Two-Dimensional Colloidal Nanocrystals Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret

Total Page:16

File Type:pdf, Size:1020Kb

Two-Dimensional Colloidal Nanocrystals Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret Two-Dimensional Colloidal Nanocrystals Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret To cite this version: Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret. Two- Dimensional Colloidal Nanocrystals. Chemical Reviews, American Chemical Society, 2016, 116 (18), pp.10934 - 10982. 10.1021/acs.chemrev.6b00164. hal-01419586 HAL Id: hal-01419586 https://hal.sorbonne-universite.fr/hal-01419586 Submitted on 19 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2D Colloidal Nanocrystals Michel Nasilowski1, Benoit Mahler2, Emmanuel Lhuillier3, Sandrine Ithurria1, Benoit Dubertret1* 1 Laboratoire de Physique et d’Étude des Matériaux, PSL Research University, CNRS UMR 8213, Sorbonne Universités UPMC Univ Paris 06, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France 2 Institut Lumière-Matière, CNRS UMR5306, Université Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France, 3 Institut des Nanosciences de Paris, UPMC-UMR 7588 CNRS, 4 place Jussieu, boîte courrier 840, 75252 Paris cedex 05, France *to whom correspondence should be sent: [email protected] Abstract: In this paper, we review recent progresses on colloidal growth of 2D nanocrystals. We identify four main sources of anisotropy which lead to the formation of plate- and sheet- like colloidal nanomaterials. Defect induced anisotropy is a growth method which relies on the presence of topological defects at the nanoscale to induce 2D shapes objects. Such a method is particularly important in the growth of metallic nanoobjects. Another way to induce anisotropy is based on ligand engineering. The availability of some nanocrystal facets can be tuned by selectively covering the surface with ligands of tunable thickness. Cadmium chalcogenides nanoplatelets (NPLs) strongly rely on this method which offers atomic control in the thinner direction, down to a few monolayers. 2D objects can also be obtained by post or in situ self-assembly of nanocrystals. This growth method differs from the previous ones in the sense that the elementary objects are not molecular precursors, and is a common method for lead chalcogenide compounds. Finally, anisotropy may simply rely on the lattice anisotropy itself as it is common for rod-like nanocrystals. Colloidally grown Transition Metal DiChalcogenides (TMDC) in particular result from such process. We also present hybrid syntheses which combine several of the previously described methods and other paths, such as cation exchange, which expand the range of available materials. Finally, we discuss in which sense 2D-objects differ from 0D nanocrystals and review some of their applications in optoelectronics, including lasing and photodetection, and biology. Keywords: 2D, beyond graphene, nanoplates, colloidal growth, anisotropy, TOC: Table of contents 1. Introduction ........................................................................................................................ 4 2. Defect induced anisotropy ................................................................................................ 16 2.1. Symmetry breaking during nucleation ...................................................................... 16 2.2. Twin defects ............................................................................................................... 17 2.3. Anisotropic growth due to twin defects .................................................................... 18 2.3.1. Singly-twinned nanoparticles ............................................................................. 18 2.3.2. Multiply-twinned nanoparticles ......................................................................... 19 2.4. Inducement of twin defects and oxidative etching ................................................... 22 2.5. Kinetic control and selective passivation of nanoplate growth ................................ 24 3. Ligand engineering ............................................................................................................ 28 3.1. Ligand templating ...................................................................................................... 28 3.2. The case of zinc-blende cadmium chalcogenides nanoplatelets .............................. 30 3.3. Thickness tunability ................................................................................................... 32 3.4. Colloidal 2D heterostructures.................................................................................... 37 3.4.1. Core-shell ............................................................................................................ 38 3.4.2. Core-crown ......................................................................................................... 40 3.5. Alloying and doping: .................................................................................................. 41 3.5.1. Alloying ............................................................................................................... 41 3.5.2. Doping ................................................................................................................ 42 3.6. Hybrid system ............................................................................................................ 43 3.6.1. SiO2 encapsulation ............................................................................................. 43 3.6.2. Metal functionalization ...................................................................................... 44 4. Self-assembly .................................................................................................................... 44 4.1. The case of lead chalcogenides self-assembly .......................................................... 44 4.2. Colloidal structure with 2-x dimensionality ............................................................... 45 5. Colloidal synthesis of chalcogenides with a layered crystalline structure ....................... 49 5.1. Liquid phase exfoliation ............................................................................................. 49 5.2. Colloidal synthesis of transition metal dichalcogenides ........................................... 51 5.2.1. Column IVB and VB chalcogenides ..................................................................... 51 5.2.2. Column VIB chalcogenides, molybdenum and tungsten compounds. .............. 55 5.3. Transformations and applications ............................................................................. 57 5.3.1. Manipulations .................................................................................................... 60 5.3.2. Functionalization ................................................................................................ 61 5.4. IV-VI lamellar chalcogenides...................................................................................... 64 5.5. Tetradymite colloidal compounds ............................................................................. 66 6. Alternative growths and hybrid materials ........................................................................ 68 6.1. Light induced methods .............................................................................................. 68 6.2. Cation exchange ........................................................................................................ 70 6.3. 2D perovskites ........................................................................................................... 72 7. Applications and perspectives .......................................................................................... 75 7.1. Why is 2D special ? .................................................................................................... 76 7.2. Application for light emission .................................................................................... 77 7.3. Application for photodetection ................................................................................. 79 7.4. Applications for biology and chemistry ..................................................................... 82 8. Conclusion ......................................................................................................................... 85 Acknowledgments .................................................................................................................... 86 References ................................................................................................................................ 87 1. Introduction Nanocrystals are particles with at least one dimension comprised between 1 and 100 nm. For the last decades, they have been of growing interest as they exhibit unique properties due to their small size. They are often described as artificial atoms, as their sparse density states can be modified tuning their shape, size and composition.1 Indeed, electron confinement in those nanostructures provides the nanocrystals with properties that are much different
Recommended publications
  • United States Patent (19) 11) 4,406,802 Horodysky Et Al
    United States Patent (19) 11) 4,406,802 Horodysky et al. 45) Sep. 27, 1983 (54) FRICTION REDUCING ADDITIVES AND 56) References Cited COMPOSITIONS THEREOF U.S. PATENT DOCUMENTS 3,009,791 ll/1961 Emrick ............................... 44/76 X (75) Inventors: Andrew G. Horodysky, Cherry Hill; 3,303,208 2/1967 Liao .................................... 44/76 X Joan M. Kaminski, Clementon, both 3,445,498 5/1969 Cyba. 252/49.6 X of N.J. 3,505,226 4/1970 Cyba. ... .252/49.6 3,533,945 10/1970 Vogel ..... ... 252/49.6 3,544,614 12/1970 Schwartz 252/49.6 X 73 Assignee: Mobil Oil Corporation, New York, 3,560,386 2/1971 Cyba. .................................. 252/49.6 N.Y. 4,022,713 5/1977 Waldstein ....................... 252/389 R Primary Examiner-W. J. Shine Attorney, Agent, or Firm-Alexander J. McKillop; (21) Appl. No.: 259,219 Michael G. Gilman; Howard M. Flournoy (57) ABSTRACT Filed: Apr. 30, 1981 (22) Mixed borated alcohol-amines, alcohol-amides, alcohol ethoxylated amines, alcohol-ethoxylated amides, al (51) Int. Cl. ........................ C10M 1/20; C10M 1/32; cohol-hydroxyester, alcohol-imidazolines and alcohol ClOM 1/54 hydrolyzed imidazolines and mixtures thereof are effec (52) U.S. C. ....................................... 252/49.6; 44/76; tive multifunctional additives when incorporated into 252/389 R; 252/400 R various organic media. 58 Field of Search .............. 252/49.6, 389 R, 400 R; 44/76; 568/1 12 Claims, No Drawings 4,406,802 FRCTION REDUCING ADDITIVES AND ROH COMPOSITIONS THEREOF where R may contain any desirable number of carbon BACKGROUND OF THE INVENTION 5 atoms based on such factors as oil solubility; however, R usually will contain from about 10 to about 30 carbon 1.
    [Show full text]
  • Innsbrook 5/23/2021 TABLE of CONTENTS
    Innsbrook 5/23/2021 TABLE OF CONTENTS SDS0618 Adacel 1 Sanofi Pasteur 1/22/2019 SDS0507 Albuterol Sulfate Inhalation Solution 2 Nephron Pharmaceuticals Corporation 2/1/2017 SDS1134 Ammonia Inhalants 3 Dynarex Corporation 1/14/2015 SDS1253 Betamethasone Sodium Phosphate and Betamethasone Acetate 4 Injectable Suspension, USP PharmaForce, Inc 8/14/2015 SDS1255 BYDUREON MIXTURE FOR INJECTION 5 ASTRAZENECA PTY LTD 8/8/2016 SDS1257 Bystolic Exemption Letter 6 Allergan 3/1/2018 SDS0430 Ceftriaxone for Injection 7 Hospira, A Pfizer Company 10/28/2016 SDS0338 CETYLCIDE II 8 Cetylite Industries, Inc 11/3/2016 SDS0513 Cyanocobalamin Injection, USP 9 West-Ward Pharmaceuticals 3/15/2016 SDS0417 ENGERIX-B ADULT 10 GlaxoSmithKline US 5/29/2018 SDS0431 Ethyl Chloride 11 Gebauer Company 4/23/2013 SDS1254 Fluorescein GloStrips, Ophthalmic 12 Nomax, Inc. 5/14/2015 SDS0414 Gardasil® 13 Merck & Co., Inc 11/15/2016 SDS0602 Grafco Silver Nitrate Applicators 14 GF Health Products, Inc. 9/19/2014 SDS0494 KENALOG®-10 and 40 mg/ml (triamcinolone acetonide) 15 Injectable Suspension Pfizer Pharmaceuticals Group 2/24/2015 SDS0429 Ketorolac Tromethamine Injection, USP 16 Hospira, A Pfizer Company 8/3/2016 SDS1249 LANTUS 17 Sanofi -aventis 11/16/2016 SDS0386 McKesson Hydrogen Peroxide, 3% 18 McKesson Medical-Surgical Inc. 10/29/2015 SDS1128 McKesson Iodoform Packing Strip, 5% 19 McKesson Medical-Surgical Inc. 9/1/2015 SDS0492 McKesson Isopropyl Rubbing Alcohol 70% 20 McKesson Medical-Surgical Inc. 8/7/2015 SDS1124 McKesson Multi-Enzymatic Cleanser Fresh Mint Fragrance
    [Show full text]
  • Desalination 455 (2019) 115–134
    Desalination 455 (2019) 115–134 Contents lists available at ScienceDirect Desalination journal homepage: www.elsevier.com/locate/desal Timeline on the application of intercalation materials in Capacitive T Deionization ⁎ K. Singha,b, S. Poradab,c, H.D. de Gierb, P.M. Biesheuvelb, L.C.P.M. de Smeta,b, a Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands b Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands c Soft Matter, Fluidics and Interfaces Group, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands ABSTRACT Capacitive deionization is a water desalination technology in which ions are stored in electrodes in an electrochemical cell construction, connected to an external circuit, to remove ions present in water from various sources. Conventionally, carbon has been the choice of material for the electrodes due to its low cost, low contact resistance and high specific surface area, electronic conductivity, and ion mobility within pores. The ions in the water are stored at the pore wallsofthese electrodes in an electrical double layer. However, alternative electrode materials, with a different mechanism for ion and charge storage, referred to as ion inter- calation, have been fabricated and studied as well. The salt adsorption performance exhibited by these materials is in most cases higher than that of carbon electrodes. This work traces the evolution of the study of redox activity in these intercalation materials and provides a chronological description of major devel- opments in the field of Capacitive Deionization (CDI) with intercalation electrodes.
    [Show full text]
  • Morphology and Electronic Structure of Sn-Intercalated Tis2(0001) Layers
    Morphology and Electronic Structure of Sn-Intercalated TiS2(0001) Layers *Junji Yuhara1, Naoki Isobe1, Kazuki Nishino1, Yuya Fujii1, #Lap Hong Chan1, Masaaki Araidai1,2,3, Masashi Nakatake4 1Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan 2Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan 3Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan 4Aichi Synchrotron Radiation Center, Aichi Science & Technology Foundation, Seto, 489-0965, Japan ABSTRACT: Surface morphology and electronic structure of layered semiconductor 1-trigonal phase titanium disulfide, i.e. 1T-TiS2(0001), with Sn intercalation, have been studied by scanning tunneling microscopy (STM), low-energy electron diffraction, synchrotron radiation photoemission spectroscopy, and first-principles calculations based on density functional theory (DFT). From the STM images, we show that Sn atoms are intercalated into TiS2 layers. The electronic structure exhibits electron Fermi pockets around M points and characteristic band dispersions around the M and K points after Sn intercalation. The DFT calculations reveal the geometrical site of intercalated Sn atom, which is surrounded by six sulfur atoms with D3d symmetry. The calculated electronic band structures are in good agreement with the experimental band structure. *Corresponding author: Junji Yuhara ([email protected]) #The present affiliation of Lap Hong Chan is National Chung Hsing University, Taichung 40227, Taiwan. 1 Introduction
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets Permalink https://escholarship.org/uc/item/73h6h1z6 Author Siordia, Andrew F. Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets A thesis submitted in partial satisfaction of the requirements of the degree Master of Science in Materials Science and Engineering by Andrew Francisco Siordia 2016 ABSTRACT OF THESIS Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets by Andrew Francisco Siordia Master of Science in Materials Science and Engineering University of California, Los Angeles, 2016 Professor Bruce S. Dunn, Chair Single layer crystalline materials, often termed two-dimension (2D) materials, have quickly become a popular topic of research interest due to their extraordinary properties. The intrinsic electrical, mechanical, and optical properties of graphene were found to be remarkably distinct from graphite, its bulk counterpart. In conjunction with newfound processing techniques, there is renewed interest in elucidating the structure-property relationships of other 2D materials ii like the transition metal dichalcogenides (TMDCs). The energy storage capability of 2D nanoplatelets of TiS2 and MoS2 are studied here providing a contrast with investigations of corresponding bulk materials in the early 1970s. TiS2 was synthesized into nanoplatelets using a hot injection route which provided a capacity of ~143mAhg-1 from thin film electrodes as determined by cyclic voltammetry measurements. Phase identification using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to complement the electrochemical performance and impurity identification is presented.
    [Show full text]
  • Quartz Crystal Microbalance Studies on Friction Modifiers for Lubricant Applications
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2015 QUARTZ CRYSTAL MICROBALANCE STUDIES ON FRICTION MODIFIERS FOR LUBRICANT APPLICATIONS Carey Lehner Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Chemistry Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4034 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Carey Lehner 2015 All Rights Reserved QUARTZ CRYSTAL MICROBALANCE STUDIES ON FRICTION MODIFIERS FOR LUBRICANT APPLICATIONS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by CAREY REBECCA GARBER LEHNER Chemistry and Anthropology, University of Mary Washington, VIRGINIA, 2005 Director: Julio C Alvarez PROFESSOR, DEPARTMENT OF CHEMISTRY Virginia Commonwealth University Richmond, Virginia December 2015 Table of Contents Page List of Figures ........................................................................................................................... iv List of Tables ........................................................................................................................... vii List of Abbreviations..............................................................................................................
    [Show full text]
  • United States Patent to 4,009,052 Whittingham 45 Feb
    United States Patent to 4,009,052 Whittingham 45 Feb. 22, 1977 54 CHALCOGENIDE BATTERY the anode-active material a metal selected from the group consisting of Group la metals, Group Ib metals, (75. Inventor: M. Stanley Whittingham, Fanwood, Group IIa metals, Group IIb metals, Group IIIa metals N.J. and Group IVa metals (lithium is preferred), the cath 73) Assignee: Exxon Research and Engineering ode contains as the cathode-active material a chalco Company, Linden, N.J. genide of the formula MZ wherein M is an element selected from the group consisting of titanium, zirco 22 Filed: Apr. 5, 1976 nium, hafnium, niobium, tantalum and vanadium (tita nium is preferred); Z is an element selected from the (21 Appl. No.: 673,696 group consisting of sulfur, selenium and tellurium, and x is a numerical value between about 1.8 and about 2. 1, Related U.S. Application Data and the electrolyte is one which does not chemically 63 Continuation-in-part of Ser. No. 552,599, Feb. 24, react with the anode or the cathode and which will 1975, abandoned, which is a continuation-in-part of permit the migration of ions from said anode-active Ser. No. 396,051, Sept. 10, 1973, abandoned. material to intercalate the cathode-active material. A highly useful battery may be prepared utilizing lithium (52) U.S. Cl. ............................... 429/191; 429/193; as the anode-active material, titanium disulfide as the 429/194; 429/199; 429/218; 429/229 cathode-active material and lithium perchlorate dis (51) Int. Cl’........................................ H01M 35/02 solved in tetrahydrofuran (70%) plus dimethoxyethane.
    [Show full text]
  • Thesis and Characterisation of Novel Precursors for the CVD of Tin Sulfides and Related Materials
    University of Bath PHD The synthesis and characterisation of novel precursors for the CVD of tin sulfides and related materials Kana, Aliki Theodora Award date: 2002 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 THE SYNTHESIS AND CHARACTERISATION OF NOVEL PRECURSORS FOR THE CVD OF TIN SULFIDES AND RELATED MATERIALS Submitted by Aliki Theodora Kana for the degree of PhD of the University of Bath 2002 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.
    [Show full text]
  • Synthesis of Monodisperse Aluminum Ferrite Nanocrystals
    ABSTRACT Synthesis and design of nanocrystalline metal oxides for applications in carbon nanotube growth and antioxidants by Seung Soo Lee Synthesis of size tunable nanomaterials creates distinct chemo-physical properties. Recently, the popularity of magnetic iron oxide and cerium oxide (CeO2) nanocrystals enables researchers to use magnetic iron oxides (magnetite and ferrites) in size dependent magnetic separation and CeO2 as an automobile exhaust gas catalyst. This research shows production of diameter-controlled monodisperse magnetic iron oxide (ranging from 3 to 40 nm in diameter) and CeO2 (from 3 to 10 nm in diameter) nanocrystals with exceptional narrow diameter distribution (σ<10%). The morphology and composition of the nanocrystals were varied by use of diverse metal precursors, reaction temperature, time, cosurfactants, and molar ratio between metal salt and surfactant. Now the narrow diameter distributions of preformed magnetic iron oxide nanocrystals made it possible to grow diameter controlled uniform CNTs. The correlation between aluminum ferrite nanocrystal diameter and CNT diameter was nearly one. Additionally, we could synthesize the highest percentage (60%) of single walled CNTs from the smallest aluminum ferrite nanocrystals (4.0 nm). Because of the synthesis of uniform nanocrystalline CeO2, we could study diameter dependent antioxidant properties of nanocrystalline CeO2; antioxidant capacity of CeO2 was nine times higher than a known commercial standard antioxidant, Trolox. In addition, the smallest CeO2 nanocrystal (4 nm) decreased the oxidative stress of human dermal fibroblasts (HDF) exposed to hydrogen peroxide. These works suggest better understanding of monodisperse nanocrystal synthetic mechanism and potential uses of the materials, such as high quality CNT growth using magnetic iron oxides as precursor catalysts and the reduction of oxidative stress in cells using monodisperse CeO2 nanocrystal as an antioxidant for reactive oxygen species in biological media.
    [Show full text]
  • Titanium Sulfides As Intercalation-Type Cathode
    Research Article www.acsami.org Titanium Sulfides as Intercalation-Type Cathode Materials for Rechargeable Aluminum Batteries † ‡ † § ‡ § Linxiao Geng, Jan P. Scheifers, Chengyin Fu, Jian Zhang, Boniface P. T. Fokwa, , † § and Juchen Guo*, , † Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States ‡ Department of Chemistry, University of California, Riverside, California 92521, United States § Materials Science and Engineering Program, University of California, Riverside, California 92521, United States *S Supporting Information ABSTRACT: We report the electrochemical intercalation−extraction of aluminum (Al) in the layered TiS2 and spinel-based cubic Cu0.31Ti2S4 as the potential cathode materials for rechargeable Al-ion batteries. The electrochemical characterizations demonstrate the feasibility of reversible Al intercalation in both titanium sulfides with layered TiS2 showing better properties. The crystallographic study sheds light on the possible Al intercalation sites in the titanium sulfides, while the results from galvanostatic intermittent titration indicate that the low Al3+ diffusion coefficients in the sulfide crystal structures are the primary obstacle to facile Al intercalation−extraction. KEYWORDS: aluminum-ion battery, aluminum intercalation, multivalent ion battery, titanium sulfides, ionic liquid electrolyte 17 fi ■ INTRODUCTION tion in Mo6S8. Our selection of transition metal sul des in The rechargeable aluminum-ion (Al-ion) battery is an place of oxides as Al-ion
    [Show full text]
  • On the Colloidal Stability of Apolar Nanoparticles: the Role of Ligand Length
    On the colloidal stability of apolar nanoparticles: The role of ligand length a a Debora Monego,† Thomas Kister ,‡ Nicholas Kirkwood,¶ Paul Mulvaney,¶ , Asaph Widmer-Cooper,† and Tobias Kraus∗ § ARC Centre of Excellence in Exciton Science, School of Chemistry and The University of † Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia INM — Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbr¨ucken,Germany ‡ ARC Centre of Excellence in Exciton Science, School of Chemistry, University of ¶ Melbourne, Parkville, Victoria 3010, Australia INM — Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbr¨ucken,Germany § Colloid and interface chemistry, Saarland University, Campus D2 2, 66123 Saarbr¨ucken, Germany E-mail: [email protected] aThese authors contributed equally. arXiv:1902.07413v1 [cond-mat.soft] 20 Feb 2019 1 Abstract Inorganic nanoparticle cores are often coated with organic ligands to render them dispersible in apolar solvents. However, the effect of the ligand shell on the colloidal stability of the overall hybrid particle is not fully understood. In particular, it is not known how the length of an apolar alkyl ligand chain affects the stability of a nanoparticle dispersion against agglomeration.Here, Small-Angle X-ray Scattering and molecular dynamics simulations have been used to study the interactions between gold nanoparticles and between cadmium selenide nanoparticles passivated by alkanethiol ligands with 12 to 18 carbons in the solvent decane. We find that increasing the ligand length increases colloidal stability in the core-dominated regime but decreases it in the ligand-dominated regime. This unexpected inversion is connected to the transition from ligand- to core-dominated agglomeration when the core diameter increases at constant ligand length.
    [Show full text]
  • Synthesis and Characterisation of Metal Dichalcogenide Based Nano Materials
    Synthesis and characterisation of metal dichalcogenide based nano materials Submitted by Yan Wen to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Engineering In September 2014 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. I Abstract WS2, MoS2 and ZrS2 nanomaterials in various forms, such as nanoflakes, inorganic fullerene-like nanoparticles and nanorattles, were synthesised using two modified conventional techniques: solid-gas reaction and chemical vapour deposition. Both of these techniques are essentially based on reactions between metal oxides/chlorides and sulphur at a relatively low temperature in the range of 350-950°C in H2/Ar. Compared with other common techniques, these techniques are cost effective and environmentally friendly and produce well-crystallised WS2, MoS2 and ZrS2 nanomaterials with controllable sizes and morphologies, arising from the involvement of simple equipment and a H2S-free process. With the solid-gas reaction technique, the formation of WS2 and MoS2 inorganic fullerene like (IF) particles follows a so-called "template growth" mechanism, which implies that the sizes of the final products resemble their metal oxide raw materials. Therefore, because of the usage of WO3 nanoparticles and MoO3 submicron particles as precursors, nanosized WS2 (<100 nm) and submicron- sized MoS2 (approximately 500 nm) particles were generated, respectively.
    [Show full text]