Writing the Poaceae Treatment for the Flora of Oregon Global Plants Initiative
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Agronomic Treatments on Silphium Integrifolium, a Potential Perennial Oilseed
Effects of Agronomic Treatments on Silphium integrifolium, a Potential Perennial Oilseed A Thesis SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Sydney A. Schiffner IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Craig C. Sheaffer, Advisor August 2018 © Sydney Schiffner 2018 Acknowledgements I would first like to thank my advisor, Dr. Craig Sheaffer, for allowing me to pursue a degree in Applied Plant Sciences on the Agronomy/Agroecology track within his lab. I would next like to thank Dr. Jacob Jungers, and Dr. Nicole Tautges for their assistance with interpreting findings and help with statistical analysis on my data. Next I would like to thank lab technicians Joshua Larson, Lindsay Wilson and Donn Vellekson for their assistance in field management and data collection. Thanks also to the Sustainable Cropping System/Forages lab and all of the interns and MAST students that helped make my research possible with their dedication to good science and field research. This project was funded by the Malone Foundation through The Land Institute, and I would like to thank Dr. David Van Tassel at The Land Institute for being on call whenever I had any odd question about silphium. Thank you to my friends and family who have supported me through this rigorous scientific endeavor, and last of all thank you to my fellow graduate students. Without your fellowship for the past few years, I definitely wouldn’t have made it through graduate school, or had as much of a fun time going through it. -
Thinopyrum Ponticum Grass
ALL HEATGRASS G16 © photos G. Sainty & M. McCaskill T W SALTdeck Series Thinopyrum ponticum GRASS 8cm 1m lemma T. junceiforme Sea Wheat Grass spikelet not fully opened Sustainable TALL WHEATGRASS Grazing on SALTdeck Series Thinopyrum ponticum Saline Land © LWW & AWI 2006 Alternative names: Thinopyrum elongatum, Agropyron elongatum, Lophopyron elongatum. G16 Family: Poaceae. Description: Deep rooted tussock-forming perennial to 1.3 m tall. Leaves to 50 cm long, 4–8 mm wide, hairless or with scattered hairs, with a scabrous point and margins. Key features: Seedhead an unbranched spike to 30 cm long that breaks up at maturity, the spikelets placed with the flat side to the axis. Value: The most common cultivar is Tyrrell; DPI Victoria in 2001 released a more leafy cultivar named Dundas. Slow to establish and should not be grazed in its first year. Responds to hard grazing and the application of nitrogen. Subsoil moisture or summer rainfall is necessary for good production. Highly productive and of high nutritive value (supports high animal growth rates) if kept vegetative and leafy, but will revert to low nutritive value and palatability (less than a maintenance feed) if allowed to grow rank and set seed. Can be highly invasive in wetland areas. Salinity and waterlogging tolerance: Does not persist in soils that are waterlogged over spring and into summer. Grows in soils that have low to moderate salinity. Notes: Native of southern and eastern Europe, western Asia. Used in rehabilitation projects where there are soils with H moderate salinity (up to EC 30 dS/m). M References: Saltland Pastures in Australia, Barrett-Lennard, 2003. -
Transgenic Wheat Expressing Thinopyrum Intermedium MYB Transcription Factor Timyb2r-1 Shows Enhanced Resistance to the Take-All Disease
Journal of Experimental Botany, Vol. 64, No. 8, pp. 2243–2253, 2013 doi:10.1093/jxb/ert084 Advance Access publication 1 April, 2013 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEARCH PAPER Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease Xin Liu1,*, Lihua Yang1,2,*, Xianyao Zhou1,*, Miaoping Zhou3,*, Yan Lu1, Lingjian Ma2, Hongxiang Ma3 and Zengyan Zhang1,† 1 The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of the Agriculture Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China 2 College of Agronomy, Northwest A&F University, Yangling 712100, China 3 Biotechnology Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China *These authors contributed equally to this work. †To whom correspondence should be addressed. E-mail: [email protected] Received 7 November 2012; Revised 25 February 2013; Accepted 28 February 2013 Abstract The disease take-all, caused by the fungus Gaeumannomyces graminis, is one of the most destructive root diseases of wheat worldwide. Breeding resistant cultivars is an effective way to protect wheat from take-all. However, little progress has been made in improving the disease resistance level in commercial wheat cultivars. MYB transcrip- tion factors play important roles in plant responses to environmental stresses. In this study, an R2R3-MYB gene in Thinopyrum intermedium, TiMYB2R-1, was cloned and characterized. The gene sequence includes two exons and an intron. -
Improving Seeding Success on Cheatgrass-Infested Rangelands in Northern Nevada
Improving Seeding Success on Cheatgrass- Infested Rangelands in Northern Nevada Item Type Article; text Authors Clements, C. D.; Harmon, D. N.; Blank, R. R.; Weltz, M. Citation Clements, C. D., Harmon, D. N., Blank, R. R., & Weltz, M. (2017). Improving Seeding Success on Cheatgrass-Infested Rangelands in Northern Nevada. Rangelands, 39(6), 174-181. DOI 10.1016/j.rala.2017.10.003 Publisher Society for Range Management Journal Rangelands Rights Copyright © Society for Range Management. Download date 01/10/2021 06:55:07 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/657853 Improving Seeding Success on Cheatgrass-Infested Rangelands in Northern Nevada By Charlie D. Clements, Daniel N. Harmon, Robert R. Blank, and Mark Weltz On the Ground nvasion of alien plant species influences many phases of wildland research in the Great Basin.1 The accidental • Cheatgrass has transformed secondary succes- I introduction and subsequent invasion of cheatgrass (Bromus sion in arid sagebrush plant communities in the tectorum L.) onto millions of hectares of Great Basin Great Basin by providing a fine-textured, early rangelands has led to the conversion of former big sagebrush maturing fuel that increases the chance, rate, (Artemisia tridentata Nutt.)/bunchgrass communities to cheatgrass spread, and season of wildfires. dominance (Fig. 1). Native to Europe, central Asia, and northern • The best known method to suppress cheatgrass Africa, cheatgrass was accidentally introduced to North America, densities and associated fuels is through the where it was first identified in Pennsylvania around 1861 and establishment of perennial grasses. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Snoquera Landscape Analysis Draft Environmental Assessment
United States Department of Agriculture Forest Service Snoquera Landscape Analysis Draft Environmental Assessment Snoqualmie Ranger District, Mt Baker-Snoqualmie National Forest, King and Pierce Counties, WA December 2018 For More Information Contact: Snoqualmie Ranger District 902 SE North Bend Way North Bend, WA 98045 (425) 888-1421 Cover Picture: Snoquera Falls, WA. Photo Credit: Julie Okita The name Snoquera originates from the amalgamation of "Snoqualmie" and "Emergency Relief Appropriations" (ERA) Act of 1935 - part of Roosevelt's New Deal programs. In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. -
Oregon City Nuisance Plant List
Nuisance Plant List City of Oregon City 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Acer platanoides Norway Maple Acroptilon repens Russian knapweed Aegopodium podagraria and variegated varieties Goutweed Agropyron repens Quack grass Ailanthus altissima Tree-of-heaven Alliaria officinalis Garlic Mustard Alopecuris pratensis Meadow foxtail Anthoxanthum odoratum Sweet vernalgrass Arctium minus Common burdock Arrhenatherum elatius Tall oatgrass Bambusa sp. Bamboo Betula pendula lacinata Cutleaf birch Brachypodium sylvaticum False brome Bromus diandrus Ripgut Bromus hordeaceus Soft brome Bromus inermis Smooth brome-grasses Bromus japonicus Japanese brome-grass Bromus sterilis Poverty grass Bromus tectorum Cheatgrass Buddleia davidii (except cultivars and varieties) Butterfly bush Callitriche stagnalis Pond water starwort Cardaria draba Hoary cress Carduus acanthoides Plumeless thistle Carduus nutans Musk thistle Carduus pycnocephalus Italian thistle Carduus tenufolius Slender flowered thistle Centaurea biebersteinii Spotted knapweed Centaurea diffusa Diffuse knapweed Centaurea jacea Brown knapweed Centaurea pratensis Meadow knapweed Chelidonium majou Lesser Celandine Chicorum intybus Chicory Chondrilla juncea Rush skeletonweed Cirsium arvense Canada Thistle Cirsium vulgare Common Thistle Clematis ligusticifolia Western Clematis Clematis vitalba Traveler’s Joy Conium maculatum Poison-hemlock Convolvulus arvensis Field Morning-glory 1 Nuisance Plant List -
Effects of Nitrogen Availability and Cheatgrass Competition on the Establishment of Vavilov Siberian Wheatgrass Monica B
Rangeland Ecol Manage 61:475–484 | September 2008 Effects of Nitrogen Availability and Cheatgrass Competition on the Establishment of Vavilov Siberian Wheatgrass Monica B. Mazzola,1 Kimberly G. Allcock,2 Jeanne C. Chambers,3 Robert R. Blank,4 Eugene W. Schupp,5 Paul S. Doescher,6 and Robert S. Nowak7 Authors are 1Graduate Research Assistant, 2Postdoctoral Associate, and 7Professor, Natural Resources and Environmental Sciences Department, University of Nevada-Reno, Reno, NV 89557, USA; 3Research Ecologist, USDA Forest Service, Rocky Mountain Research Station, Reno, NV 89512, USA; 4Soil Scientist, USDA Agricultural Research Service, Exotic and Invasive Weeds Unit, Reno, NV 89512, USA; 5Professor, Department of Rangeland Resources, Utah State University, Logan, UT 84322, USA; 6Professor, Department of Forest Resources, Oregon State University, Corvallis, OR 97331, USA. Abstract Cheatgrass (Bromus tectorum L.) is the most widespread invasive weed in sagebrush ecosystems of North America. Restoration of perennial vegetation is difficult and land managers have often used introduced bunchgrasses to restore degraded sagebrush communities. Our objective was to evaluate the potential of ‘Vavilov’ Siberian wheatgrass (Agropyron fragile [Roth] P. Candargy) to establish on cheatgrass-dominated sites. We examined Vavilov establishment in response to different levels of soil nitrogen availability by adding sucrose to the soil to promote nitrogen (N) immobilization and examined cheatgrass competition by seeding different levels of cheatgrass. We used a blocked split-split plot design with two sucrose levels (0 and 360 g ? m22), two levels of Vavilov (0 and 300 seeds ? m22), and five levels of cheatgrass (0, 150, 300, 600, and 1 200 seeds ? m22). Seeding was conducted in fall 2003 and 2004, and measurements were taken in June 2004, 2005, and 2006. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
Cannen Acedo & Felix Llamas Bromus Lepidus and Bromus
Flora Meditenanea 6 - 1996 191 Cannen Acedo & Felix Llamas Bromus lepidus and Bromus pseudothominii, two new records for the Iberian Peninsula Abstract Acedo, C. & Llamas, F.: Bromus lepidus and Bromus pseudOlhominii, two new records for the Iberian Peninsula. - Fl. Medi!. 6: 191-196. 1996 - ISSN 1120-4052. Bromus lepidus and B. pseudothominii are reported for the first time from the Iberian Peninsula. A comparative morphological and anatomical study of these c10sely rclatcd species belonging to the Bromus hordeaceus complex has been carricd ou!. Introduction This is a continuation of our former contributions to the Iberian brome-grasses. The quotation af new records (Ace do & Llamas 1994) and thc discovery of two ncw species (Acedo & Llamas in press). The genus Bromus is widely distributed in the Iberian Peninsula being represented by near thirty of thc mediterranean species, belonging to four subgenera, bcing subgenus Bromus the most difficult to undcrstand because the great morphological similarity among the different species. We think this is the rcason to find easily misidentified specimcns in some herbaria. Material and Methods Plant matcrial studicd includcs about one thousand herbarium sheets belanging to the Bronllls IlOrdeaceus complex (from BCF, COI, E, GDA, GDAC, LEB, LD, LINN, LISI, LISU, MA, MAF, SALAF, SANT, and VAB) and frcsh material, with special attentian to the Iberian Pcninsula. The herbarium abbreviations following Holmbcrg & al. (1990). Ali measuremcnts of the spikelcts and lcmmas are taken in full mature spikelcts excluding awns. For anatomical studies fresh and rehidrated samples were fixed in F.A.A. The scctions were made with a freezing microtome, and thcn cleared and stained with safranin and fast green. -
Part 2 – Fruticose Species
Appendix 5.2-1 Vegetation Technical Appendix APPENDIX 5.2‐1 Vegetation Technical Appendix Contents Section Page Ecological Land Classification ............................................................................................................ A5.2‐1‐1 Geodatabase Development .............................................................................................. A5.2‐1‐1 Vegetation Community Mapping ..................................................................................... A5.2‐1‐1 Quality Assurance and Quality Control ............................................................................ A5.2‐1‐3 Limitations of Ecological Land Classification .................................................................... A5.2‐1‐3 Field Data Collection ......................................................................................................... A5.2‐1‐3 Supplementary Results ..................................................................................................... A5.2‐1‐4 Rare Vegetation Species and Rare Ecological Communities ........................................................... A5.2‐1‐10 Supplementary Desktop Results ..................................................................................... A5.2‐1‐10 Field Methods ................................................................................................................. A5.2‐1‐16 Supplementary Results ................................................................................................... A5.2‐1‐17 Weed Species -
Nymphaea Folia Naturae Bihariae Xli
https://biblioteca-digitala.ro MUZEUL ŢĂRII CRIŞURILOR NYMPHAEA FOLIA NATURAE BIHARIAE XLI Editura Muzeului Ţării Crişurilor Oradea 2014 https://biblioteca-digitala.ro 2 Orice corespondenţă se va adresa: Toute correspondence sera envoyée à l’adresse: Please send any mail to the Richten Sie bitte jedwelche following adress: Korrespondenz an die Addresse: MUZEUL ŢĂRII CRIŞURILOR RO-410464 Oradea, B-dul Dacia nr. 1-3 ROMÂNIA Redactor şef al publicațiilor M.T.C. Editor-in-chief of M.T.C. publications Prof. Univ. Dr. AUREL CHIRIAC Colegiu de redacţie Editorial board ADRIAN GAGIU ERIKA POSMOŞANU Dr. MÁRTON VENCZEL, redactor responsabil Comisia de referenţi Advisory board Prof. Dr. J. E. McPHERSON, Southern Illinois Univ. at Carbondale, USA Prof. Dr. VLAD CODREA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Dr. MASSIMO OLMI, Universita degli Studi della Tuscia, Viterbo, Italy Dr. MIKLÓS SZEKERES Institute of Plant Biology, Szeged Lector Dr. IOAN SÎRBU Universitatea „Lucian Blaga”,Sibiu Prof. Dr. VASILE ŞOLDEA, Universitatea Oradea Prof. Univ. Dr. DAN COGÂLNICEANU, Universitatea Ovidius, Constanţa Lector Univ. Dr. IOAN GHIRA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Univ. Dr. IOAN MĂHĂRA, Universitatea Oradea GABRIELA ANDREI, Muzeul Naţional de Ist. Naturală “Grigora Antipa”, Bucureşti Fondator Founded by Dr. SEVER DUMITRAŞCU, 1973 ISSN 0253-4649 https://biblioteca-digitala.ro 3 CUPRINS CONTENT Botanică Botany VASILE MAXIM DANCIU & DORINA GOLBAN: The Theodor Schreiber Herbarium in the Botanical Collection of the Ţării Crişurilor Museum in