<<

Mass loss of evolved Analysis through models Image reconstructions Numerical simulations Other techniques

VLTI/PIONIER imaging of red supergiant stars

Miguel Montargès (KU Leuven) FWO [PEGASUS]2 Marie Skłodowska-Curie fellow & Andrea Chiavassa (Lagrange), Benjamin Tessore (LUPM), Ryan Norris (GSU), Pierre Kervella (LESIA), and Agnès Lèbre (LUPM).

Imaging of Stellar Surfaces ESO Garching - 8th March 2018

This project has received funding from the European Union’s 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No. 665501 with the research Foundation Flanders (FWO)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 1/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Stellar evolution

Asymptotic Giant Branch stars : progenitor . 8 M Red supergiant stars : progenitor & 8 M

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 2/20 → Study of the photosphere + CSE

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Trigerring the RSG mass loss

Physical process remains unknown (no flares, no large pulsations) Josselin & Plez (2007) suggested a convection triggered mass loss Auriere et al. (2010) observed magnetic field ∼ 1 G + Airapetian et al. (2000): model Alfvén-wave triggered outflow

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 3/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Trigerring the RSG mass loss

Physical process remains unknown (no flares, no large pulsations) Josselin & Plez (2007) suggested a convection triggered mass loss Auriere et al. (2010) observed magnetic field ∼ 1 G + Airapetian et al. (2000): model Alfvén-wave triggered outflow → Study of the photosphere + CSE

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 3/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Spatial scales

(P. Kervella)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 4/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Monitoring of (α Ori)

VLTI/PIONIER observations (4 , H band, low spectral resolution, R = 40) 4 epochs of monitoring: Jan. 2012, Feb. 2013, Jan. 2014 and Nov. 2014 Only the compact array configuration (baseline length ∈ [11; 36 m]) ⇒ Montargès et al. (2016), A&A, 588, A130

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 5/20 AND litterature value ∼ 42 mas

Consistent between the 4 epochs (3 different features to avoid detector saturation)

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: angular diameter (2013)

0 (N)

25 Limb-darkened disk fit: 20

15 44.21 vs 48.56 mas

10 ⇒ 10% difference !

5

90 270 (E) (W)

180 (S)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 6/20 Consistent between the 4 epochs (3 different features to avoid detector saturation)

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: angular diameter (2013)

0 (N)

25 Limb-darkened disk fit: 20

15 44.21 vs 48.56 mas

10 ⇒ 10% difference !

5

90 270 (E) (W) AND litterature value ∼ 42 mas

180 (S)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 6/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: angular diameter (2013)

0 (N)

25 Limb-darkened disk fit: 20

15 44.21 vs 48.56 mas

10 ⇒ 10% difference !

5

90 270 (E) (W) AND litterature value ∼ 42 mas

Consistent between the 4 epochs (3 different features to avoid detector saturation)

180 (S)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 6/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: Shape of the closure phase (2013)

200

150

100

50

0

50 Closure phase ()

100

150

200 40 50 60 70 80 90 100 110 120 1 Maximum spatial frequency (arcsec− )

Strong signal Incompatible with elliptical model

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 7/20 LDD disk + bright spot : good agreement + angular diameter consistent with literature (∼ 43 mas) Consistent on the 4 epochs B Photocenter displacement up to 2 mas (π ∼ 6 mas)

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: LDD model + gaussian bright spot

Chiavassa et al. (2009, 2010) showed that convection can bias angular diameter measurements

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 8/20 Consistent on the 4 epochs B Photocenter displacement up to 2 mas (π ∼ 6 mas)

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: LDD model + gaussian bright spot

Chiavassa et al. (2009, 2010) showed that convection can bias angular diameter measurements LDD disk + bright spot : good agreement + angular diameter consistent with literature (∼ 43 mas)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 8/20 B Photocenter displacement up to 2 mas (π ∼ 6 mas)

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: LDD model + gaussian bright spot

Chiavassa et al. (2009, 2010) showed that convection can bias angular diameter measurements LDD disk + bright spot : good agreement + angular diameter consistent with literature (∼ 43 mas) Consistent on the 4 epochs

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 8/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: LDD model + gaussian bright spot

Chiavassa et al. (2009, 2010) showed that convection can bias angular diameter measurements LDD disk + bright spot : good agreement + angular diameter consistent with literature (∼ 43 mas) Consistent on the 4 epochs B Photocenter displacement up to 2 mas (π ∼ 6 mas)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 8/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Antares observation (α Sco)

VLTI/PIONIER observations (4 telescopes, H band, low spectral resolution, R = 40) 3 different configurations (baseline lengths : 11-150 m) ⇒ Montargès et al. 2017, A&A, 605, A108

0 (N)

20.0 17.5 15.0 12.5 LDD diameters (at 1.61 µm): 10.0 7.5 5.0 37.70-39.03 mas 2.5 90 270 ⇒ 4% difference (E) (W)

AND does not fit the closure phases !

180 (S)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 9/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Antares: dataset

100 LDD Power Data 10-1

10-2

10-3

10-4

10-5

10-6 Squared visibility

10-7

10-8

10-9

10-10

10-11 0 50 100 150 200 250 300 350 400 450 1 Spatial frequency (arcsec− )

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 10/20 ⇒ Modeling using random distribution of spots with a fixed size !

Best match: Gaussian spot distributions with a FWHM of 17 and 2 mas (not resolved !) LDD diameter: 37.89 ± 0.10 mas at 1.61 µm χ2(V 2 + CP) as low as 28 (627 for best LDD alone)

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Antares: modeling

B Weak signal compared to Betelgeuse → small spots ? B ∼ 1/16th of the stellar diameter !

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 11/20 Best match: Gaussian spot distributions with a FWHM of 17 and 2 mas (not resolved !) LDD diameter: 37.89 ± 0.10 mas at 1.61 µm χ2(V 2 + CP) as low as 28 (627 for best LDD alone)

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Antares: modeling

B Weak signal compared to Betelgeuse → small spots ? B Angular resolution ∼ 1/16th of the stellar diameter ! ⇒ Modeling using random distribution of spots with a fixed size !

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 11/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Antares: modeling

B Weak signal compared to Betelgeuse → small spots ? B Angular resolution ∼ 1/16th of the stellar diameter ! ⇒ Modeling using random distribution of spots with a fixed size !

Best match: Gaussian spot distributions with a FWHM of 17 and 2 mas (not resolved !) LDD diameter: 37.89 ± 0.10 mas at 1.61 µm χ2(V 2 + CP) as low as 28 (627 for best LDD alone)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 11/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques CE Tau

Program VLTI/PIONIER DDT program (4 telescopes, H band, low spectral resolution, R = 40) 2 configurations (baseline lengths : 7-97 m)

Results Angular diameter from disk models cur ini Basic stellar parameters (R?,L?,Teff , age, M? ,M? , log g) → Better constraints for physical models ⇒ Montargès et al., A&A, in press.

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 12/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques CE Tau@PIONIER: images

November 2016 December 2016

8 1.0 8 1.0

6 6

0.8 0.8 4 4

2 2 0.6 0.6

0 0

0.4 0.4 2 2 Relative intensity Relative intensity Relative Dec. (mas) Relative Dec. (mas)

4 4 0.2 0.2

6 6

8 0.0 8 0.0 8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8 Relative R.A. (mas) Relative R.A. (mas)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 13/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques 3D RHD simulations

CO5BOLD (Freytag 2012) + Optim3D (Chiavassa 2009) codes → " in a box" Principle : comparing interferometric observables

(see S. Höfner & B. Freytag’s talks)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 14/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Comparisons

α Sco α Ori CE Tau Parameter (Antares) (Betelgeuse) Simulation st35gm03n13 st36g00n04 st35gm03n13 13 ± 2 21 ± 2 14.37+0.02 M (M ) −1.91 12 6 12 ∼ 680 897 ± 211 590 ± 85 R (R ) 846 ± 1.1 386.2 ± 0.4 846 ± 1.1 3660 ± 120 3690 ± 54 3810 ± 135 T (K) eff 3430 ± 8 3663 ± 14 3430 ± 8 7.59 ± 3.12 12.7 ± 6.0 6.61 ± 2.07 L (104 L ) 8.95 ± 0.086 2.42 ± 0.037 8.95 ± 0.086 −0.15 ± 0.05 −0.39 ± 0.22 0.05+0.11 log g −0.17 −0.354 ± 0.001 0.023 ± 0.001 −0.345 ± 0.001 Reduced χ2 253 390 98 All simulations are scaled to the star’s angular diameter Simulations: Chiavassa+ 2011 Antares: Ohnaka+ 2013; Betelgeuse: Ohnaka+ 2011 and Montargès+ 2014; CE Tau: Montargès+ 2018

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 15/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Simulations + images

November 2016 December 2016

8 1.0 8 1.0

6 6

0.8 0.8 Tremblay et al. 2013 4 4

2 2 contrast. 0.6 0.6

0 0

0.4 0.4 2 2 Relative intensity Relative intensity Relative Dec. (mas) Relative Dec. (mas)

4 4 0.2 0.2

Images: 6 6 δI / hIi = 5 − 6 ± 1% rms 8 0.0 8 0.0 8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8 Relative R.A. (mas) Relative R.A. (mas)

6 6

1.6 1.2 4 4 1.4 Original simulation: 1.0

δIrms/ hIi = 23 ± 1% 2 1.2 2 0.8 1.0 0 0 Convolved simulation: 0.8 0.6

2 0.6 Relative intensity 2 Relative intensity δIrms/ hIi = 16 ± 1% Relative Dec (mas) Relative Dec (mas) 0.4 0.4 4 4 0.2 0.2

6 0.0 6 0.0 6 4 2 0 2 4 6 6 4 2 0 2 4 6 Relative RA (mas) Relative RA (mas)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 16/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Ongoing project: spectral dispersion

12

11

10

9 Angular diameter (mas)

1.0 Br- CO 2-0 CO 3-1 CO 4-2 CO 5-3 CO 6-4 CO 7-5

0.8

0.6 Relative flux 0.4

0.2 2.0 2.1 2.2 2.3 2.4 Wavelength ( m)

VLTI/GRAVITY observations in October 2017

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 17/20 (Courtesy of A. Chiavassa)

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: comparison with visible spectro-polarimetry

Montargès et al. 2016 & Aurière et al. 2016 (see talks of A. López-Ariste + A. Lèbre)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 18/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: comparison with visible spectro-polarimetry

Montargès et al. 2016 & Aurière et al. 2016 (see talks of A. López-Ariste + A. Lèbre)

(Courtesy of A. Chiavassa)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 18/20 VLT/SPHERE (visible) Kervella et al. 2016

ALMA continuum ALMA lines O’Gorman et al. 2017 Kervella et al. 2018

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: comparison with visible + radio imaging

VLTI/PIONIER (NIR) Montargès et al. 2016

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 19/20 ALMA continuum ALMA lines O’Gorman et al. 2017 Kervella et al. 2018

Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: comparison with visible + radio imaging

VLTI/PIONIER (NIR) VLT/SPHERE (visible) Montargès et al. 2016 Kervella et al. 2016

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 19/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques Betelgeuse: comparison with visible + radio imaging

VLTI/PIONIER (NIR) VLT/SPHERE (visible) Montargès et al. 2016 Kervella et al. 2016

ALMA continuum ALMA lines O’Gorman et al. 2017 Kervella et al. 2018

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 19/20 Mass loss of evolved stars Analysis through models Image reconstructions Numerical simulations Other techniques A possible origin of the mass loss ?

(VISIR, mid-IR, Kervella et al. 2011)

Miguel Montargès VLTI/PIONIER imaging of red supergiant stars 20/20