KR0100942

KAERI/RR-2085/2000

Development of the Removal Technology for Toxic Heavy Ions by Surface-Modified Activated Carbon PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK 2000

2001. 01. 26.

uv

- 1 - o ofc

I.

II. ofl Ufl CH] ^17^1-71 ^^H -B-7]

3L711

III.

NaCl, NaNO3

- BET ^^

- 2 - all pH (2-10) ~0.4 g)

:f-*HHH 4

*)2)

iv. ^

(NaCl, NaOH, NaNO:i -Na

2.

NaOH 0.1N

3. pH 2-10^1 AC, OAC, 4 ]•%•*}<>?{

OAC ^ OAC-Na^l

OAC-Na OAC

- 3 - 4. at-g-7] AC, OAC, OAC-Na^) xfl

pH 3, 4, 5

^^ OAC-Na>OAC»AC 5. pH7> OAC-Na

XAD-16-TAR^l 6. pH 5

fe OAC^ll

V.

OAC-Na^l OAC-Na

JL7\S\ -$-7}

- 4 - SUMMARY

I. Project Title

Development of the Removal Technology for Ions by Surface-Modified Activated Carbon

II. Objective and Importance of the Project

Organic resins have been used to remove radionuclides such as uranium and ions in the radioactive liquid wastes generated from nuclear power plants or nuclear facilities. Organic resins, however, has some demerits such as radiation degradation and thermal instability. The development of an alternative inorganic adsorption material to the organic resins would eliminate these problems and greatly reduce the operation cost of process with a high throughput. This new material can be used to remove uranium ions at a very low concentration in underground water for the fulfillment of regulatory criteria. In this project, a surface modified activated carbon is manufactured by a simple and cheap technique - acid/alkali solution treatment of normal activated carbon - and is tested to see its adsorption efficiency. Activated carbon has been widely used as a final cleaning material at the industrial wastewater treatment process before discharge to the environment. If the adsorption efficiency of activated carbon to remove the toxic heavy is enhanced by the surface modification technique, the operation cost and secondary waste volume can be significantly reduced.

III. Scope and Contents of the Project

Purpose of this project is to evaluate the adsorption capacities of both radionuclides and toxic using double surface-modified activated carbon. Adsorbates are both uranium and cobalt ions as

- 5 - representative of radionuclides and also , and as toxic heavy metals in waste generated from industrial process. - First surface modification of activated carbon using nitric acid solution, and second surface modification with alkali solution(NaOH, NaCl, NaNO.3 solution) at various solution concentration. - Analysis of surface characteristics for modified-activated carbon by BET analysis, surface acidity and oxides measurements. Establishment of optimal condition for surface modification, based on adsorption efficiencies of uranium and cobalt. - Evaluation of adsorption efficiencies for both uranium, cobalt and toxic heavy metals under various experiment conditions, such as solution pH(2~10), initial concentration(12—50 ppm), carbon dosage(0.05~0.4 g) - Experiment to evaluate adsorption characteristics for the removal of uranium, cobalt and toxic heavy metals(single or multi-component) on three kinds of activated carbon in both batch reactor and fixed bed. - Comparison of the capacity factor(total treated waste volume/bed volume) using surface-modified activated carbon for the removal of toxic metals with that of the as-received activated carbon and commercial organic ion exchange resin, based on the results obtained from fixed bed runs.

IV. Results of Project Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated.

1. Physical and chemical properties of surface-modified activated carbons, which are included three kinds of activated carbons (AC : as-received activated carbon, OAC : single surface-modified carbon, OAC-Na : double surface-modified carbon), are evaluated through BET analysis, surface acidity and oxides measurements. 2. It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and

- 6 - NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt.

3. Variations in adsorption efficiencies of both radionuclides and toxic heavy metals on AC, OAC and OAONa were evaluated in wide pH ranges of 2 — 10. The adsorption capacity of both radionuclides and toxic heavy metals on OAC and OAC-Na is shown to be comparable to that of the AC in a low pH range.

4. Breakthrough behaviors of various metal ions in a column packed with three kinds of carbon were also characterized with respect to the variations of the influent pH and concentration. The adsorption capacity of the OAC-Na did stand a favorable comparison with that of AC and OAC.

5. Capacity factors of OAC-Na for the removal of various metal ions are superior to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is also comparable to that of XAD-16-TAR used as commercial ion exchanged resin.

V. Proposal for Applications

The price of activated carbon is about 3 thousand won/kg and is very low compared to that of organic ion exchange resin (about 0.1 million won/kg). Hence the use of OAC-Na material seems very economical in the treatment of wastewater even if the cost of surface modification is considered. The OAC-Na activated carbon would efficiently remove toxic heavy metals in industrial wastewater as well as radionuclides in radioactive liquid waste. And the treatment cost and secondary waste volume would be greatly reduced compared to those in the treatment process adopting costly organic ion exchange resins or as-received activated carbons. The surface modified activated carbon can be utilized to

- 7 - treat decontamination wastewater that is supposed to generate during the environment reclamation of uranium conversion facility at KAERI site.

- 8 - Table 1. Physical properties of various carbons by BET-N2 analysis 34

Table 2. Experimental conditions for double treatment of OAC 34

Table 3. Acidic surface oxides of modified activated carbon 35 Table 4. Experimental conditions for fixed bed runs 40

— 9 — Fig. 1. Structure of activated carbon • 20

Fig. 2. Surface oxides on the carbon surface 22

Fig. 3. Process diagram of metal industrial waste included chromium

compound 27

Fig. 4. Procedure for preparing the surface-modified activated carbon • • • 33

Fig. 5. Schematic diagram of a batch adsorber 38

Fig. 6. Schematic diagram for adsorption experiment in fixed bed 39 Fig. 7 Variation in adsorption efficiency of uranium and cobalt ion for various 2nd treated activated carbon [m/v -5(g/l), U=50ppm (pH=4.1), Cobalt=12ppm(pH=5.7)] 42

Fig. 8 Variation in adsorption efficiency of uranium ion for various 2nd treated activated carbon[m/v=1.25, 5(g/l), Co=50ppm] 43

Fig. 9 Variation in final pH after adsorption equilibrium of uranium and cobalt ion for various 2nd treated activated csrbon[m/v=5(g/l), U=50ppm(pH=4.1), Cobalt=12ppm(pH=5.7)] 44

Fig. 10 Variation in removal efficiency of uranium as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 50 ppm, m/v=1.25 46

Fig. 11 Variation in removal efficiency of cobalt as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 12 ppm, m/u=5 47

Fig. 12 Distribution of uranyl-hydroxyl complexes as a function of pH in pure water at 30 °C and total concentration of 10 ' mol// 49

Fig. 13 Fraction of cobalt ion species as a function of pH in pure water at 30°C and total concentration of 10 's mol// 50

- 10 - Fig. 14 Variation in removal efficiency of Pb as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 20 ppm, m/v=5 52

Fig. 15 Variation in removal efficiency of Cd as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 20 ppm, m/v=5 53

Fig. 16 Variation in removal efficiency of Cr as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 20 ppm, m/v=5 54

Fig. 17 Influence of adsorbent amount on uranium adsorption using various carbons at initial concentration of 100 ppm, pHo-3.1 56

Fig. 18 Effect of adsorbent dosage on Pb adsorption efficiency using various carbons at initial concentration of 20 ppm, pHo-3.1 57

Fig. 19 Effect of adsorbent dosage on Cd adsorption efficiency using various carbons at initial concentration of 20 ppm, pHo=2.7 58

Fig. 20 Effect of adsorbent dosage on Cr adsorption efficiency using various carbons at initial concentration of 20 ppm, pHo=2.75 59

Fig. 21 Effect of adsorbent dosage on Pb adsorption efficiency using various carbons at initial concentration of 90 ppm, pHo-4 60

Fig. 22 Effect of adsorbent dosage on Cd adsorption efficiency using various carbons at initial concentration of 90 ppm, pHo=4 61

Fig. 23 Effect of adsorbent dosage on Cr adsorption efficiency using various carbons at initial concentration of 96 ppm, pHo=4 62

Fig. 24 Uptake curves of uranium on OAC(pHo=3,4,5, Co=50 ppm) 64

Fig. 25 Uptake curves of uranium on Ac and OAC(pHo=3,4,5, Co-205 ppm) 65 Fig. 26 Variation of solution pH during batch adsorption of uranium on Ac and OAC (pHo=3,4,5, Co=50 ppm) • 66

Fig. 27 Uptake curves of cobalt on AC, OAC-Na and AW-500, 13X (pHo=5.7, Co=12 ppm) 67

- 11 - Fig. 28 Uptake curves of cobalt on AC, OAC-Na and AW-500, 13X (pHo=5.7, Co=50 ppm) 68

Fig. 29 Influence of pH on breakthrough curves of uranium adsorption on various carbons, AC, OAC and OAC-Na, at input concentration of 50 ppm 70

Fig. 30 pH variation of effluent solution during uranium adsorption on various carbons, AC, OAC and OAC-Na, at input concentration of 50 ppm 71

Fig. 31 Influence of pH on breakthrough curves of cobalt adsorption on various carbons, AC, OAC and OAC-Na, at input concentration of 12 ppm 72

Fig. 32 pH variation of effluent solution during cobalt adsorption on various carbons, AC, OAC and OAC-Na, at input concentration of 12 ppm 73

Fig. 33 Breakthrough curves of uranium and cobalt ions adsorption on OAC in binary adsorption system [Input cone, of each ions : U(55ppm), Cobalt(12ppm), pHi=3\ 75

Fig. 34 Breakthrough curves of uranium and cobalt ions adsorption on OAC in binary adsorption system [Input cone, of each ion : U(55ppm), Cobalt(12ppm), pHi=5] 76

Fig. 35 Breakthrough curves of Pb, Cd and Cr ions adsorption on AC, OAC and OAC-Na in ternary adsorption system [Input cone, of each ion : Pb(44ppm), Cd(44.5ppm), Cr(4.1ppm), pHi=4.9] 78

Fig. 36 Breakthrough curves of Pb, Cd and Cr ions adsorption on OAC and OAC-Na in ternary adsorption system [Input cone, of each ion : Pb(44ppm), Cd(44.5ppm), Cr(4.1ppm), pHi=3.2] 79

Fig. 37 Variation of capacity factor for uranium adsorption on AC, OAC and OAC-Na [Bed volume=7.8 ml, pHi=3, 5] 81

Fig. 38 Variation of capacity factor for cobalt adsorption on AC, OAC and OAC-Na [Bed volume=7.8 ml, pHi=3, 5] 82

Fig. 39 Variation of capacity factor for Pb, Cd and Cr adsorption on AC, OAC and OAC-Na [Bed volume=7.8 ml, pHi=4.9] -83

- 12 - Fig. 40 Variation of capacity factor for Pb, Cd and Cr adsorption on AC, OAC and OAC-Na [Bed volume=7.8 ml, pHi=3.2] 84

- 13 - TABLE OF CONTENTS

Chapter 1. Introduction 16

Chapter 2. Adsorption technology of radionuclides and toxic heavy metals in liquid waste 19 Section 1. Characteristics of activated carbon and Surface modification 19 Section 2. Adsorption of uranium and cobalt in radioactive liquid waste 24 Section 3. Treatment technology of toxic heavy metals in industrial waste 25 1. Waste treatment technologies in metal industry 26 2. Treatment technology of heavy metal using electric methods and photocatalyst 28 3. Advanced treatment technology by activated carbon 30

Chapter 3. Scopes and its results of project-- 32 Section 1. Experimental 32 Section 2. Results and discussions 40 1. Comparison of uranium and cobalt removal capacities with surface modification conditions 40 2. Adsorption efficiencies of surface-modified activated carbon 45 3. Adsorption of uranium and cobalt in batch reactor 63 4. Adsorption of uranium, cobalt and toxic heavy metals in fixed bed 69 5. Evaluation of performance capacity for the removal of radionuclides and toxic heavy metals by surface-modified activated carbon 77

Chapter 4. Conclusions and proposal for applications 86 References 88

- 14 - *ll 1 # -M § 16

^1 2 'S* ^1 ^ ^ H<^"/*'}'!^ ^n^ ^ "TT"*11 if^T1 •§^^1"7|"SL 19 ^1 1 ^ ^^it -^-*§ ^ S^7fl-^ 19

3. %A%Q °l-§- 3.5.^e) 7l# 30

^1 3 ^v

*1) 1 ^ ^ ^ 32

1. ^MlS-l ^-^ 32

^. ^ Q O I 17H O Id • i3O

*1] 2 ^ ^4 ^ 3.% 40

0 7>. pH ^S)- )! 41- -T-5}^-, 3tl ^-^Al- 45

uh pH ^Sj-°ll l$^ n«", ?V—•§", 3-#^ ^F^3.-§r 51

cf. ^f-2)-^] °cJ ^Sl-0!! 4-c- ^^("Sl^: 55

3. S1-S--6] «V-S-7]O)]A^ -feJ-H-, a^E. *-av 53

xjl 4 ^T- 7^^-15.1 ^sl- ^-S-y^'jV 86

Ai-jn.Jg-^ 88

- 15 - 1 S- M

014. ^ X] 100 ppb#

-§- I- 10 ppbS ^

^-^ 37]]

, 9-10].

- 16 - A]

7> &4DL3-19].

oil- ^ 71

21-29],

31].

[31].

^ o]^o_sL ^71 *H[32]

- 17 - NaCl, NaNO3 BET -

PH,

fe ^ °X<>]X\ «-

- 18 - i- £

^fl 1 l.

f Activated Carbon)^ v\4 carbon)°H, ^r &±*\, £^3(hydrophobic)

(crystalline) i^f 7Httl(

4. il^ °1 €• -f 9X7] «H^-

21,39].

- 19 - Fig. 1. Structure of activated carbon.

- 20 - 7M]

carbonyl, carboxyl, lactone, phenol H^-p} ^-S. AS^s\^\- OL e, pyrone

oxidation)^ ^

Sj-^CBohem ^), ^^Sj-*]-^, ^^^ ^-5] S|-tv^ ^4 IR, XPS ^^1 7] 7}

, Fig. 2°fl i^lfe «V5+ g°] I) strong carboxylic ^.f-, II) weak carboxylic 3.f-(lactone nfIS $*fl) III) phenolic nf- ^ IV) carbonyl aft % ^ &4[21]. ^^*>(surface charge) 7^^ -%-^$\ pH^il 4^} TT carboxylate nf-si ^*j=^.S. -g-?i§Knegative charge)* ^ Tfl £|jl, pH7f ^-^^^^ ^tAiAJ ^:¥7]7l- protonationS] 6] oj=^_

pHZ|K (point of zero chargeH S^^f^ll 3

[40-41].

2. *^

( salt), 2R!;SHr:£, l^i-§-^ ^-^ ^-*B^1?14. °1 ^^ #^ It

- 21 - COOH Ib COOH

la

IV

Open type Lacton type

Fig. 2. Surface oxides on the carbon surface.

- 22 - £^5] <£^-S}- o^ 7].^ 71^1 ^ «»fl ^*|5]J1 5l4[16,22,26-29].

25-30% ^JE7> 3-f ^fl^^r CO2

fiber)^ ^1

] -g-g-

> ^^^^^(methyl mercaptan) ^-s] -B-^^ 7l x

CO2 ^^r ^ ^

13N ^

(co-adsorptionH [29].

- 23 - OH- ^71*1-71

14

(corrosion Co-58, 60 s^°l S. sfl

[1, 45].

xfl 7-] *]-

EL7) ufl^o)!

7-1

- 24 - ^71-61 71

pH,

[16].

, pH -fe EDTA

[51]. ae]q-

# 7)

^171

- 25 - -55].

fe- i^S](Ca(OH)2), a, FeSOJ^^F ^^

fe pHt-

Fig. ^] pH

- 26 - g*

I r s a si an

XHOH

Fig. 3. Process diagram of metal industrial wastes including chronium compound. 2. ^7

^ 71-^-g-

27} %

1-§•*!: ^li

^- TiO2 ^A% *l-g-*H ^r^^-^^^S. ^3}A]-7) ¥r -^# ^1171 §1-31, 4^ oj^H ^l^^^l ^^# «]

tb TiO2 , 1-^1 ?i7l^-a])-i: ^isfl A> : Anode, -g-^^- : Cathode]£.

CO2*, Ni-']-|- |-(-)^d^AS ?>^* ^7H^l7l £]§H M ^H]^°lS.i4 AgCl, NiCl ^^1

-6-S--^^ ^1171 si^1 ^fe c-fl, oji, ^x].Aj SA}OII oj§j-o} ^7]^. OH

- 28 - i OH e §-§l]EH f-XJ;^. 371-SH, nfl ^71

ppm

, PH7l- 4.501 37} Hf

.°.S 671- EL 514. 67} EL 67f EL-W^r 37}

$14.

- 29 - 3. sme\

, SS,

-71 el

«• ^i ^ ^21*1-71

^4. ^ -r^l CODMn

xV Bj: O. £ Jf

014.

4(Biological Activated Carbon, ^^5.S BACH Slc>. -t« -"f -? 1 o]4.

BOD, CODMn, ii f^efl^

- 30 - - 31 - S!

¥# 71 ^ai

fe 1-3]-

I.

8~ 16 mesh 3

fe Fig. 7N 6.0 not:

ale-) A 7 V A v ^"l, A a ^- ^ Table H ^1^1^ 44 E 4. °l o 4 BET-N2 (Micromeritics ASAP Table 2^1 ^^-5^4. S^^ ilfe 44

AC(Activated

- 32 - 8-16 mesh

: 7N V/m=6 ml/g-AC xH£|S£ : 80°C xH £1 A| Zf : 10AI2I-

2X1-

• : 1N NaOH/1N NaCI g^e 1:1S Si 1OUH) : 30°C XIBIAIZt :

Fig. 4. Procedure for preparing the surface-modified activated carbon.

- 33 - Carbon), #-§-^.2. :•& OAC(Oxidized AC), °^A -§- OAC-Na(NaOH-NaCl Treatment of OAC)

Table 1. Physical properties of various carbon by BET-N2 analysis OAC-Na Physical properties AC OAC (NaOH+NaCl 0.1N) Particle density, kg/m:i 700 685 655 Total pore volume, m'/kg 7.4X10" 7.1X10" 6.5X10" Micropore volume, m:!/kg 6.4X10" 5.9X10" 5.3x10" Average pore diameter, A 19.3 20.8 21.8 BET surface area, nrVkg 1.53X10" 1.36X10" 1.15X10" Micropore area, rrrVkg 1.46X1011 1.3X10" 1.08x10"

Table 2. Experimental conditions for double treatment of OAC

Samples Solution concentration at 2nd surface treatment A NaOH - 0.2 N B NaOH - 0.4N C NaCl - 0.2 N D NaCl - 0.4 N E NaOH+NaCl - 0.1 N F NaOH+NaCl - 0.2 N G NaOH+NaCl - 0.3 N H NaNOs - 0.2 N

I NaNO3 - 0.4 N

J NaCl+NaNO3 - 0.1 N

K NaCl+NaNO3 - 0.2 N

L NaCl+NaNO3 - 0.3 N

pHzpc (pH at point of zero charge) . AC, OAC r^ OAC-Na

NaC104

- 34 - sH 0.1M HC1 ^ O.1M NaOH -g-^-g- $q7)(Zetaplus, BIC)# °]-g-3M pHzpcfe AC^ ^-f 7.5, OACfe 4.5 OAC-Nafe 5.

Surface Acidity

l-(^^7l, surface oxide)^ Boehm 0.1N NaHCOs

(pKa=6.37), Na2CO3 (pKa=10.25), NaOH(pKa= 15.47) ^ A. T&A ^!H *^£H $ife *^#* ^7^§>7l ^§H 150° 51-5.^, 250ml ^s^a-oll ?A^% %^^a A]S. lg ^-g- ^#31 purging^ ^ ^7]^ -g-^fl 100 mil- ^7f§f^A^, $r±.$t ^^

0.1 N HC1 -§-«l|^r 4 Table 3 acidity)^ 3.7]} ^-^, carboxyl4 phenolic hydroxyl 3- %A3Qz} «] fe- OAC^l

Table 3. Acidic surface oxides of modified activated carbon I II III IV Total acidity Carbons (meq/g) (meq/g) (meq/pf) (meq/g) (meq/g) AC 0.031 0.01 0.335 0.058 0.434 OAC 0.705 0.213 2.148 0.183 3.249 OAC-Na 0.693 0.205 2.016 0.162 2.167

- 35 - £-&}£ Marcenko7l- Arenazo IIIS^ ,1=655 nm 3}-*HH UV-VIS £ (Spectronic 1201, Milton Roy)!- *>-§-*} 8-2. *l ^5 ppm*M ^

(Atomic Absorption Spectrophotometer, Moel : Perkin Elmer 5100 PC) ^-^-711- A}-§-sH ^•^Sl-^aL, 4^^°^ ^-fife ICP-AES (Model : JOBIN-YVON JY50)7]7l# A>-g-«H z]- ^H.O]

2.

CoCl2-

6H2O A]et^. f^^^ofl -g-sflAl^ s^§l-5ijoc]

^•f TT Pb(NO3)2l CdCl2 • 2.5H2O, C1CI3 • 6H2O ^^ li €• ^^-l-D l^lfe tl^l-fe- -§-°J!sl pH

-g-ojjoj ^7] pHfe HC1 4 NaOH -g-^-ir 4-g-sH , pH ^5> ^^fe 2.5 ~ }

-;i M ~ 4.6xiO":! M ^^]Si4 Z]- -g-ojlo,

0.45//m ^Ji 51 ^SHI "1*1 fe ^^^

o-^l) pH -^^71 (Orion Model 920A)!- ^>-8-«>°i ^^-^^^ A -g-^s]

Adsorpton Efficiency{%)=-^~

- 36 - 4-g-

m Co(mg/1)

Fig. _Eo] AW-500, 13X ^^, 1/16"

500 30"CS)

0.01m, 7^^1 0.3 m^l ^ Fig.

^ ^-6]- )^ 712.

(glass bead)!- plug flow7]- ^.^ 2

- 37 - | Motor! Opening ~ Cap

Water ::- ::.:— Outletr.:! -

Baffle"

i i! Water _L Outlet

180 Material: Aery I

Fig. 5. Schematic diagram of batch adsorber.

- 38 - flow meter water -Q buffer packed column waste solution tank

_ waste glass solution Micro- bead \ metering pump adsorbent

water water bath

glass J}m test tube bead

Fraction Collector

Fig. 6. Schematic diagram for adsorption experiment in fixed bed.

- 39 - ^ Fraction collector* *}•%• pH °]-§-*M 30r «^# Table 4°1|

Table 4. Experimental conditions for fixed bed runs

Variables Units Conditions Bed length m 0.09 ~0.1 Bed diameter m 1.04 xio:i Voidage - 0.48 Packing density kg/rri 400(AC), 430(OAC-Na) Flow rate ml/min 2.0 Influent solution pH - 3-5 ©U(50), Co(12, 50) Input solution cone. ppm ©U/Co°l^-§- : 50/12 ©Pb/Cd/Cr -y-^: 44/44.5/4

all 2 A

l. m *\)7] Hi 51

EDTA ^

. ol-A-1 oj^-f} Vi\S>\

- 40 - 3X7}

(Table 1 v f 5}^ ^ 3^-M -§-°flS] ^£1- 4^ 50 mg//(£7| PH=4.1), 12

Fig. 7ofl £^*}-^i=f. Fig. 8 Fig. 7^1 W^l- ^ ]^A] NaOH -§-^-1: 30.

|l NaOH , 0 NaN0:i ^^-S- -)], NaCl4 NaNQ, *^-§-^-i: 4-g-fb ^°ilfe 7^^] 100%°fl 3. W. ^7}X\ NaOH

Fig. 9^1 fe- 4^4711 44\i4. # NaCl^l- NaNQ,

¥- -g-^jsl PH7> I- NaOH -5-^-g-

O.lN-i: 4-g-fV ^^-fe- PH7|- 4 ; pH7l-

NaOH ^t-§-^ 0.1N ^ "^ -S-

- 41 - OQ Adsorption Percent, %

en o o o G o' < II 3 03 en 03" o r-t- & io n t3 1 < 5' o' II 03 d CL M W CO O

p. tio : H •o (—^ '-! 3 CD cr CD EL 03 o ffic i

CD Ad s II >—i a o CO ict i TD CD rb e o "O X O 3 < 13 •o" 03 r^ o CO X CD II CL en cra n n l__J

03 iu m n EI o c ]uoq . 3 03 III <. 3 03 110 El: 0.2 g •: 0.05 g

100 -

90 - c CD O CD 80 - O

'•*-> o. o CO

70 -

60 -

50 D E F G H I K L OAC Type of Adsorbents

Fig. 8. Variation in adsorption efficiency of uranium ion for various 2nd treated activated carbon[m/v=1.25, 5(g/l), Co=50ppm].

- 43 - 12 HUranium(pHo=4.12) • Cobalt(pHo=5.7) 10 -

a. 8 - c o

o CO 6 - E Z3

ZJ D" LU 4 -

2 -

D E F G H I L OAC Type of Adsorbents

Fig. 9. Variation in final pH after adsorption equilibrium of uranium and cobalt ion for various 2nd treated activated carbon[m/v=5(g/l), U=50ppm(pH=4.1), Cobalt=12ppm (pH= 5.7)1

- 44 - 2.

7\. PH

pH 2~10^ V^ ^^H-H AC, OAC ^ OAC-NaSl wife 1.25 ~ 5^1

50 mg/7, -g-^^1 S7l PH 2~ 10 ^^

^. "PH-Adsorption Edge" 5.3.S. «fl^«>fe- o §1 °otoi-g- ^#

:, OAC Sfe OAC-Nafe pH 3 Jfe^l ^^ HM ^*fl^?l pH ^^i^-i ^

JS.4 asH'?] ^^.s. 4 Fig. 11^ AC, OAC ^ OAC-Na 4 ^f-^1 ^^It

12 mg//, -g-^3-1 S7l PH 2-10 ^^Hl^i *J^§ pH ^51-1- £^1?V ^34014. .

r OAC ^ OAC-Na^l pHabr S^ 3

^-f pHahr ^t-&

OAC-Na ^ 0AC7f pH ^^ol SI4.

«]:-g-l-*^r S^ ^711 ^"t(polymerization)°1 ^4[56-58]. 4^}^ pH °J^H1 it]-e>^ slcfl Ml 7fxl ^Eflo] ^sm -f^^ ^^ ^ UO.2*, UO:.(OH)" 2 (UO-_.)2(OH)2 - dimer, (UO2):1(OH)3* trimer7l-

- 45 - 01 23456789 10 11 Equilibrium pH

Fig. 10. Variation in removal efficiency of uranium as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 50 ppm, m/v-125.

- 46 - 100

90 -

80 -

— 70 .

60 - nc y 'o £ 50 - LU

va l 40 - o E 30 -

20 -

10 -

0 - 5 6 7 Equilibrium pH

Fig. 11. Variation in removal efficiency of cobalt as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 12 ppm, m/v=5.

- 47 - pH OJ^MHTT -§-°l^

(Fig. 12 %Si). S^-E. o]£.o] 73-^ Fi Co(OH)Vl-

, 59-60], AC^ pHp^c fe S^xi #^€ «)-^ %v°l ^ 7.5 OAC-Nafe 4.5, (amphoteric)^ ^^r 7>x]jz. ^^. S1?!£ positive chargel- 2}7\] E|JI -g-^fil pHfe ai3^-S.-?-E:) hydroxyl

JL Table 3 ¥7]71- #7] n&°)) -g-^fil pH» ^-4IA]-7]^ ^ | ^JI ^] fl^] deprotonation

deprotonation^l sS\^

¥7171- ^^^-S- ^^S.^^: ^7}t}7]} 5)

+ + a(R-COO ~H ) «• ( R-COO~)a +aH (1)

2 + a{R-COO ")-hM2+ ~ ( R-COO~)M (2) + 2+ + b(R-COO ~H ) + ^r2+ « ( R-COQ-)bM + bH (3)

OAC

pH7l-

£$ OAC-Na^l Tj^-fe OAC^ll «]«H ^

- 48 - (UO2)3(OH)7- 90. / \ (UO2)(OH)3- / \ \ \ 80- 2+ uo2 \ 7 \ ' g 70-

a + o (UO2)3(OH)5 ! f \ 1 1 ; 60- crl (UO2)4(OH)/ | \: •a \ 50- dissolv e

40. \ lio n o l £) / \i / 1 :' 30-

Disl i (UOLJMOH)/* \ 20. / I \ \ / W \ UOjOHT / 10- Nr \\ / ii7K \\ J k i 0. A< A 0 12 3 4 5 6 7 9 10 II 12 13 14 pll

Fig. 12. Distribution of uranyl-hydroxyl complexes as a function of pH in pure water at 30 °C and total concentration of 10"4 mol/7.

- 49 - 0.0 9 10 11 12 13 14

Fig. 13. Fraction of cobalt ion species as a function of pH in pure water at 30 °C and total concentration of 10"" mol/7.

- 50 - pH

o^ ^ f^s] ^ el oil 3-# ^-§-§1-7]

Fig. 14-16^ >d-, ^>^^-, 3.f- ^°a^^^l ^£7> 20ppm, -g-^^l S7l pH ^tb 5J^ PH ^

v^ pH ^^oi]A-1 ^ , OAC^f OAC-Na^] *2}-£^^ 7

^s|]^^ pH °J^^- ^S 5~6 "

pH °J^°l]Ai f^ifo] ^JL pH7f ^ =L# 37}-

bichromate(HCrO4

Cx0+H20+HCr0; <& Cx0HCr0$ + 2OH~ (4)

CXO2 +H2O+HCrO; ^ Cx02HCr0£+2OH~ (5)

7l?l-5fir ^^.S. sfl^slJl $Ife ell, ^ HCrO4"?l ^14 ^r711 (electron donor)7}- ^-g--a|A (electron acceptor)?! H'aj- <+-«S7l

- 51 - 100 -

80 -

o c o£ 60 - a> "to o E 40 - CD

20 -

4 5 6 7 10 Equilibrium pH

Fig. 14. Variation in removal efficiency of Pb as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 20 ppm, m/v-5.

- 52 - 100 -

80 -

o •cn 60 -

O

CD 40 - DC

20 -

2 3 4 5 6 7 8 Equilibrium pH

Fig. 15. Variation in removal efficiency of Cd as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 20 ppm, m/v-5.

- 53 - 100 - A A

80 - O I CD 60 - 'o it A CD

o CD 40 -

20 - A AC O OAC OAC-Na n -I 1 *—1 4 5 6 7 10 Equilibrium pH

Fig. 16. Variation in removal efficiency of Cr as a function of equilibrium pH by various surface-modified activated carbons at initial concentration of 20 ppm, m/v=5.

- 54 - $14-

3 pH °§

Fig. 17-& -fsf^- TfH lOOppm, -g-°J|^ s7l PH 3, 4-g- ^-3171- 40ml°J - 0AC4 OAC-Na^l 4-g- ^(carbon dosage) £sH 4^

l iLfe 44 ^^ OACi a OAC-Nal-

Fig. 18 ~ 20^ 4, 4H#, 5Lf-ol£ %-^7\ 20 ppm, -§-°-1 *f-3] 40ml, oj|o] &7i pH 2.7 ~ 4 ^^1^1 8 31H l >1 ^4(0.05 g ~ 0.4 gH 4* 100% ^^-Sl-i-i- °i7l $$ 0AC4 OAC-NaS-1 4-g-^^l 4°lfe 4 4«11 ^ts 44id4. Fig. 21

90 ppm^lJL -g-^s] 27] pH7l- 4

xl -S-45^14 Pb, Cd# ^-4^1 ^ 7J^ OAC-Na #^4 0.1 g 7e!-foils Jlr4s.^oi T]6\ 100% 4^14514. n&m s# ai OAC-Na* 4 0.4 g ^i 4-§-*H4 *4M-§r 100% ^i£

- 55 - o c tu 'g ij=

OAC(pHo=3) o- OACNa(pHo=3)

0.05 0.1 0.15 0.2 0.25 0.3 Adsorbent amount(g)

Fig. 17. Influence of adsorbent amount on uranium adsorption using various carbons at initial concentration of 100 ppm, pHo-3.

- 56 - 100 -

>> o 0) 'o sta=> 7c o £ IT

0.1 0.2 0.3 0.4 0.5 Carbon weight (g)

Fig. 18. Effect of adsorbent dosage on Pb adsorption efficiency using various carbons at initial concentration of 20 ppm, pHo=3.1.

- 57 - 100 -

80 -

1 •-S o1-

'%g 60 - tfc: a) "ro o E 40 - a:

20 -

0.0 0.1 0.2 0.3 Carbon weight (g)

Fig. 19. Effect of adsorbent dosage on Cd adsorption efficiency using various carbons at initial concentration of 20 ppm, pHo=2.7.

- 58 - 100 -

>, o c (D O Sj= CD "m o E DC

0 0.2 0.3 Carbon weight (g)

Fig. 20. Effect of adsorbent dosage on Cr adsorption efficiency using various carbons at initial concentration of 20 ppm, pHo=2.75.

- 59 - 100 -

0.1 0.2 0.3 0.4 0.5 Carbon weight (g)

Fig. 21. Effect of adsorbent dosage on Pb adsorption efficiency using various carbons at initial concentration of 90 ppm, pHo=4.

- 60 - o c (D o it

0.1 0.2 0.3 0.4 0.5 Carbon weight (g)

Fig. 22. Effect of adsorbent dosage on Cd adsorption efficiency using various carbons at initial concentration of 90 ppm, pHo=4.

- 61 - 100 -

0.1 0.2 0.3 0.4 0.5 Carbon weight (g)

Fig. 23. Effect of adsorbent dosage on Cr adsorption efficiency using various carbons at initial concentration of 96 ppm, pHo=4.

- 62 - 3. 3^ «];-§-7HH

X|71 fe 3], ^^i bulk solutionAS.-^E.-l 3}-^- #-3^1 ^(external mass transfer), 7] •§• Lfl-T-°flAi3.1 ^-^(internal diffusion), -iX| i1-^1-0! cHcH4fe ^ T $14. 3E.tb ifl^ ^^r^Tflfe a. 7fl 7]i?-:iKHpore diffusion) (surace difusion)S. ^i

OAC ^ OAONa

Fig. 24fe -f3^ ^£ 50 ppm, S7l -g-^| PH 3~5, m/v=2.5 g/Z 4^ -8-^ifl -fei-^ *£. ^^* £^t> ^4O1^, Fig, 25 200 ppm°d 3-¥-°]tK

. pig. 26^ Fig. 24^1 X|^l€ ^^a^°fl^ OAC

3:71 i pHfe ^^«1 ^^Sl41 °i^ ^)

[62-66]. Fig. 27£• Xl-i-e)-«>lS. n^.°d AW-500, 13X4 OAC ^ AC* °l-g-tt ppm, pH 5.7, m/v=2.5 g/7 i

. Fig. 28^ a^E. ol^o} 2-7] ifjE7). 50 ppmo] ^4.o| ^j^ ell, Fig. 27^1 14^f^ 4^^1 OAC-Nafe 13XS)- £2H§^°1 7]fi] -^ A v AW-500 ii4fe- 44; ^°l •i^^^: °s ^ &&4. °lfe OAC-Na

4 7-1S] ^^^7-14 ^?> ^71 OAC-NaS-1 ^

- 63 - I • pHo=3 0.9 1 A pHo=4 • pHo=5 r.&\ (nH^-3) 0 8 .- -. Cal(pHo=4) \J.\J • Cal.(pHo=5) O «V O 0.7 . d r, \ 8 0.6 . T V \ E 0.5 - 1 \'\ \ to 0.4 . le s 5io n 0.3 . \ ••. £ b X "A 0.2 . \ •-••' A "*•-.-. A A 0.1 . t,^ ^. •- .. ^

0.0 . 0 25 50 75 100 125 150 175 200 225 250 Time(min)

Fig. 24. Uptake curves of uranium on OAC(pHo=3,4,5, Co-50 ppm).

- 64 - A pHo=4(AC) • pHo=3 I A pHo=4 ! I • pHo=5 0 9 j pHo=4 \J,\J J DHO=3 Cal pHo=4 o o 0.8. Cal. pHo=5 o. ft.^^<-^ ^-^^—^—^_ 0.7. nc . 8 1 0.6. E CO zz 0.5.

0.4.

sionles s V-A^

^^ • "•----.

0.1 .

0 . 100 200 300 400 500 600 700 Time(min)

Fig. 25. Uptake curves of uranium on Ac and OAC(pHo=3,4,5, Co=205 ppm).

- 65 - 6.0 • pHo=3 A pHo=4 • pHo=5

5.0

4.0 re ex c o A A A A A A o AA CO 3.0 • •

2.0 .

1.0 0 25 50 75 100 125 150 175 200 225 250 Time(min)

Fig. 26. Variation of solution pH during batch adsorption of uranium on Ac and OAC (pHo=3,4,5, Co=50 ppm).

- 66 - 50 100 150 200 Time(min.)

Fig. 27. Uptake curves of cobalt on AC, OAC-Na and AW-500, 13X (pHo=5.7, Co=12 ppm).

- 67 - 1.0 - yp • • 0.9 - • °o A 0.8 - o a. • A 0.7 - O 6 A 0.6 - • O o A o 0.5 - o O 0.4 -

0.3 -

o13X • 0.2 - • AW500 ASMAC 0.1 - • AC

0.0 - 50 100 150 200 Time(min.)

Fig. 28. Uptake curves of cobalt on AC, OAONa and AW-500, 13X (pHo=5.7, Co=50 ppm).

- 68 - 444

4.

-§-§-£1

3~ 5 ^^^lJi -fe]-^- ^£7> 50 ppm ^ ^-f AC, OAC, OAC-Na #^f.H] 5]$ -f^^ 5f^-^^* ^^A^ oj ^1^1*1-^4. ACi S]«t -T-5}^- ^-^^^ OAC, OAC~Na°fl «1 31-31-^^ofl^S. nfl^ -Vof 4^7]] 445U Sitf. OAC

(tailing)^] «iH#4. ^ pH7|- # dimer, trimer ^Hfl j &4. °1-i:^ 0AC4 OAC-Na 2) pH7l- 3*a Tj-fc]]^ sf

P ^ OAC-Na %^Q2] c] £3H°11: Ji^ ^5i4. Fig. 30^: ^1 ^--^1 Ji^*

°fl 4^ -^-#-§-^2] PH ^S}-!: Ji^^ji 014. OAC-Na

OAC^l Tj^-sf PH ^s> ^^o] HTII 4^7fl 44^^-^, AC2-1 PH

Fig. 31^ S^E. ^E7|- 12 4. SM ^i^-^ 4-4^- 5^ 7^-f OAC-Na . Fig.

- 69 - o

c o O

o 5

0 1000 2000 3000 4000 5000 6000 Time(min)

Fig. 29. Influence of pH on breakthrough curves of uranium adsorption on various carbons, AC, OAC and OAC-Na, at input concentration of 50 ppm.

- 70 - 7.0 n pH=3(0AC) A pH=4(0AC) 6.5 o pH=5(0AC) -A- pH=3(AC) -•- pH=3(0AC-Na)

2.0 1000 2000 3000 4000 5000 6000 Time(min)

Fig. 30. pH variation of effluent solution during uranium adsorption on various carbons, AC, OAC and OAC-Na, at input concentration of 50 ppm.

- 71 - 1.0

0.9 . / A 0.8 . sP

0.7 . CP 8 CD o 6 o § 0.6 . o nj •§ 0.5 . o O W o to Q) A 0.4 A 'in O a O § 0.3 .

• pH=3(0AC) A pH=4(0AC) o pH=5(OAC) a pH=3(0AC-Na a pH=5(0AC-Na A pH=5(AC)

500 1000 1500 2000 2500 3000 3500 Time(min)

Fig. 31. Influence of pH on breakthrough curves of cobalt adsorption on various carbons, AC, OAC and OAONa, at input concentration of 12 ppm.

- 72 - 8.00

o pH=5(OAC) 7.50 . ApH=4(OAC) • pH=3(0AC) 7.00 m pH=5(OAC-Na)

6.50 .

6.00 - X Q. 5.50 .

3 "o 5.00 . CO | 4.50 . 3= HI

3.00 . T&n-n P D CCO D D P D D D n ° n D ° ° ° n ° ° D D D D °

2.50 .

2.00 500 1000 1500 2000 Time(min)

Fig. 32. pH variation of effluent solution during cobalt adsorption on various carbons, AC, OAC and OAC-Na, at input concentration of 12 ppm

- 73 - pH

tj]#

Fig. 33^ ^og^£^ -fe]-^ ^£ 55ppm, 3tl ^£ 12.4 fe 2.1 xiO"4 mol/lS. %-<£&) &°A&\ pH7> 3°^ o }- ^46|B}; Fig. 34fe ^ d-g-^s1 pH7f

^(displacement)QW ^^r excess curve7>

fil Jg-f si-^^-iH excess curve7|- M-Efidcf. °1-^:Si pH7]- 591 ^-foflfe 2tl °1-&^1 excess curve7}- §i<>l^fe cfl, o] $#.£ 4^-4 ^o] ^^ m-

-t Sit)-. PH 5°J -§-°J|^-H ^^ ^rSl-# ^^-^ pH 3 ^^fe ^A 4

v] ^Tfl si4.

excess curve7}- &oH>D £14.

4

o] -

- 74 - 1.8 • Cobalt « Uranium 1.6 . aa a o 1.4 -I a a O a O, a ~tT 1.2 -. o a O • • 1.0 . l-tlrj Q) a LU • V) 0.8 . w • a) .2 0.6 . • c y rS 0.4 . a Q • • • • 0.2 .

0.0 10 20 30 40 50 60 Time(hr)

Fig. 33. Breakthrough curves of uranium and cobalt ions adsorption on OAC in binary adsorption system [Input cone, of each ions : U(55ppm), Cobalti12ppm)', pHi=3l

- 75 - o O O d c o O

0)

LLJ CO CO _

20 30 40 50 60 70 Time(hr)

Fig. 34. Breakthrough curves of uranium and cobalt ions adsorption on OAC in binary adsorption system [Input cone, of each ion : U(55ppm), Cobalti12ppm)', pHi=5].

- 76 - 5-7 ^$|# ^] pHl- 4 A 44 ppm, 7>^# 44.5 ppm, f 4.1 ppm^l

^1 pH7f ^^0^0] 32 i^ Fig. 36 xfl2j^ OAC-Na IM31 0ACJ14 . A

^-^, OAC-Na A

5.

£17]

, pH,

, OAC-Na)

- 77 - 0.50 • AC-Pb AAC-Cd 0.45 - • AC-Cr DOAC-Pb 0.40 - AOAC-Cd O OAC-Cr EJOAC-Na-Pb -—•-o. o 0.35 - A OAC-Na-Cd o » OAC-Na-Cr 6 0.30 - o O 0.25 - es s

sion l 0.20 - c CD E b 0.15 -

0.10 -

O o A o o A 0 A A t A 9 a a a 50 100 150 200 250 300 350 Time(min.)

Fig. 35. Breakthrough curves of Pb, Cd and Cr ions adsorption on AC, OAC and OAC-Na in ternary adsorption system [Input cone, of each ion : Pb(44ppm), Cd(44.5ppm), Cr(4.1ppm), pHi=4.9l

~ 78 - 0.50 • OAC-Pb A OAC-Cd 0.45 - • OAC-Cr • OAC-Na-Pb A OAC-Na-Cd 0.40 - o OAC-Na-Cr "5 °-35 " o o 6 0.30 i c o o 1 0.25 H c o CO g 0.20 H E b 0.15 - A

0.10 -

0.05 • A* # D 0.00 0 100 200 300 400 500 Time(min.)

Fig. 36. Breakthrough curves of Pb, Cd and Cr ions adsorption on OAC and OAC-Na in ternary adsorption system [Input cone, of each ion : Pb(44ppm), Cd(44.5ppm), Cr(4.1ppm), pHi=3.2l

- 79 - (capacity factor)* 4^ capacity factor^ Total trlatf T*6 V°lUme Bed volume

<&A% Fig. 374 38i 44^$i4. ^4^- ^ s^M °1^4 iJ-#^£fe 10 ppb ^r§4 *fl-f ^^ ?J:^S

ppm4 °J4 s}|t£t ^^§S>^4. -§-OJ]4 pH7}- 5^ ^-f OAC-Na 4 ^¥?14fe AC4 ^^-4

XAD-16-TAR4 ^^"^144 7^ Hl^tb ^^: i<^ ^Si4[72]. XAD-16- TAR4 ?

Fig. 39fe -§-^4 pH7l- 4 5°dl ^-f ^, 7>S.# ^sj-oi^, Fig.

^, 4^#4 ^-T-fe 1 ppm, Hf^ 0.5 ppmA . pH 5 ^4 S?ioll4 0AC-Na4 AC4 A °

. OAC-NaS-1 4 2«fl O]AJ- ^^ ^^- ^.o^^ojcf.

; OAC-Na

- 80 - cJOU -

• pH=5 300

250

•§ 200 g Capacit y

100

50 A

rt, I 1 0 AC OAC OAC-Na XAD-16 -TAR Adsorbent

Fig. 37. Variation of capacity factor for uranium adsorption on AC, OAC and OAC-Na [Bed volume=7.8 ml, pHi=3, 51.

- 81 - 350 -

300

250 -

o 200

I 150 CO O

100

50

OAC OAC-Na Impreg. Adsorbent DT-10

Fig. 38. Variation of capacity factor for cobalt adsorption on AC, OAC and OAC-Na [Bed volume=7.8 ml, pHi=3, 5}.

- 82 - '•AC 160 - inoAC iDOAC-Na 140 - — O D o r o • Capacit y facto r

60 •

40 -

20 -

0 - i Pb 1 Cr Cd Metal Ion

Fig.39. Variation of capacity factor for Pb, Cd and Cr adsorption on AC, OAC and OAC-Na [Bed volume=7.8 ml,

PHi=4.9l

- 83 - 180 jBOAC ; 160 - !nOAC-Na!

140 -

120 -

40 -

20 -

Cd Metal Ions

Fig.40. Variation of capacity factor for Pb, Cd and Cr adsorption on AC, OAC and OAC-Na [Bed volume=7.8 ml, PHi=3.2l

- 84 - - 85 - (NaCl, NaOH, NaNO3

2.

NaOH 0.1N

3. pH AC, OAC,

OAC ^ )^|^£ AC°)1 a]*>^ OAC-Na %^l}-& OAC

a>-§-7l AC, OAC, OAC-Na^) 4 pH 3, 4, 5

^^ OAC-Na>OAC»AC

OAC-Na ^] ^^?l^>fe ACS] 30^11, S^ XAD-16-TAR5] ^^^>5f 71 sq

6. pH 5 ^ OAC-Nafe 3.

7. ^-71 o

OAC-Na

-S-1 -H-71

8.

- 87 - 1. Propst, R.M., Ekechukwu O.E. and Dameron H.J., Pretreatment and Selective Materials for Improved Treatment of PWR Liquid Radioactive Waste, Electric Power Research Institute, EPRI NP-5786 (1988)

2. 3^*§, , 1fr, ^^-^^^4 ^^T^, KEPRI-93N-J04 (1996) 3. IAEA, Treatment of Low- and Intermediate-level Liquid Radioactive Wastes, Technical Reports Series No. 236, Vienna (1984) 4. Moghissi, A.A., Godbee, H.W. and Hobart, S.A., Radioactive Waste Technology, The American Society of Mechanical Engineers (1986) 5. Kubota, M., Yamaguchi, L, Nakamura, H. and Tachimori, S., Development of Partitioning Method •' Cold and Semi-hot Experimental Works with Partitioning Test Apparatus, JAERI-M 9627 (1981) 6. Kubota, M., Nakamura, EL, Results of Research Development in the Partitioning Technology for Highly Radioactive Liquid Waste and the Future Plan, JAERI-M 85-066 (1985) 7. Kubota, M., Morita, Y. and Tochiyama, Y., Fundamental Study on the Extraction of Transuranium Elements from High-Level Liquid Waste, JAERI-M 88-002 (1988) 8. Kondo, Y., Kubota, M., Abe, T., Development of Partitioning Method •' Recovery and Utilization of Useful Elements in Spent Fuel, JAERI-M 91-47 (1991) 9. Department of Energy, Technology for Commercial Radioactive Waste Management, DOE/ET-0028 (1979) 10. IAEA, Minimization of Radioactive Waste form Nuclear Power Plants and the Back End of the Nuclear Fuel Cycle, Technical Reports Series No. 377, Vienna (1995) 11. 7A^, °J« $\, (III), *F^4^ KAERI-NEMAC/RR-146/94 (1994) 12. 3^-g-, 7J^ *1, ^^ KAERI-NEMAC/RR-159/95

- 88 - (1995) 13. Litman, R., Ott, Ch.R. and Gingras, R., "Removal of Low-level Radioactivities from Aqueous Waste Solutions with Activated Carbon", Radiochem. Radioanal Letters, 40(5), pp. 309-318 (1979) 14. Taskaev, E. and Apostolov, D., " On Uranium(VI) Adsorption on Activated Carbon", /. of Radioanal. Chem., 45, 65-71 (1978) 15. Saleem, M., Afzal, M., Qadeer, R. and Hanif, J., Selective Adsorption of Uranium on Activated Charcoal from Electrolytic Aqueous Solutions, Separation Science and Technology, Vol. 27, No. 2, pp. 239-259 (1992) 16. Abbasi, W.A. and Streat, M., Adsorption of Uranium from Aqueous Solutions Using Activated Carbon, Separation Science and Technology, Vol. 29, No. 9, pp. 1217-1230 (1994) 17. EPRI, Survey of Corrosion Products Generation, Transport and Deposition in Light Water Reactor, Electric Power Research Institute, EPRI NP-522, (1979) 18. Walker, S.M., A Review of Cobalt Adsorption on Transition Metal Oxides, Central Electricity Generating Board, CEGB-TPRD/B/1010/ R87 (1987) 19. Paajanen, A., Lehto, J., Santapakka, T. and Ymorneau, J.P., Sorption of Cobalt on Activated Carbon from Aqueous Solution, Separation Science and Technology, 32(1-4), pp. 813-826 (1997) 20. *l-&Ao\ ^3l^r aleliJ-'S, tfltt1?}^ ^7fl^-*|, #2000-0000456 (2000) 21. Bansal, R.C. and Donnet, J.B., Stoeckli, F., Activated Carbon, Marcel Dekker, INC., New York and Bansal (1988) 22. Tamon, H. and Okazaki, M., "Influence of Acid Surface Oxides of Activated Carbons on gas Adsorption Characteristics," Carbon, 34(6), 741-746 (1996) 23. Zielke, U., Huttinger, K. J. and Hoffman, W.P., "Surface-Oxidized Carbon Fibers: III Characterization of Carbon Fiber Surfaces by the Work of Adhension/pH Diagram," Carbon, 34(8), 1007-1013 (1996) 24. Asakawa, T and Ogino, K., "Adsorption of Phenol on Surface- Oxidized Carbon Black from Its Aqueous Solution," Journal of Colloid and Interface Science, 102(2), 348-355 (1984)

- 89 - 25. Mattson, J.S. and Mark, Jr., H.B., Activated Carbon - Surface Chemistry and Adsorption from Solution, Marcel Dekker, Inc. (1971) 26. Sakano, T., Tamon, H., Okazaki, M., Improvement of Adsorption Selectivity of methyl Mercaptan on Microporous Cabron by Surface Oxidationtion, /. of Chemical Engineering of Japan, 30(2), pp. 230-238 (1997) 27. Salvador, F. and Jimenez, C.S., Carbon, 34, 511 (1996) 28. You, S.H., Kim, H.S and Kim, H.-H., Adsorption of Chromium by Heat-treated Microporous Carbon, J. Korean Ind. Eng. Chem., 8(4), 631 (1997) 29. Park, S.J., et al, Influence of Chemical Surface Treatments of Activated Carbons on Surface and Chromium(VI) Adsorption Rate, J. Korean Ind. Eng. Chem., 11(2), 190 (2000) 30. U ^•ST1, Ph. D. Thesis SH?4*M#31 (1999) 31. #*H3, PAC/UF ^*cH ^?r ^T? ^ ^ (2000) 32. Jasper, S. and Oldham, W. K, Adsorption of Dissolved Uranium from Well Water, INIS-mf-11130, British Columbia Univ., Canada (1982) 33. Carrott, P. J. M., Riberio Carrrott, M. M. L. and Nabais, J. M. V., Prates Romalho, J. P. "Influence of Surface Ionization on the Adsorption of Aqueous Species by Activated Carbon," Carbon, 35(3), 403-410 (1997) 34. Dzombak, D. A. and F. M. M. Morel, Adsorption of Inorganic Pollutants in Aquatic Systems, J. Hydraulic Engineering, 113, 430-475 (1987) 35. Yates, D. E., S. Levine, and T.W. Healy, Site-binding Model of the Electrical Double Layer at the Oxide/Water Interface, Chem. Soc. Faraday Trans. I., 70, 1807-1818 (1974) 36. Davis, J. A. and J. O. Leckie, Surface Ionization and Complexation at the Oxide/Water Interface. 2. Surface Properties of Amorphous Oxy-Hydroxide and Adsorption of Metal Ions, /. Colloid Interface Sci., 67, 90-107 (1978)

- 90 - 37. Hayes, K.F. and J.O. Leckie, Modeling Ionic Strength Effects on Cation Adsorption at Hydrous Oxide/Solution Interfaces, /. Colloid Interface Sci., 115, 564-572 (1987) 38. Reed, B.E. and Nonavinakere, S.K., Metal Adsorption by Activated Carbon: Effect of Complexing Ligands, Competing Adsorbates, Ionic Strength, and Background Electrolyte, Separation Science and Technology, Vol. 27, No. 14, pp. 1985-2000 (1992) 39. Puri, B.R., Chemistry and Physics of Carbon, P.L. Walker, Jr., Ed., Marcel Dekker, New York, p. 191 (1970) 40. Huang, C.P. and Wu, M.H., J. Water Pollut. Control Fed., 47, 2437 (1975) 41. Corapcioglu, M.O., Huang, C.P., The Adsorption of Heavy metals onto Hydrous Activated Carbon. , Water Res., 21(9), pp. 1031- 1044 (1987) 42. Mul, G., Neeft, J.P.A. and Aptejin, F.K., Mouljin, J.A., The Formation of Carbon Surface Oxygen Complexes by Oxygen and Ozone : The Effect of Transition Metal Oxide, Carbon, 36(9), pp. 1269-1276 (1998) 43. Taylor, R.M. and Kuennen, R.W., Environmental Progress, 13, 65 (1994) 44. IAEA, Treatment of Alpha Bearing, Technical Reports Series No. 287, Vienna (1988) 45. Walker, S.M., Cobalt Adsorption on Zirconia and Hematite at Low , Central Electricity Generating Board, CEGB- TPRD/B/1065/R87 (1987) 46. Yamashita, H. and Ozawa, Y, Nakajima, F. and Murata, T, " The Collection of Uranium from Sea Water with Hydrous Metal Oxide : II. The Mechanism of Uranium Adsorption by Hydrous Titanium(IV) Oxide," Bull. Chem Soc. Jpn, 53, 1331-1334 (1980) 47. Kusakabe, K., Goto, A. and Morooka, S., "Kinetics of Uranium Adsorption from Sea Water with Imidedioxine Adsorbent," Sep. Sci. and Technology, 29(12), 1567-1577 (1994) 48. Tsezos, M. and B. Volesky, The Mechanism of Uranium Biosorption, Biochnol. Bioeng., Vol. XXIV, pp. 385-401 (1982)

- 91 - 49. Tsezos, M., " The Role of Chitin in Uranium Adsorption by R. Arrhizus", Biochnol Bioeng., Vol. XXV, pp. 2025-2040 (1983) 50. Olguin, M.T. et al., UO22* Sorption in Natural Mexican Erionite and Y Zeolite, Separation Science and Technology, Vol. 29, No. 16, pp. 2161-2178 (1994) 51. Girvin, D.C., Gassman, P.L. and Bolton, H., Adsorption of Aqueous Cobalt Ethylenediaminetetraacetate by 7 -AI2O3, J. of Am. Sol. ScL, 57, pp. 47-57 (1993)

52. Chun, Hee-Dong, Advanced Oxidation Process with TiO:» Photocatalyst, J. of KSEE, 16, 7, 809 (1994) 53. ?7i)^-*|, ^ 1999-0024785 (1999) 54. 3^3 3) 5*1, #x}#^r S4§H ^ ^ ^ ^l, ^M^ ^?11^-«1, ^- 1998-001845 (1998)

^•«1, ^ 1999-0015693 (1999) 56. Paquette, J. and Lemire, R.J., " A Description of the Chemistry of Aqueous Solutions of Uranium and Plutonium to 200oC using Potential-pH Diagrams", Nuclear Science and Engineering, 79, pp. 26-48 (1981) 57. Aberg, M., On the Structure of the Predominant Hydrolysis Products of Uranyl(VI) in Solution , Ada Chemica Scandinavica, 24, pp. 2901-2915 (1970) 58. Peterson, S.R. and CJ. Hostetler, WJ. Deutsch and C.E. Cowan, MINTEQA2 Ver. 3.01-A Computer Program for Calculating Aqueous Geochemical Equilibria, NUREG/CR-4808, PNL-6106, Pacific National Lab., Richland (1987) 59. James, R. O. and Healy, T. W., The Adsorption of Hydrolyzable Metal at Oxide Solution Interface , J. of Colloid Interface Sci., 40(42), pp. 52-65 (1972) 60. Van Riemsdijk, W. H., G. H. Bolt, L. K. Koopal, and J. Blaakmeer, Electrolyte Adsorption on Heterogeneous Surfaces : Adsorption Models, J. Colloid Interface Sci., 109, 219-228 (1986) 61. Tien, C, Adsorption Calculations and Modeling, Butterworth-

- 92 - Heinemann (1994) 62. IAEA, Storage of Water Reactor Spent Fuel in Water Pools ~ Survey of World Experience, Technical Reports Series No. 218, Vienna (1982) 63. Kanno, T. and Mimura, H., "Ion-Exchange Properties of Zeolites and Their Application to Processing of High-Level Liquid Waste," Proceedings of A Technical Committee Meeting on Inorganic Ion Exchangers and Adsorbents for Chemical Processing in the Nuclear Fuel Cycle, IAEA-TECDOC-337, pp.237-247 (1985) 64. Robinson, S.M. and Parrott, Jr., J.R., Pilot-Scale Demonstration of Process Wastewater Decontamination Using Chabazite Zeolites, Oak Ridge National Laboratory, ORNL/TM-10836 (1989) 65. Mimura, H., Tachibana, F. and Akiba, K., Distribution and Fixation of Cesium in Ferrierites, Proceedings of the Third International Conference on Nuclear Fuel Reprocessing and Waste Management (RECOD '91), pp. 796-801 (1991) 66. IAEA, Feasibility of Separation and Utilization of Caesium and Strontium from High Level Liquid Waste, Technical Reports Series No. 356 (1993) 67. Weber, Jr., W. J. and Smith, E. H., "Simulation and Design Models for Adsorption Processes", Environ. Sci. Technoi, 20(11), pp. 1040 (1987) 68. Gierke, J. S. et al, "Modeling the Movement of Volatile Organic Chemicals in Column of Unsaturated Soil", Water Resour. Res., 26(7), 1529 (1990) 69. Yu, Q. and Wang, N., Multicomponent Interference Phenomena in Ion Exchange Columns, Separation and Purification Methods, Vol. 15, No. 2, pp. 127 (1986) 70. Raghavan, N.S. and Ruthven, D.M., Numerical Simulation of a Fixed-Bed Adsorption Column by the Method of Orthogonal Collocation, AIChE Journal, Vol. 29, No. 6, pp. 922-925 (1983) 71. Berninger, J.A., et al., A Versatile Model for Simulation of Reaction and Nonequilibrium Dynamics in Multicomponent Fixed-bed Adsorption Processes, Comput. Chem. Eng., 15, 749 (1991) 72. Lee, C.H, Studies on Sorption Properties of (Polystyrene-

- 93 - Divinylbenzene)-4-(2-Thiazplylazo)Resorcinol Chelating Resins for the Use Separation and Concentration of Uranium, PhD. Thesis (1994)

- 94 - INIS KAERI/RR-2085/2000

HI-

71 iXDUPIC),

2001 n o] *i 94 p. 71 A4

S. , NaOH,

NaOH £th-§-^ 0.1N

. PH 2-105] tf^HA-] AC, OAC, OAC-Na

-§• # OAC

^^ OAC-Na>OAC»AC

pH7). 5

OAC-Na^l ^^^^fe OAC^l

2^1] &•%: BIBLIOGRAPHIC INFORMATION SHEET Performing Org. Sponsoring Org. Stamdard Report IMS Sub.ject| Report No, Report No. No. Code KAERI/RR- 2085/2000 Title / Subtitle Development of the Removal Technology for Toxic Heavy Metal Ions by Surface-Modified Activated Carbon

Project Manager Geun IL Park (Nuclear Chem. Eng. Research Team) and Department Researcher and Kee Chan Song(DUPIC), Kwang Wook Kim, In Tae Kim, Department II Hoon Cho, Joon Hyung Kim (Nuclear Chem. Eng. Research Team)

Publication Publication Daejon Publisher KAERI 2001 Place Date Page 94 p. 111. & Tab. Yes(O), No ( Size A4 Note Classified Open(O), Restricted( ), Report Type Research Report Class Document Sponsoring Org. Contract No. Abstract 15-20 Lines)

Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2—10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin. Subject Keywords (About 10 words) Activated carbon, Double surface-modified activated carbon, Adsorption, Uranium, Cobalt, Lead, Cadmium, Chromium, Capacity factor