AVAILABLE REPROCESSING and RECYCLING SERVICES for RESEARCH REACTOR SPENT NUCLEAR FUEL the Following States Are Members of the International Atomic Energy Agency

Total Page:16

File Type:pdf, Size:1020Kb

AVAILABLE REPROCESSING and RECYCLING SERVICES for RESEARCH REACTOR SPENT NUCLEAR FUEL the Following States Are Members of the International Atomic Energy Agency IAEA Nuclear Energy Series IAEA Nuclear No. NW-T-1.11 No. IAEA Nuclear Energy Series Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel Services for Research Reactor Spent Nuclear Reprocessing and Recycling Available No. NW-T-1.11 Basic Available Reprocessing Principles and Recycling Services for Research Reactor Objectives Spent Nuclear Fuel Guides Technical Reports @ IAEA NUCLEAR ENERGY SERIES PUBLICATIONS STRUCTURE OF THE IAEA NUCLEAR ENERGY SERIES Under the terms of Articles III.A and VIII.C of its Statute, the IAEA is authorized to foster the exchange of scientific and technical information on the peaceful uses of atomic energy. The publications in the IAEA Nuclear Energy Series provide information in the areas of nuclear power, nuclear fuel cycle, radioactive waste management and decommissioning, and on general issues that are relevant to all of the above mentioned areas. The structure of the IAEA Nuclear Energy Series comprises three levels: 1 — Basic Principles and Objectives; 2 — Guides; and 3 — Technical Reports. The Nuclear Energy Basic Principles publication describes the rationale and vision for the peaceful uses of nuclear energy. Nuclear Energy Series Objectives publications explain the expectations to be met in various areas at different stages of implementation. Nuclear Energy Series Guides provide high level guidance on how to achieve the objectives related to the various topics and areas involving the peaceful uses of nuclear energy. Nuclear Energy Series Technical Reports provide additional, more detailed information on activities related to the various areas dealt with in the IAEA Nuclear Energy Series. The IAEA Nuclear Energy Series publications are coded as follows: NG — general; NP — nuclear power; NF — nuclear fuel; NW — radioactive waste management and decommissioning. In addition, the publications are available in English on the IAEA Internet site: http://www.iaea.org/Publications/index.html For further information, please contact the IAEA at PO Box 100, Vienna International Centre, 1400 Vienna, Austria. All users of the IAEA Nuclear Energy Series publications are invited to inform the IAEA of experience in their use for the purpose of ensuring that they continue to meet user needs. Information may be provided via the IAEA Internet site, by post, at the address given above, or by email to Offi[email protected]. AVAILABLE REPROCESSING AND RECYCLING SERVICES FOR RESEARCH REACTOR SPENT NUCLEAR FUEL The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GUATEMALA PAPUA NEW GUINEA ARGENTINA GUYANA PARAGUAY ARMENIA HAITI PERU AUSTRALIA HOLY SEE PHILIPPINES AUSTRIA HONDURAS POLAND AZERBAIJAN HUNGARY PORTUGAL BAHAMAS ICELAND QATAR BAHRAIN INDIA REPUBLIC OF MOLDOVA BANGLADESH INDONESIA ROMANIA BARBADOS IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BELARUS IRAQ RWANDA BELGIUM IRELAND SAN MARINO BELIZE ISRAEL SAUDI ARABIA BENIN ITALY SENEGAL BOLIVIA, PLURINATIONAL JAMAICA SERBIA STATE OF JAPAN SEYCHELLES BOSNIA AND HERZEGOVINA JORDAN SIERRA LEONE BOTSWANA KAZAKHSTAN SINGAPORE BRAZIL KENYA SLOVAKIA BRUNEI DARUSSALAM KOREA, REPUBLIC OF SLOVENIA BULGARIA KUWAIT SOUTH AFRICA BURKINA FASO KYRGYZSTAN SPAIN BURUNDI LAO PEOPLE’S DEMOCRATIC SRI LANKA CAMBODIA REPUBLIC SUDAN CAMEROON LATVIA SWAZILAND CANADA LEBANON SWEDEN CENTRAL AFRICAN LESOTHO SWITZERLAND REPUBLIC LIBERIA SYRIAN ARAB REPUBLIC CHAD LIBYA TAJIKISTAN CHILE LIECHTENSTEIN THAILAND CHINA LITHUANIA THE FORMER YUGOSLAV COLOMBIA LUXEMBOURG REPUBLIC OF MACEDONIA CONGO MADAGASCAR TOGO COSTA RICA MALAWI TRINIDAD AND TOBAGO CÔTE D’IVOIRE MALAYSIA TUNISIA CROATIA MALI TURKEY CUBA MALTA TURKMENISTAN CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO UNITED KINGDOM OF DENMARK MONACO GREAT BRITAIN AND DJIBOUTI MONGOLIA NORTHERN IRELAND DOMINICA MONTENEGRO UNITED REPUBLIC DOMINICAN REPUBLIC MOROCCO OF TANZANIA ECUADOR MOZAMBIQUE UNITED STATES OF AMERICA EGYPT MYANMAR URUGUAY EL SALVADOR NAMIBIA UZBEKISTAN ERITREA NEPAL VANUATU ESTONIA NETHERLANDS VENEZUELA, BOLIVARIAN ETHIOPIA NEW ZEALAND REPUBLIC OF FIJI NICARAGUA VIET NAM FINLAND NIGER YEMEN FRANCE NIGERIA ZAMBIA GABON NORWAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR ENERGY SERIES No. NW-T-1.11 AVAILABLE REPROCESSING AND RECYCLING SERVICES FOR RESEARCH REACTOR SPENT NUCLEAR FUEL INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2017 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2017 Printed by the IAEA in Austria October 2017 STI/PUB/1746 IAEA Library Cataloguing in Publication Data Names: International Atomic Energy Agency. Title: Available reprocessing and recycling services for research reactor spent nuclear fuel / International Atomic Energy Agency. Description: Vienna : International Atomic Energy Agency, 2017. | Series: IAEA nuclear energy series, ISSN 1995–7807 ; no. NW-T-1.11 | Includes bibliographical references. Identifiers: IAEAL 17-01111 | ISBN 978–92–0–103216–4 (paperback : alk. paper) Subjects: LCSH: Reactor fuel reprocessing. | Reactor fuel reprocessing — Waste disposal. | Spent reactor fuels. Classification: UDC 621.039.59 | STI/PUB/1746 FOREWORD One of the IAEA’s statutory objectives is to “seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.” One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish “standards of safety for protection of health and minimization of danger to life and property”. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R&D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. In addition to safety, security and environmental protection assurance, responsible use of nuclear technology requires that credible solutions be developed to manage the full cycle of research reactor fuel, including its disposal after removal from the reactor core. The end point of research reactor spent nuclear fuel (SNF) management is the development of a geological repository, which will be used for the disposal of spent fuel assemblies, directly or after conditioning, or the shipping of SNF to a reprocessing facility and the closing of the fuel cycle with the disposal of the waste after reprocessing. Since the existing experience in SNF disposal (directly or after conditioning) is very limited and available to just a few States, this publication discusses the key aspects of research reactor SNF reprocessing and recycling as the only currently available solution based on mature technologies for the management of the back end of the fuel cycle. The international experience accumulated from research reactor fuel take back programmes for high enriched uranium has been collected and presented in this publication to provide information to research reactor managers, research reactor SNF storage facility managers and decision making bodies with regard to the reprocessing and recycling options for back end management of SNF. The IAEA wishes to thank all of those who participated in the consultants meetings and helped in the drafting and preparation of this publication. The IAEA is particularly grateful to M. Budu (Russian Federation) and M. Chiguer (France) for their contribution. The IAEA officers responsible
Recommended publications
  • Northern Sea Route Cargo Flows and Infrastructure- Present State And
    Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources.
    [Show full text]
  • Overview on RRSF Reprocessing, from Spent Fuel Transportation to Vitrified Residues Storage
    TH RERTR 2015 – 36 INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST REACTORS OCTOBER 11‐14, 2015 THE PLAZA HOTEL SEOUL, SOUTH KOREA Overview on RRSF reprocessing, from spent fuel transportation to vitrified residues storage J.F. VALERY, X. DOMINGO, P. LANDAU AREVA NC, 1 place Jean Millier, 92084 Paris La Défense Cedex – France M. LAUNEY, P. DESCHAMPS, C. PECHARD AREVA NC La Hague, 50440 Beaumont-Hague – France V. LALOY, M. KALIFA AREVA TN, 1 Rue des Hérons, 78180 Montigny-le-Bretonneux – France ABSTRACT AREVA has long experience in transportation and industrial-scale reprocessing of RR UAl spent fuel. Over 23 tons of RR UAl type fuels have been reprocessed at AREVA’s facilities in France, both in Marcoule and La Hague plants. Furthermore, More than 100 RR fuels transportations per year are carried out by AREVA (for fresh and spent fuels). Benefiting from its past experience, AREVA proposes to detail in pictures all the stages of a (Research Reactor Spent Fuel) RRSF reprocessing from its evacuation from reactor site to its corresponding post- reprocessing vitrified waste production and management. In order to comply with its customers growing needs in terms of RRSF management, AREVA is also developing new RRSF reprocessing capacities in the La Hague UP2-800 facility based on the same process principles. This new TCP facility is planned to reprocess several types of RRSF including both UAl and U3Si2 RRSF. 1. Introduction Reprocessing is one of the today-available options for managing back-end of Research Reactor fuel cycle. As described in figure 1 below, this solution offers to RR: - Non-proliferation: reducing 235U enrichment of RRSF from 20-93% to below 2%, - Final waste management optimization: standardizing final waste package and reducing volume and radio-toxicity, removing IAEA safeguards on final waste, - Sustainability of RRSF back-end management: long-lasting solution, re-use of valuable material for civilian purposes i.e.
    [Show full text]
  • Argus FSU Energy
    Argus FSU Energy News, prices and analysis from the Former Soviet Union and Central Europe Volume XXIV, 46, 21 November 2019 Poland to halt Russian gas imports Poland plans a permanent halt to gas imports from Russia from 2023, aiming to fully cover its needs from other sources. State-controlled importer and supplier PGNiG’s decision not to extend a long-term 10.2bn m³/yr take-or-pay contract, expiring at the end of 2022, is “irrevocable”, chief executive Piotr Wozniak told Polish state-owned TV this week. Import diversification will ensure supply security, PGNiG says — including Urals Med vs North Sea Dated the planned 10bn m³/yr Baltic Pipe link direct from Norway, new LNG import $/bl Diff capacity and contracts, and upstream acquisitions. 4 North Sea Dated = 0 PGNiG expects unspecified “retaliation” from Gazprom, but is well-prepared, 2 Wozniak says. And it expects a favourable verdict early next year in its arbitration case over Gazprom prices, which would reduce the cost of imports in 2020-22. 0 - PGNiG signalled in 2017 that it would not renew the contract with Gazprom in its -2 existing form, because supply was too expensive. The Polish firm started arbitration proceedings over the price of imports -4 Oct Jan Apr Jul Oct under its long-term contract in 2015. The court ruled in PGNiG’s favour last year, 18 19 agreeing that it had the right to demand a price revision, but Gazprom appealed. The Polish and Danish gas system operators reached an investment decision on the Baltic Pipe project in November last year.
    [Show full text]
  • Argus Russian Coal
    Argus Russian Coal Issue 17-36 | Monday 9 October 2017 MARKET COmmENTARY PRICES Turkey lifts coal imports from Russia Russian coal prices $/t Turkey increased receipts of Russian thermal coal by 9pc on Delivery basis NAR kcal/kg Delivery period 6 Oct ± 29 Sep the year in January-August, to 7.79mn t, according to data fob Baltic ports 6,000 Nov-Dec 17 86.97 -0.20 from statistics agency Tuik, amid higher demand from utili- fob Black Sea ports 6,000 Nov-Dec 17 90.63 -0.25 ties and households. Russian material replaced supplies from cif Marmara* 6,000 Nov 17 100.33 0.33 South Africa, which redirected part of shipments to more fob Vostochny 6,000 Nov-Dec 17 100.00 1.00 profitable markets in Asia-Pacific this year. fob Vostochny 5,500 Nov-Dec 17 87.0 0 1.75 *assessment of Russian and non-Russian coal In August Russian coal receipts rose to over 1.26mn t, up by 15pc on the year and by around 19pc on the month. Russian coal prices $/t This year demand for sized Russian coal is higher com- Delivery basis NAR kcal/kg Delivery period Low High pared with last year because of colder winter weather in 2016-2017, a Russian supplier says. Demand for coal fines fob Baltic ports 6,000 Nov-Dec 17 85.25 88.00 fob Black Sea ports 6,000 Nov-Dec 17 89.50 91.00 from utilities has also risen amid the launch of new coal- fob Vostochny 6,000 Nov-Dec 17 100.00 100.00 fired capacity, the source adds.
    [Show full text]
  • MARITIME ACTIVITY in the HIGH NORTH – CURRENT and ESTIMATED LEVEL up to 2025 MARPART Project Report 1
    MARITIME ACTIVITY IN THE HIGH NORTH – CURRENT AND ESTIMATED LEVEL UP TO 2025 MARPART Project Report 1 Authors: Odd Jarl Borch, Natalia Andreassen, Nataly Marchenko, Valur Ingimundarson, Halla Gunnarsdóttir, Iurii Iudin, Sergey Petrov, Uffe Jacobsen and Birita í Dali List of authors Odd Jarl Borch Project Leader, Nord University, Norway Natalia Andreassen Nord University, Norway Nataly Marchenko The University Centre in Svalbard, Norway Valur Ingimundarson University of Iceland Halla Gunnarsdóttir University of Iceland Iurii Iudin Murmansk State Technical University, Russia Sergey Petrov Murmansk State Technical University, Russia Uffe Jakobsen University of Copenhagen, Denmark Birita í Dali University of Greenland 1 Partners MARPART Work Package 1 “Maritime Activity and Risk” 2 THE MARPART RESEARCH CONSORTIUM The management, organization and governance of cross-border collaboration within maritime safety and security operations in the High North The key purpose of this research consortium is to assess the risk of the increased maritime activity in the High North and the challenges this increase may represent for the preparedness institutions in this region. We focus on cross-institutional and cross-country partnerships between preparedness institutions and companies. We elaborate on the operational crisis management of joint emergency operations including several parts of the preparedness system and resources from several countries. The project goals are: • To increase understanding of the future demands for preparedness systems in the High North including both search and rescue, oil spill recovery, fire fighting and salvage, as well as capacities fighting terror or other forms of destructive action. • To study partnerships and coordination challenges related to cross-border, multi-task emergency cooperation • To contribute with organizational tools for crisis management Project characteristics: Financial support: -Norwegian Ministry of Foreign Affairs, -the Nordland county Administration -University partners.
    [Show full text]
  • Argus Nefte Transport
    Argus Nefte Transport Oil transportation logistics in the former Soviet Union Volume XVI, 5, May 2017 Primorsk loads first 100,000t diesel cargo Russia’s main outlet for 10ppm diesel exports, the Baltic port of Primorsk, shipped a 100,000t cargo for the first time this month. The diesel was loaded on 4 May on the 113,300t Dong-A Thetis, owned by the South Korean shipping company Dong-A Tanker. The 100,000t cargo of Rosneft product was sold to trading company Vitol for delivery to the Amsterdam-Rotter- dam-Antwerp region, a market participant says. The Dong-A Thetis was loaded at Russian pipeline crude exports berth 3 or 4 — which can handle crude and diesel following a recent upgrade, and mn b/d can accommodate 90,000-150,000t vessels with 15.5m draught. 6.0 Transit crude Russian crude It remains unclear whether larger loadings at Primorsk will become a regular 5.0 occurrence. “Smaller 50,000-60,000t cargoes are more popular and the terminal 4.0 does not always have the opportunity to stockpile larger quantities of diesel for 3.0 export,” a source familiar with operations at the outlet says. But the loading is significant considering the planned 10mn t/yr capacity 2.0 addition to the 15mn t/yr Sever diesel pipeline by 2018. Expansion to 25mn t/yr 1.0 will enable Transneft to divert more diesel to its pipeline system from ports in 0.0 Apr Jul Oct Jan Apr the Baltic states, in particular from the pipeline to the Latvian port of Ventspils.
    [Show full text]
  • Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries
    Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux cèdres Tél: 01 69 83 23 79 91210 Draveil (Paris) Fax: 01 69 40 98 75 France e-mail: [email protected] Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research was carried out with the support of The Centre for International Governance Innovation (CIGI) in Waterloo, Ontario, Canada (www.cigionline.org) V5 About the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983 and April 2003 Mycle Schneider was executive director of the energy information service WISE-Paris. Since 2000 he has been an advisor to the German Ministry for the Environment, Nature Conservation and Reactor Safety. Since 2004 he has also been in charge of the Environment and Energy Strategies Lecture of the International Master of Science for Project Management for Environmental and Energy Engineering at the French Ecole des Mines in Nantes, France. In 2007 he was appointed as a member of the International Panel on Fissile Materials (IPFM), based at Princeton University, USA (www.fissilematerials.org). In 2006-2007 Mycle Schneider was part of a consultants’ consortium that assessed nuclear decommissioning and waste management funding issues on behalf of the European Commission. In 2005 he was appointed as nuclear security specialist to advise the UK Committee on Radioactive Waste Management (CoRWM). Mycle Schneider has given evidence and held briefings at Parliaments in Australia, Belgium, France, Germany, Japan, South Korea, Switzerland, UK and at the European Parliament.
    [Show full text]
  • Industrialization of a Small Sludge Retrieval System
    WM'05 Conference, February 27-March 3, 2005, Tucson, AZ WM - 5220 THE REPROCESSING PLANT OF THE FUTURE : A SINGLE EXTRACTION CYCLE P. Bretault, P. Houdin SGN, 1 rue des Hérons, Montigny-le-Bretonneux, 78 182 Saint Quentin-en-Yvelines, France JL. Emin COGEMA, 2 rue Paul Dautier, BP 4, 78141 Velizy-Villacoublay, Cedex, France P. Baron CEA Marcoule, BP 171, 30207 Bagnols-sur-Ceze, France ABSTRACT In France, COGEMA has been reprocessing spent nuclear fuel on an industrial scale for over 40 years, and has consistently worked to optimize facility design and operations. In COGEMA-La Hague’s UP3 reprocessing plant, to achieve the necessary decontamination needed to produce purified uranium and plutonium, five extraction cycles were implemented and used at start-up: first cycle for separation of fission products, uranium and plutonium, two uranium purification cycles and two plutonium purification cycle. By modifying processes at the design stage and making adjustments during operations, we saw that further decontamination of uranium could be achieved with only one cycle. Radiological specification of plutonium was also obtained at the end of the first plutonium purification cycle. These good performance levels were taken into account for the design of the UP2-800 plant where uranium is purified using a single cycle, and for the recent R4 facility which features only one plutonium purification cycle. Relevant information on extraction cycles in first-generation French reprocessing plants (UP1 and UP2-400) as well as design characteristics for the extraction cycles of reprocessing facilities currently operating at the COGEMA-La Hague plant is given. Experience shows that we can obtain adequate performance levels using only three cycles.
    [Show full text]
  • Ship-Breaking.Com 2012 Bulletins of Information and Analysis on Ship Demolition, # 27 to 30 from January 1St to December 31St 2012
    Ship-breaking.com 2012 Bulletins of information and analysis on ship demolition, # 27 to 30 From January 1st to December 31st 2012 Robin des Bois 2013 Ship-breaking.com Bulletins of information and analysis on ship demolition 2012 Content # 27 from January 1st to April 15th …..……………………….………………….…. 3 (Demolition on the field (continued); The European Union surrenders; The Senegal project ; Letters to the Editor ; A Tsunami of Scrapping in Asia; The END – Pacific Princess, the Love Boat is not entertaining anymore) # 28 from April 16th to July 15th ……..…………………..……………….……..… 77 (Ocean Producer, a fast ship leaves for the scrap yard ; The Tellier leaves with honor; Matterhorn, from Brest to Bordeaux ; Letters to the Editor ; The scrapping of a Portuguese navy ship ; The India – Bangladesh pendulum The END – Ocean Shearer, end of the cruise for the sheep) # 29 from July 16th to October 14th ....……………………..……………….……… 133 (After theExxon Valdez, the Hebei Spirit ; The damaged ship conundrum; Farewell to container ships ; Lepse ; Letters to the Editor ; No summer break ; The END – the explosion of Prem Divya) # 30 from October 15th to December 31st ….………………..…………….……… 197 (Already broken up, but heading for demolition ; Demolition in America; Falsterborev, a light goes out ; Ships without place of refuge; Demolition on the field (continued) ; Hong Kong Convention; The final 2012 sprint; 2012, a record year; The END – Charlesville, from Belgian Congo to Lithuania) Global Statement 2012 ……………………… …………………..…………….……… 266 Bulletin of information and analysis May 7, 2012 on ship demolition # 27 from January 1 to April 15, 2012 Ship-breaking.com An 83 year old veteran leaves for ship-breaking. The Great Lakes bulker Maumee left for demolition at the Canadian ship-breaking yard at Port Colborne (see p 61).
    [Show full text]
  • Petrodevelopment 2030
    Petrodevelopment 2030 Socio-economic consequences of an extensive oil and gas development in the Barents Sea A report prepared for StatoilHydro by a group of researchers from Norwegian College of Fishery Science, University of Tromsø, Norut - Northern Research Institute, Alta, and Institute for Economic Studies, Kola Science Centre Title: Petrodevelopment 2030 Socio-economic consequences of an extensive oil and gas development in the Barents Sea Authors: Peter Arbo, Vladimir Didyk, Bjørn Hersoug, Inge Berg Nilssen, Vigdis Nygaard, Larissa Riabova, Jan Yngve Sand and Stein Østbye Joint report: Norwegian College of Fishery Science, University of Tromsø Norut – Northern Research Institute, Alta Institute for Economic Studies, Kola Science Centre Commissioned by: StatoilHydro Project leader: Peter Arbo Quality assurance: Bjørn Hersoug Summary: The theme of this report is the regional socio-economic consequences of an extensive oil and gas development in the Barents Sea. The regional focus area includes Finnmark County and Murmansk Oblast. The introductory chapter explains the purpose of the study and the way the work has been done. The next two chapters provide a detailed account of the region and its basic characteristics. The general finding is that the region strongly needs a new stimulus to growth, but that it is badly prepared for receiving a coming oil and gas boom. The following chapter gives a brief overview of the oil and gas sectors in Norway and Russia and introduces the baseline scenario, which indicates the expected scale and scope of future petroleum activity in the Barents Sea. After this three scenarios are presented. They all have 2030 as their time horizon.
    [Show full text]
  • Chapter 15 Safe Decommissioning Of
    ACTIVITIES REGULATED BY ASN SAFE DECOMMISSIONING OF BASIC NUCLEAR INSTALLATIONS (BNIs) 1 TECHNICAL AND LEGAL REQUIREMENTS APPLICABLE TO DECOMMISSIONING 421 1 I 1 Decommissioning strategies 1 I 2 Legal requirements 1 I 3 The financing of decommissioning and radioactive waste management 1 I 3 I 1 Reminder of regulatory provisions 1 I 3 I 2 Review of the reports forwarded by the licensees 1 I 4 Decommissioning risks 1 I 5 Complete clean-out 2 SITUATION OF NUCLEAR INSTALLATIONS UNDERGOING DECOMMISSIONING IN 2011 426 2 I 1 EDF nuclear power plants (NPPs) 2 I 1 I 1 The Brennilis NPP 2 I 1 I 2 Natural Uranium Graphite Gas Reactors (UNGG) 2 I 1 I 3 CHOOZ A reactor (Ardennes NPP) 2 I 1 I 4 SUPERPHÉNIX reactor 2 I 2 CEA installations 2 I 2 I 1 Fontenay-aux-Roses centre 2 I 2 I 2 The Grenoble centre 2 I 2 I 3 The Cadarache centre installations undergoing decommissioning 2 I 2 I 4 The Saclay centre installations undergoing decommissioning 2 I 3 AREVA installations 2 I 3 I 1 UP2 400 spent fuel reprocessing plant and associated facilities 2 I 3 I 2 SICN plant in Veurey-Voroize 2 I 4 Others installations 2 I 4 I 1 The Strasbourg University reactor 2 I 4 I 2 The Electromagnetic radiation laboratory 3 OUTLOOK 437 APPENDIX 1 LIST OF BASIC NUCLEAR INSTALLATIONS DELICENSED AS AT 31.12.2011 437 APPENDIX 2 LIST OF BASIC NUCLEAR INSTALLATIONS UNDERGOING DECOMMISSIONING AS AT 31.12.2011 439 CHAPTER 15 419 CHAPTER 15 SAFE DECOMMISSIONING OF BASIC NUCLEAR INSTALLATIONS (BNIs) The term “decommissioning” generally covers all the technical and administrative activities performed after shutdown of a nuclear installation in order to achieve a predetermined final status.
    [Show full text]
  • Evaluating the Socio-Economic Factors Impacting Foreign Trade Development in Port Areas
    sustainability Article Evaluating the Socio-Economic Factors Impacting Foreign Trade Development in Port Areas Roman Fedorenko 1,* , Irina Yakhneeva 2, Nadezhda Zaychikova 3 and Dmitry Lipinsky 4 1 Heat and Power Department, Samara State Technical University, 443100 Samara, Russia 2 Marketing, Logistics and Advertising Department, Samara State University of Economics, 443090 Samara, Russia; [email protected] 3 Statistics and Econometrics Department, Samara State University of Economics, 443090 Samara, Russia; [email protected] 4 Department of Theory and History of State and Law, Togliatti State University, 445020 Togliatti, Russia; [email protected] * Correspondence: [email protected] Abstract: Seaports are an important component of the Russian transport infrastructure. They play a major role in the sustainable development of adjacent territories and the country. Investments in port infrastructure facilitate the introduction of new technologies that accelerate cargo handling, contribute to the efficient use of resources and foreign trade increase. Ports have a major impact on the dynamics of economic indicators in the coastal region, its socio-economic development and environmental condition. In turn, the optimal development of the port infrastructure depends not only on the volume of investments made but also on other socio-economic indicators of the region. This paper analyzes the impact of socio-economic factors on export and import indicators in port areas. Based on a sample of five Russian ports and ten regions, and data observed in the period from 2010 to 2019, dependency patterns were identified for the regions of the Arctic, Baltic, Far Citation: Fedorenko, R.; Yakhneeva, Eastern, Azov-Black Sea and Caspian basins. The methods of correlation and regression analysis, I.; Zaychikova, N.; Lipinsky, D.
    [Show full text]