European Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

European Patent Office Europäisches Patentamt *EP000942006B1* (19) European Patent Office Office européen des brevets (11) EP 0 942 006 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C08F 4/602, C08F 4/606, of the grant of the patent: C08F 10/00 04.06.2003 Bulletin 2003/23 (21) Application number: 99301730.0 (22) Date of filing: 08.03.1999 (54) Catalyst for olefin polymer production and process for olefin polymer production employing the catalyst Katalysator für Olefinpolymerisation und Verfahren zur Herstellung von Olefinpolymer unter Verwendung desselben Catalyseur de polymérisation d’oléfines et procédé de production de polymère d’oléfines utilisant celui-ci (84) Designated Contracting States: (74) Representative: Copsey, Timothy Graham et al DE FR NL Kilburn & Strode, 20 Red Lion Street (30) Priority: 09.03.1998 JP 5658598 London WC1R 4PJ (GB) 11.01.1999 JP 380399 (56) References cited: (43) Date of publication of application: EP-A- 0 658 576 15.09.1999 Bulletin 1999/37 • CHEMICAL ABSTRACTS, vol. 123, no. 20, 13 (73) Proprietor: TOSOH CORPORATION November 1995 (1995-11-13) Columbus, Ohio, Shinnanyo-shi, Yamaguchi-ken (JP) US; abstract no. 274205, GOLUB, A. S. ET AL: "Formation of intercalation compounds of MoS2 (72) Inventors: with alkali metal and alkylammonium cations • Yamada, Satoru from a monolayer dispersion of molybdenum Mie-gun, Mie (JP) disulfide" XP002133340 & IZV. AKAD. NAUK, • Yano, Akihiro SER. KHIM. (1993), (4), 672-4 , Yokkaichi-shi, Mie (JP) Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 0 942 006 B1 Printed by Jouve, 75001 PARIS (FR) EP 0 942 006 B1 Description Background of the Invention: 5 Field of the Invention: [0001] The present invention relates to a catalyst for olefin polymer production comprising a metallocene compound, a reaction product of topotactic reduction by electron transfer, and an organoaluminum compound, and a process for producing an olefin polymer employing the catalyst. 10 [0002] The present invention relates also to a catalyst for olefin polymer production comprising a metallocene com- pound, a product of a topotactic reduction reaction by electron transfer, an organoaluminum compound, and organo- alkaline earth metal compound or an organozinc compound, and a process for producing an olefin polymer employing the catalyst. 15 Description of the Related Art: [0003] A catalyst composed of a metallocene compound and an organoaluminum compound, and another catalyst composed of a metallocene compound, an organoaluminum compound, and an organomagnesium compound are disclosed as the catalyst for producing an olefin polymer (JP-A-3-197513, and JP-A-3-290408). However, these cat- 20 alysts are not satisfactory in the catalyst activity. [0004] Active catalysts for olefin polymer production are disclosed which are composed of a metallocene compound and a methylaluminoxane (JP-A-58-19309, and JP-A-60-35007). These catalyst employs a large amount of expensive aluminoxane to produce a polymer having industrially useful properties, which causes problems of high catalyst cost and residual aluminum. 25 [0005] Highly active olefin polymerization catalysts not containing the methylaluminoxane are disclosed which com- prises a metallocene compound, a boron compound, and an organoaluminum compound (Kohyo 1-501950, and Kohyo 1-502036). However, the boron compound for this catalyst is complicated and expensive, disadvantageously. Summary of the Invention: 30 [0006] The present invention intends to solve the above technical problems, and to provide a catalyst for olefin polymer production with high catalyst activity without using an expensive catalyst component. The present invention provides also a process for producing an olefin polymer with the catalyst. [0007] The olefin polymerization catalyst of the present invention comprises [A] a metallocene compound containing 35 a transition metal selected from Groups 3, 4, 5, and 6 of Periodic Table, [B] a reaction product of topotactic reduction with electron transfer, and [C] an organoaluminum compound. [0008] The olefin polymerization catalyst of another embodiment of the present invention comprises [A] a metallocene compound containing a transition metal selected from Groups 3, 4, 5, and 6 of Periodic Table, [B] a reaction product of topotactic reduction by electron transfer, [C] an organoaluminum compound, and [D] an organoalkaline earth metal 40 compound or an organozinc compound. [0009] The process for producing an olefin polymer of the present invention uses the above catalyst. Detailed Description of the Preferred Embodiment: 45 [0010] The topotactic reduction with electron transfer in the present invention is a reaction, as defined by R. Schöll- horn: Angew. Chem. Int. Ed. Eng., 19, 983-1003 (1980), in which a host compound is reduced by electrons and guest cations are introduced into vacant lattice sites of the host compound to balance the electric charges without change of the structure and composition of the host compound by the reaction. This reaction is represented by General Formula (35) below: 50 + - + x- xE + xe + h[Q] - (E )x [Q] (35) where [Q] is the host compound, h is a vacant lattice site of [Q], e- is an electron, x is a number of reduction, and E+ 55 is a monovalent guest cation. [0011] The component [B] in the present invention is a reaction product of the above electron-transferring topotactic reduction, and is represented by General Formula (36): 2 EP 0 942 006 B1 n+ 2 k- E(k/n)(L )h[Q] (36) where [Q] is a host compound, k is a number of reduction, En+ is an n-valent guest cation, L2 is a Lewis base, and h 5 is a number of the Lewis base. [0012] The host compound [Q] includes host compounds of three-dimensional structure, host compounds of two- dimensional structure, host compounds of one-dimensional structure, and host compounds of a molecular solid. [0013] The host compounds of three-dimensional structure include hexamolybdenum octasulfide, hexamolybdenum octaselenide, trimolybdenum tetrasulfide, trititanium tetrasulfide, hexatitanium octaselenide, triniobium tetrasulfide, 10 hexavanadium octasulfide, pentavanadium octasulfide, divanadium pentaoxide, tungsten trioxide, titanium dioxide, vanadium dioxide, chromium dioxide, manganese dioxide, tungsten dioxide, ruthenium dioxide, osmium dioxide, and iridium dioxide. [0014] The host compounds of two-dimensional structure include titanium disulfide, zirconium disulfide, hafnium disulfide, vanadium disulfide, niobium disulfide, tantalum disulfide, chromium disulfide, molybdenum disulfide, tungsten 15 disulfide, rhenium disulfide, platinum disulfide, tin disulfide, lead disulfide, titanium diselenide, zirconium diselenide, hafnium diselenide, vanadium diselenide, niobium diselenide, tantalum diselenide, chromium diselenide, molybdenum diselenide, tungsten diselenide, rhenium diselenide, platinum diselenide, tin diselenide, lead diselenide, titanium ditel- luride, zirconium ditelluride, hafnium ditelluride, vanadium ditelluride, niobium ditelluride, tantalum ditelluride, chromium ditelluride, molybdenum ditelluride, tungsten ditelluride, rhenium ditelluride, platinum ditelluride, tin ditelluride, lead 20 ditelluride, magnesium phosphorus trisulfide, calcium phosphorus trisulfide, vanadium phosphorus trisulfide, manga- nese phosphorus trisulfide, iron phosphorus trisulfide, cobalt phosphorus trisulfide, nickel phosphorus trisulfide, palla- dium phosphorus trisulfide, zinc phosphorus trisulfide, cadmium phosphorus trisulfide, mercury phosphorus trisulfide, tin phosphorus trisulfide, magnesium phosphorus triselenide, calcium phosphorus triselenide, vanadium phosphorus triselenide, manganese phosphorus triselenide, iron phosphorus triselenide, cobalt phosphorus triselenide, nickel 25 phosphorus triselenide, palladium phosphorus triselenide, zinc phosphorus triselenide, cadmium phosphorus trisele- nide, mercury phosphorus triselenide, tin phosphorus triselenide, chromium phosphorus tetrasulfide, tantalum sulfide carbide, molybdenum trioxide, octadecamolybdenum dopentacontaoxide (18-molubdenum 52-oxide), divanadium pentaoxide gel, iron oxychloride, titanium oxychloride, vanadium oxychloride, chromium oxychloride, aluminum oxy- chloride, bismuth oxychloride, α-zirconium nitride chloride, β-zirconium nitride chloride, α-zirconium nitride bromide, 30 β-zirconium nitride bromide, zirconium nitride iodide, titanium nitride chloride, titanium nitride bromide, titanium nitride iodide, graphite, and polyacene. [0015] The host compounds of one-dimensional structure include titanium trisulfide, niobium triselenide, potassium iron disulfide, polyacetylene, polyaniline, polypyrrole, polythiophene, poly(p-phenylene), poly(triphenylene), polyazu- lene, polyfluorene, polynaphthalene, polyanthracene, polyfuran, polycarbazole, tetrathiafulvalene-substituted polysty- 35 rene, ferrocene-substituted polyethylene, carbazole-substituted polyethylene, and polyoxyphenazine. [0016] The host compounds of a molecular solid include tetracyanoquinodimethane, and tetrathiafulvalene. [0017] The host compound [Q] may be a mixture of two or more of the above host compounds. [0018] The number of reduction, k, is preferably in the range of 0 < k ≤ 3, more preferably
Recommended publications
  • Synthesis and Characterisation of Metal Dichalcogenide Based Nano Materials
    Synthesis and characterisation of metal dichalcogenide based nano materials Submitted by Yan Wen to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Engineering In September 2014 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. I Abstract WS2, MoS2 and ZrS2 nanomaterials in various forms, such as nanoflakes, inorganic fullerene-like nanoparticles and nanorattles, were synthesised using two modified conventional techniques: solid-gas reaction and chemical vapour deposition. Both of these techniques are essentially based on reactions between metal oxides/chlorides and sulphur at a relatively low temperature in the range of 350-950°C in H2/Ar. Compared with other common techniques, these techniques are cost effective and environmentally friendly and produce well-crystallised WS2, MoS2 and ZrS2 nanomaterials with controllable sizes and morphologies, arising from the involvement of simple equipment and a H2S-free process. With the solid-gas reaction technique, the formation of WS2 and MoS2 inorganic fullerene like (IF) particles follows a so-called "template growth" mechanism, which implies that the sizes of the final products resemble their metal oxide raw materials. Therefore, because of the usage of WO3 nanoparticles and MoO3 submicron particles as precursors, nanosized WS2 (<100 nm) and submicron- sized MoS2 (approximately 500 nm) particles were generated, respectively.
    [Show full text]
  • SPECIATE Version 5.1 Database Development Documentation
    Addendum SPECIATE Version 5.1 Database Development Documentation June 2020 EPA/600/R-20/189 EPA SPECIATE Workgroup US Environmental Protection Agency Abt Associates EPA Contract No. EP-BPA-17H-0012 The views expressed in this document are those of the authors and do not necessarily represent the views or policies of the U.S. EPA. This document has gone through review process within the Agency and is cleared for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Abt Associates Report Title Insert Date ▌1 EXECUTIVE SUMMARY Executive Summary EPA is releasing an updated version of the SPECIATE database, SPECIATE 5.1, about a year after the release of SPECIATE 5.0. In lieu of full documentation, this document provides highlights of the revisions to SPECIATE 5.0. Full documentation of the SPECIATE program can be found in the SPECIATE documentation section of EPA’s air emissions modeling website. SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of speciation profiles of air pollution sources that provide the species makeup or composition of organic gas, particulate matter (PM) and other pollutants emitted from these sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regional haze, PM, greenhouse gas (GHG), and photochemical air quality modeling; (2) adding PM species in the EPA’s National Emissions Inventory (NEI); (3) developing black carbon assessments and particulate carbonaceous inventories; (4) estimating air toxic pollutant emissions from PM and organic gas primary emissions; (5) providing input to chemical mass balance (CMB) receptor models; and, (6) verifying profiles derived from ambient measurements by multivariate receptor models (e.g., factor analysis and positive matrix factorization).
    [Show full text]
  • Draft Report on Carcinogens Monograph on Antimony Trioxide
    Draft Report on Carcinogens Monograph on Antimony Trioxide Peer-Review Draft November 29, 2017 Office of the Report on Carcinogens Division of the National Toxicology Program National Institute of Environmental Health Sciences U.S. Department of Health and Human Services This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally distributed by the National Toxicology Program. It does not represent and should not be construed to represent any NTP determination or policy. This Page Intentionally Left Blank Peer-Review Draft RoC Monograph on Antimony Trioxide 11/29/17 Foreword The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Report on Carcinogens (RoC) is prepared in response to Section 301 of the Public Health Service Act as amended. The RoC contains a list of identified substances (i) that either are known to be human carcinogens or are reasonably anticipated to be human carcinogens and (ii) to which a significant number of persons residing in the United States are exposed.
    [Show full text]
  • Division of Environmental Chemistry
    ENVR DIVISION OF ENVIRONMENTAL CHEMISTRY J. Goldfarb, Program Chair SUNDAY MORNING Section A Renaissance Washington, DC Downtown Meeting Room 3 Ecological & Human Health Impacts of Emerging Environmental Contaminants Cosponsored by AGRO and CHAL X. Pan, M. I. Selim, B. Zhang, Organizers, Presiding 8:30 Introductory Remarks. 8:35 1. Emerging environmental contaminants in the oceans: An overview of SOST priorities and US NSF investments. L. Clough 9:20 2. Applications of the web-based CompTox Chemistry Dashboard to support emerging contaminants in the Superfund Program. A. Frame, A.J. Williams, R. Judson, A. Mageid, G. Patlewicz, I. Shah, J. Smith, C. Grulke, J. Edwards 9:45 3. Changes in iodine speciation in surface waters receiving wastewater effluent. K.E. Studer, H. Weinberg 10:10 4. Effects of zinc oxide nanoparticles on the neurological behavior and pharyngeal pumping of C. elegans. L. Lish 10:35 Intermission. 10:50 5. Uptake of hormones and pharmaceutical and personal care products by quagga mussels (Dreissena bugensis) in an aquatic ecosystem. X. Bai, K. Acharya 11:15 6. Impact of nanoparticles on plant growth and development and the microRNA-mediated regulation. B. Zhang 11:40 7. Do humic acids alleviate the ecotoxicity of graphene oxide on crustacean Daphnia Magna?. Y. Zhang 12:05 8. Ecocultural factors of carbon emission, ecological footprints and implication for chemical safety in the environment. K.O. Oloruntegbe 1 Section B Renaissance Washington, DC Downtown Meeting Rooms 8/9 Electrochemical Technologies for Water Purification Cosponsored by CATL and CEI J. Barazesh, J. Jasper, E. Roberts, Organizers B. P. Chaplin, A. Pham, Organizers, Presiding 8:30 Introductory Remarks.
    [Show full text]
  • United States Patent Office Patented Mar
    3,649,485 United States Patent Office Patented Mar. 14, 1972 2 3,649,485 one member of the group of elements silver, gold, iron, ELECTROLYSIS OF BRINE USING COATED nickel, chromium, palladium, platinum, rhodium, iridium, CARBONANODES ruthenium, osmium, lead, copper and manganese. These Raymond S. Chisholm, Pittsburgh, Pa., assignor to elements may be in the form of the metallic element itself, PPG industries, Inc., Pittsburgh, Pa. or its oxide, nitride, carbide, boride or sulfide. No Drawing. Filed Oct. 2, 1968, Ser. No. 764,618 The coatings of the instant invention may be applied in Int. C. C01b 11/26, B01k 3/06 various ways to provide the desired mixed coating. Thus, U.S. C. 204-95 4 Claims for example, titanium sulfide particles may be mixed with a commercial metal resinate, such as platinum resinate or 10 iridium resinate, which are manufactured by Englehard ABSTRACT OF THE DISCLOSURE Industries, Inc., and the mixture applied to the titanium Novel electrodes are described having an electrocon anode base and heated to temperatures of 400 to 600 C., ductive base and a coating applied to the base. The coat with consequent breakdown of the platinum or iridium ing consists of the sulfides, nitrides, borides and carbides resinate to the corresponding metal. In such a case the of the elements aluminum, tantalum, titanium, bismuth, amount of platinum or iridium resinate is enough to tungsten, zirconium and hafnium mixed with the metals, provide titanium sulfide in the range of 5 to 95 mole per oxides, sulfides, nitrides, borides and carbides of the ele cent, preferably 25 to 75 mole percent of the sum of the ments gold, silver, platinum, palladium, ruthenium, platinum metal plus the titanium sulfide on a molecular rhodium, iridium, osmium, nickel, chromium, lead, basis in the coating and the heating is usually conducted copper and manganese.
    [Show full text]
  • 1. Active Sulfur Sites in Semimetallic Titanium Disulfide Enable CO2 Electroreduction
    Research Article Cite This: ACS Catal. 2020, 10, 66−72 pubs.acs.org/acscatalysis fi Active Sulfur Sites in Semimetallic Titanium Disul de Enable CO2 Electroreduction † † ‡ # ‡ ¶ § Abdalaziz Aljabour, Halime Coskun, Xueli Zheng, , Md Golam Kibria, , Moritz Strobel, § ∥ ∥ ‡ † ⊥ ‡ Sabine Hild, Matthias Kehrer, David Stifter, Edward H. Sargent, and Philipp Stadler*, , , † § ∥ ⊥ Institute of Physical Chemistry, Institute of Polymer Science, Center for Surface and Nanoanalytics, and Linz Institute of Technology, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria ‡ Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada *S Supporting Information ABSTRACT: Electrocatalytic CO2-to-CO conversion repre- sents one pathway to upgrade CO2 to a feedstock for both fuels and chemicals (CO, deployed in ensuing Fischer− Tropsch or bioupgrading). It necessitates selective and energy-efficient electrocatalystsa requirement met today only using noble metals such as gold and silver. Here, we show that the two-dimensional sulfur planes in semimetallic fi titanium disul de (TiS2) provide an earth-abundant alternative. In situ Fourier transform infrared mechanistic studies reveal fi − that CO2 binds to conductive disul de planes as intermediate monothiocarbonate. The sulfur CO2 intermediate state steers fi ffi 2 the reduction kinetics toward mainly CO. Using TiS2 thin lms, we reach cathodic energy e ciencies up to 64% at 5 mA cm . We conclude with directions for the further synthesis and study of semimetallic disulfides developing CO-selective electrocatalysts. fi KEYWORDS: CO2 reduction reaction, titanium disul de, electrocatalysis ■ INTRODUCTION conductivity similar to that of graphite.29,30 We show here that TiS2 can enhance CO2 reduction because a major limitation in Electrocatalysis is an attractive pathway to recycle CO2, upgrading it using renewable energy.1 Presently, the electro- earlier used MoS2 and related materials, the poor electrical ffi conductivity, is resolved.
    [Show full text]
  • The Use of Sulfur Chloride Systems in the Digestion and Purification of Zircaloy Nuclear Fuel Cladding
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2019 The Use of Sulfur Chloride Systems in the Digestion and Purification of Zircaloy Nuclear Fuel Cladding Jordan Travis University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Travis, Jordan, "The Use of Sulfur Chloride Systems in the Digestion and Purification of Zircaloy Nuclear Fuel Cladding. " Master's Thesis, University of Tennessee, 2019. https://trace.tennessee.edu/utk_gradthes/5502 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Jordan Travis entitled "The Use of Sulfur Chloride Systems in the Digestion and Purification of Zircaloy Nuclear Fuel Cladding." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Chemistry. Craig Barnes, Major Professor We have read this thesis and recommend its acceptance: David Jenkins, Konstantinos Vogiatzis, Stephen Chmely Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) The Use of Sulfur Chloride Systems in the Digestion and Purification of Zircaloy® Nuclear Fuel Cladding A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Jordan Robert Travis August 2019 Abstract The overarching goal of this research has been to develop and understand a low temperature protocol for the digestion of zirconium nuclear fuel cladding.
    [Show full text]
  • Department of Labor
    Vol. 79 Friday, No. 197 October 10, 2014 Part II Department of Labor Occupational Safety and Health Administration 29 CFR Parts 1910, 1915, 1917, et al. Chemical Management and Permissible Exposure Limits (PELs); Proposed Rule VerDate Sep<11>2014 17:41 Oct 09, 2014 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\10OCP2.SGM 10OCP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 61384 Federal Register / Vol. 79, No. 197 / Friday, October 10, 2014 / Proposed Rules DEPARTMENT OF LABOR faxed to the OSHA Docket Office at Docket: To read or download (202) 693–1648. submissions or other material in the Occupational Safety and Health Mail, hand delivery, express mail, or docket go to: www.regulations.gov or the Administration messenger or courier service: Copies OSHA Docket Office at the address must be submitted in triplicate (3) to the above. All documents in the docket are 29 CFR Parts 1910, 1915, 1917, 1918, OSHA Docket Office, Docket No. listed in the index; however, some and 1926 OSHA–2012–0023, U.S. Department of information (e.g. copyrighted materials) Labor, Room N–2625, 200 Constitution is not publicly available to read or [Docket No. OSHA 2012–0023] Avenue NW., Washington, DC 20210. download through the Web site. All submissions, including copyrighted RIN 1218–AC74 Deliveries (hand, express mail, messenger, and courier service) are material, are available for inspection Chemical Management and accepted during the Department of and copying at the OSHA Docket Office. Permissible Exposure Limits (PELs) Labor and Docket Office’s normal FOR FURTHER INFORMATION CONTACT: business hours, 8:15 a.m.
    [Show full text]
  • Two-Dimensional Materials for Energy Storage and Harvesting
    Two-dimensional Materials for Energy Storage and Harvesting A report submitted to the University of Dublin, Trinity College for the degree of Doctor of Philosophy in Chemistry By Meiying Liang Under the supervision of Prof. Valeria Nicolosi Feb 2020 Trinity College Dublin I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and it is entirely my own work. I agree to deposit this thesis in the University’s open access institutional repository or allow the Library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement. I consent to the examiner retaining a copy of the thesis beyond the examining period, should they so wish (EU GDPR May 2018). ……………………………………… Meiying Liang Summary Energy storage and harvesting have become a global concern due to the ever- increasing demand for energy and upcoming depletion of natural resources. As a family of Van der Waals layered crystals, metal chalcogenides (MCs) and transition metal chalcogenides (TMDs) possess unique electronic and photonic properties, enabling high- performance electronic devices for broad applications. However, the potential application of MCs and TMDs in energy devices remains relatively unexplored, partially due to their challenges in exfoliation as well as poor electrical conductivity. This PhD thesis mainly discussed the preparation and energy application of two-dimensional (2D) metal chalcogenides (MCs) and transition metal chalcogenides (TMDs). Layered MCs and TMDs crystals consist of strong in-plane covalently bonded metal (M) and chalcogenide (X) layers (e.g. X-M-X or X-M-M-X) that interact weakly in the out-of-plane direction via Wan der Waals forces.
    [Show full text]
  • Two-Dimensional Colloidal Nanocrystals Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret
    Two-Dimensional Colloidal Nanocrystals Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret To cite this version: Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret. Two- Dimensional Colloidal Nanocrystals. Chemical Reviews, American Chemical Society, 2016, 116 (18), pp.10934 - 10982. 10.1021/acs.chemrev.6b00164. hal-01419586 HAL Id: hal-01419586 https://hal.sorbonne-universite.fr/hal-01419586 Submitted on 19 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2D Colloidal Nanocrystals Michel Nasilowski1, Benoit Mahler2, Emmanuel Lhuillier3, Sandrine Ithurria1, Benoit Dubertret1* 1 Laboratoire de Physique et d’Étude des Matériaux, PSL Research University, CNRS UMR 8213, Sorbonne Universités UPMC Univ Paris 06, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France 2 Institut Lumière-Matière, CNRS UMR5306, Université Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France, 3 Institut des Nanosciences de Paris, UPMC-UMR 7588 CNRS, 4 place Jussieu, boîte courrier 840, 75252 Paris cedex 05, France *to whom correspondence should be sent: [email protected] Abstract: In this paper, we review recent progresses on colloidal growth of 2D nanocrystals. We identify four main sources of anisotropy which lead to the formation of plate- and sheet- like colloidal nanomaterials.
    [Show full text]
  • I a Database of Produced Water Constituents with Ranking Of
    A Database of Produced Water Constituents with Ranking of Human Health Risk By Sydney M. Joffre B.S. Chemical Engineering, University of Colorado, 2018 B.S. Environmental Engineering, University of Colorado, 2019 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree Master of Science Department of Civil, Environmental, and Architectural Engineering 2020 Committee Members: Cloelle Danforth Karl Linden James Rosenblum Joseph Ryan i Abstract: Sydney M. Joffre (Master of Science, Civil, Environmental, and Architectural Engineering) A Database of Produced Water Constituents with Ranking of Human Health Risk Thesis Directed by Professor Joseph N. Ryan Produced water is the largest waste stream of upstream oil and gas production in terms of volume. This study aims to address the implications of produced water reuse applications and inadvertent releases. We created a database of compounds identified in produced water from onshore oil and gas operations in North America and developed a prioritization scheme for those chemicals based on potential risk to human health. Through a comprehensive literature review, we found 179 studies that met our inclusion criteria. In total, there were 1,337 chemicals with a Chemical Abstract Service (CAS) number and 41 general water quality parameters (e.g., total dissolved solids, alkalinity) in produced water reported by the studies. We used the database to create a list of unique chemicals that had data available through the U.S. Environmental Protection Agency’s CompTox Dashboard and were in two or more individual samples at concentrations above the method detection limit.
    [Show full text]
  • European Patent Office
    s\ — IIINMNIIIINIIIINIIIIIIIII OJII Eur°Pean Patent Office <*S Office europeen des brevets (11) EP 0 942 006 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) int. CI.6: C08F 4/602, C08F 4/606, 15.09.1999 Bulletin 1999/37 C08F 10/00 (21) Application number: 99301730.0 (22) Date of filing: 08.03.1999 (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU • Yamada, Satoru MC NL PT SE Mie-gun, Mie (JP) Designated Extension States: • Yano, Akihiro AL LT LV MK RO SI Yokkaichi-shi, Mie (JP) (30) Priority: 09.03.1998 J P 5658598 (74) Representative: 1 1 .01 .1 999 JP 380399 Kearney, Kevin David Nicholas et al KILBURN & STRODE (71 ) Applicant: TOSOH CORPORATION 20 Red Lion Street Shinnanyo-shi, Yamaguchi-ken (JP) London, WC1 R 4PJ (GB) (54) Catalyst for olefin polymer production and process for olefin polymer production employing the catalyst (57) A novel catalyst for olefin polymerization is pro- vided which comprises [A] a metallocene compound containing a transition metal selected from Groups 3, 4, 5, and 6 of Periodic Table, [B] a reaction product of topotactic reduction by electron transfer, and [C] an organoaluminum compound. The catalyst may contain additionally [D] an organoalkaline earth metal com- pound or an organozinc compound. This catalyst has high catalytic activity for olefin polymerization without employing an expensive catalyst component. CM < CO o o CM <7> O Q_ LU Printed by Xerox (UK) Business Services 2.16.7/3.6 EP 0 942 006 A2 Description Background of the Invention: 5 Field of the Invention: [0001 ] The present invention relates to a catalyst for olefin polymer production comprising a metallocene compound, a reaction product of topotactic reduction by electron transfer, and an organoaluminum compound, and a process for producing an olefin polymer employing the catalyst.
    [Show full text]