RESEARCH ARTICLE Spike-timing-dependent ensemble encoding by non-classically responsive cortical neurons Michele N Insanally1,2,3,4,5, Ioana Carcea1,2,3,4,5, Rachel E Field1,2,3,4,5, Chris C Rodgers6,7, Brian DePasquale8, Kanaka Rajan9,10, Michael R DeWeese11,12, Badr F Albanna13, Robert C Froemke1,2,4,5,14* 1Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, United States; 2Neuroscience Institute, New York University School of Medicine, New York, United States; 3Department of Otolaryngology, New York University School of Medicine, New York, United States; 4Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States; 5Center for Neural Science, New York University, New York, United States; 6Department of Neuroscience, Columbia University, New York, United States; 7Kavli Institute of Brain Science, Columbia University, New York, United States; 8Princeton Neuroscience Institute, Princeton University, Princeton, United States; 9Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States; 10Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States; 11Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States; 12Department of Physics, University of California, Berkeley, Berkeley, United States; 13Department of Natural Sciences, Fordham University, New York, United States; 14Howard Hughes Medical Institute, New York University School of Medicine, New York, United States *For correspondence: Abstract Neurons recorded in behaving animals often do not discernibly respond to sensory
[email protected] input and are not overtly task-modulated. These non-classically responsive neurons are difficult to interpret and are typically neglected from analysis, confounding attempts to connect neural activity Competing interests: The to perception and behavior.