemetalion.Asthebindingsiteson thepolymerbecamesaturated,theuptakereachedaplateau.Themaximumadsorptionis representedbyqmax.ThepHwasnotcontrolledthroughouttheexperimentandwasfound

tobe5.1attheendoftheexperiment.

44 Figure9.EquilibriumadsorptionisothermofchromiumandαααPLL.

Figure10.Doublereciprocalplotofequilibriumisotherm.

45 Duetothenonlinearnatureoftheisothermplot,areciprocalplotwhichislinearwas usedtofindthevaluesofK Aandqmax .Equation(4)canbemodifiedasfollowstofind

thevaluesofK Aandqmax fromtheslopeandtheinterceptofthestraightline,plotof1/q vs1/C

1 =1 +1_ qq maxKACq max Fromtheequation,thevalueofqmax wascalculatedtobe42.2ug/mgandK Awas0.8

mL/ug+10%.ThedissociationconstantK D(K D=1/K A)wascalculatedas1.2ug/mL+

10%.TheuptakedeterminedfromtheLangmuirisothermisclosetothatobtainedby equilibrium batch mode studies. Indeed the low value of the dissociation constant K D suggestsstrongbindingbetweenPLLandchromateanion.

4.4Dynamicheavymetalbindingofchromiumusing αPLLinaPolymerEnhanced

Diafiltrationsystem

PEDF experiments were performed with three different concentration of chromium keepingtheconcentrationof αPLLconstantat2gm/L.ThepHwasnotchangedduring any of the experiments, for both chromium and αPLL solutions. The transmembrane pressurewasmaintainedat7.5psi.

4.4.1PEDFwithnoPolymer

AninitialcontrolPEDFwasperformedwithchromiumalone.Chromiumsolutionhaving

aconcentrationof25mg/Lwaspumpedintothefeedtankfilledwith300mLofdH 2O.

Thepermeationcurveofchromiumintothefiltrate isshowninFig11.Itisaplotof

concentrationofchromiuminthefiltrateversusthevolumeofpermeatecollectedinmL.

46 Samples of the filtrate were collected every 10 minutes until most of the chromium startedtoappearinthefiltrate.AsshowninFig.11,thecurveisslightlyasymptotic,the concentrationofchromiuminthefiltratereachesamaximumvalueof19mg/Landthen leveledoff.Itcanbeassumedthat1mgchromiumislosttothemembraneandthesetup duetononspecificbinding,andthatisnotsignificant.Mostlyallthechromiumthatwas addedtothesystem,20gm/LwassuccessfullyretrievedandthePEDFsetupincluding themembraneweresafeforanalysisofmetaluptakewithpolylysine.

Figure11.Permeationcurveof20mg/Lchromiumintheabsenceofanypolymerin aPEDFsystem.

4.4.2EffectofchromiumconcentrationonbindingusingPEDF

Figs.12,13,14showtheeffectofincreasingconcentrationofchromiumonbindingina

PEDF system. At the beginning, only αPLL solution was run through the TFF membranesinaclosedloop,withoutaddinganymetalsolution.Thiswasdoneforabout

15minutes,toeliminateanylowmolecularweightfractionsthatmaybepresentinthe

47 polymersolution.Afterthat,themetalsolutionfromthereservoirwasintroducedintothe feedtankviaaperistalticpump.Aconstantvolumewasmaintainedinthefeedtank.

Fig.12showsthepermeationcurveofchromiuminthefiltratewith2gm/L αPLLand

10mg/Lchromiumsolution.TheTMPwasmaintainedat7.5psi,andnochangetopHof thesolutionswasdone.

Figure12Permeationcurveof10mg/LchromiuminaPEDFsystemwith2gm/L ααα PLLinblue.Reddots–0gm/LPLL

48 Figure13Permeationcurveof20mg/LchromiuminaPEDFsystemwith2gm/L ααα PLLinblue.Reddots–0gm/L αPLL

Figure14.Permeationcurveof30mg/LchromiuminaPEDFsystemwith2gm/L αααPLLinblue.Reddots–0gm/L αPLL 49 Figs. 13 and 14 show the permeation curve of chromium into the filtrate for a concentrationofchromiumat20mg/Land30m/L.

ItisevidentformtheaboveplotsthatforthegivenconcentrationofPLL,2gm/L,the diafiltrationstepiseffectiveinremovingchromiumfromwateratlowconcentrations.

For10mg/Lchromiumconcentration,almost3.5Loffluidcouldbeprocessedwithonly

0.75mg/Lchromiumappearinginthefiltrate.For30mg/Lchromiumsolution,1.5Lof solutioncouldbeprocessedeffectivelybeforesignificantchromium(>5mg/L)started appearing in the permeate. One reason for this could be that as more of the polymer complexedwiththemetal,itseffectivesizedecreased,andasaresultthewholemetal polymer complex could be leaking through the membranes. A simple ninhydrin assay was performed to detect the presence of polylysine in the filtrate, and though some change in color was detected for the presence of PLL, the results were not very conclusive.

4.4.5ModelingofPEDFData

InmodelingthesorptiondataforPEDFsystem,onceagaintheLangmuirsorptionmodel wasused.InthecaseofPEDF,thekineticmodelforbiosorptionisgivenby

VdC =FCo–FC–dq XV dtdt Visthereactionvolume(L),Fistheinletflowrate(L/h),andXisthebiomass concentrationinsolution(g/L).Equation(4)andequation(7)canbecombinedand rearrangedasfollows

50 dC =(Co–C) dtτ[1+qmaxKsX ] (C+Ks) 2

τistheresidencetimeinthereactor(h),q max isthemaximumadsorptioncapacityofthe polymer(mg/g)andKsisthedissociationconstant(mg/L).Thevaluesofq max andKs

werealreadyknownformtheLangmuiradsorptionisotherm.Thisequation,integrated

withtheinitialconditions:t=0andC=0wasusedtopredicttheidealprocess performance.

Fig.15showsthepermeationcurveof20mg/Lchromium,alongwiththepredicted

curve.Asisevident,theobservedlevelofchromiuminthefiltrateismuchlessthanthat predictedbythesorptionmodel.Onepossibleexplanationforthisdiscrepancyisthe possibleformationofapolarizedgellayeronthemembranesurfacewhichobstructsthe

flowofchromiumintothefiltrate.However,thisneedstobefurtherinvestigated.

51 PEDF with 20 mg/L Chromium 20

18

16

14

12 ObservedCrinpermeate 10 0gm/LPLL mg/L 8 PredictedCrinpermeate

6

4

Concentrationofchromiuminpermeate 2

0 0 500 1000 1500 2000 2500 3000 VolumeofpermeatecollectedmL Figure15.Permeationcurveof20mg/LChromium,2mg/L αPLLshowing observedandtheoreticalvalues 4.5RheologicalStudies

The rheologicalpropertiesof αPLLchromiumcomplexwereanalyzedunderdifferent

stressconditions.First,theviscosityversusstressrelationshipwasdeterminedfor αPLL

toseeifitbehavedasshearthinningorshearthickening.Stress(0.75to1.5mPa)was

appliedto2gm/L αPLLwithouttheadditionofanymetal.Later,1mM,2mMand10

mMmetalsolutionwasaddedto2gm/L αPLLkeepingthetotalvolumeconstantand

thesamestresswasappliedtodeterminethechangesinviscositystressrelationship.

52 Rheologywith2gm/LPolyLLysine

9.00E+03

8.00E+03

7.00E+03

6.00E+03 0 mM Cr 5.00E+03 1 mM Cr 4.00E+03 2 mM Cr 10 mM Cr 3.00E+03

Viscosity(centipoise) 2.00E+03

1.00E+03

0.00E+00 0.00E+00 2.00E+03 4.00E+03 6.00E+03 8.00E+03 1.00E+04 1.20E+04 Stress(mPa)

Figure16.RheologicalpropertiesofPLLChromiumcomplex

Rheologywith2gm/LPolyLLysine

1.00E+04

1.00E+03

0 mM Cr 1 mM Cr 1.00E+02 2 mM Cr 10 mM Cr

1.00E+01 Viscosity(centipoise)

1.00E+00 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 Stress(mPa)

Figure17.Rheologicalpropertiesof αPLLChromiumcomplex(LogLogplot)

53 AsshowninFig.16, αPLLactsasashearthinningliquidwhenshearstressisapplied.

As stress isincreased, the viscosity drops quite rapidly. In the presence of metal, the viscositydropsfurther,decreasingwithadditionofmoremetal.Thiscanbeexplainedas thepolymercomplexeswithmetal,itcausesthepolymertodisentangle,andhencethe viscositygoesdown.Italsoisindicativeofthefactthatthebondingbetweenthemetal and the polymer is intermolecular as opposed to intramolecular. Intramolecular bonding would cause the polymer branches to come closer to form bonding with the metal,causingtheviscositytogoup.

54 5.CONCLUSION

αPolyLlysine can prove to be a good candidate for remediation of chromium.

Equilibrium adsorption studies showed good metal uptake ability (42.2 mg/gm) and

strongaffinityforchromateanionasevidentfromlowK Dvalue(1.2ug/mL).Fairlyhigh bindingwas alsoobservedinourPEDFsystem,where the observed chromium in the

filtrate was lower then that predicted. However thebehaviorofthepolymerathigher

metal concentrations needs to be studied further. If the polymer size reduces after

forming a complex with metal, then some new strategy needs to be devised for

effectivelyretainingthemetalpolymercomplexinaTFFsystem.Duetothehighcostof

the synthetic polymer, experiments such as effect of ionic strength, higher αPLL

concentration, temperature and other anions were not performed in this study. Those

experiments need to be performed in the future. Attention also needs to be paid to

effectivelydesorpthemetalfromthepolymer,andrecoveryofthepolymer.

55 REFERENCES

1. A.DemirandM.Asiroy.2007.BiologicalandchemicalremovalofCr(VI)from wastewater:Costandbenefitanalysis. Journal of Hazardous Materials .89,6370 6376.

2. BaranAyse,EvranBicak,SenayHamaratBaysal,SecilOnal.2006.Comparative studies on the adsorption of Cr(VI) ions on to various sorbents. Bioresource Technology .98,661665.

3. ComptonG.Richard,WelchM.ChristineandNekrassovaOlga.2005.Reduction ofhexavalentchromiumatsolidelectrodesinacidicmedia:reactionmechanism andanalyticalapplications. Talanta .65,7480

4. Clescerl, L., Greenburg, A.E., Eaton, A.E. 1985. Standards Methods for the Examination of Water and Wastewater, method 7196A .AmericanPublicHealth Association

5. Costa,M.,Klein,C.B.2006.Toxicityandcarcinogenicityofchromium compoundsinhumans. Crit. Rev. Toxicol .36(9),777778.

6. Dua. M, Singh. A, Sethunathan.N and Johri. A.K. 2002. Biotechnology and bioremediation: successes and limitations – a mini review. Appl Microbiol Biotechnol .59,143152. 7. Dzwolak,W.,Marszalek,E.P.2005.Zipperlikepropertiesof[poly(Llysine)+ poly(Lglutamicacid)]βpleatedmolecularselfassembly. Royal Society of Chemistry - Chem.Commun .55575559. 8. DionexTechnicalNote26.DeterminationofCr(VI)inwater,wastewaterand solidwasteextracts.http://www.dionex.com/enus/interest/environmental/water analysis/lp44305.html 9. Fitamo,D.,Itana,F.,Olsson,M.2007.TotalcontentsandsequentialExtractionof heavymetalsinsoilsirrigatedwithWastewater,Akakai,Ethiopia. Enviorn Manage .39,179193 10. Fourest,E.,Roux,J.C.1992.Heavymetalbiosorptionbyfungalmycelialby products:mechanismsandinfluenceofpH. Appl Microbiol Biotechnol 3:399– 403.

56 11. Goodwin,J.W.,Hughes,R.W.2000.Rheologyforchemists–anintroduction. RoyalSocietyofChemistry,UK. 12. Gu,JiD.,Cheung,K.H.2007.Mechanismofhexavalentchromiumdetoxification bymicroorganismsandbioremediationapplicationpotential:Areview. International Biodeterioration and Biodegradation .59,815. 13. Jarvinen,G.G.,Smith,F.S.,Robison,T.W.,Kraus,K.M.,Thompson,J.A.1999. Removalandrecoveryofmetalionsfromwastestreamsusingpolymerfiltration. ProceedingsoftheUnitedEngineeringFoundationConferenceonMetal SeparationTechnologiesBeyond2000:IntegratingNovelChemistryand Processing,June1319,1999,Oahu,Hawaii. 14. Kaminski,W.,Tomczak,E.,Jaros,K.2008.Interactionsofmetalionssorbedon chitosanbeads. Desalination .218,281286 15. Mark,SS.,Crusberg,T.C.,DaCuna,C.M.,DiIorio,A.A.2006.Aheavymetal biotrapforwastewaterremediationusingpolyγglutamicacid. Biotechnological progress .22,523531. 16. MilliporeTechnicalLibrary–Proteinconcentrationanddiafiltrationbytangential flowfiltration–anoverview.2006. 17. Mohan,D.,Pittman,U.C.Jr.Activatedcarbonsandlowcostadsorbentsfor remediationoftriandhexavalentchromiumfromwater.2006. Journal of hazardous Materials .B137,762811 18. Nagendran,R.,Selvam,A.,Joseph,K.,Chiemchaisri,C.2006. andrehabilitationofmunicipalsolidwastelandfillsanddumpsites:Abrief review. Waste Management .26,13571369. 19. Nishikawa,M.,Ogawa,K.2002.Distributionofmicrobesproducing antimicrobialεPolyLLysinepolymersinsoilmicrofloradeterminedbyanovel method. Applied and Environmental Microbiology .68,35753581. 20. Ouyang,J.,Hong,X.,Sha,L.,Zhu,H.,Chen,W.,Zhou,J.,Wu,Q.,Xu,Q., Ouyang,P.2006.ProductionofεpolyLlysinebynewlyisolatedKitasatospora sp.PL63. Biotechnology Journal .79,14591463. 21. Rivas,B.L.,Pereira,E.,Cid,R.,Geckeler,K.E.2005.Polyelectrolyteassisted removalofmetalionswithultrafiltration. Journal of Applied Polymer Science . 95,10911099

57 22. Shih,I.L.,Van,Y.T.,Shen,M.H.2004.Biomedicalapplicationsofchemically andmicrobiologicallysynthesizedpoly(glutamicacid)andpoly(lysine). Mini Reviews in Medicinal Chemistry .4,179188. 23. Shih,I.L.,Shen,M.H.,Van,Y.T.2006.Microbialsynthesisofpoly(εlysine)and itsvariousapplications. Bioresource Technology .97,11481159. 24. Singh,V.K.,Singh,K.P.,Mohan,D.2005.Statusofheavymetalsinwaterand bedsedimentsofriverGomti–AtributaryofGangariver,India. Enviornmental Monitoring and assessment .105,4367. 25. Takagashi,T.,Kuroki,N.,Sakai,H.,Shima,S.1985.Bindingofmetalionsbyε polyllysineandαpolyllysine. Journal of Polymer Science .23,245249. 26. Volchek,K.,Geckler,K.E.1996.Removalofhazardoussubstancesfromwater usingultrafiltrationinconjunctionwithsolublepolymers. Environmental Science and Technology .30,725734. 27. Volesky,B.,Niu,H.2001. International Biohydrometallurgy Symposium , Ciminelli,VST,etal.,ed.(Elsevier,Amsterdam),(inpress). 28. Volesky,B.,Holan,Z.R.1995.Biosorptionofheavymetals. Biotechnological progress .11,235250. 29. Volesky,B.,Vieira,H.S.F.R.2000.Biosorption:Asolutiontopollution? Reviewarticle. Internatl Microbiol .3,1724. 30. Wang,J.,Chen,C.2006.Biosorptionofheavymetalsby Saccharomyces cerevisiae :Areview. Biotechnology Advances .24,427451. 31. Yoshida,T.,Nagasawa,T.2003.εPolyllysine:microbialproduction, biodegradationandapplicationpotentialminireview.Appl.Microbiol Biotechnol.62,21–26.

58