Two-Dimensional Colloidal Nanocrystals Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret
Total Page:16
File Type:pdf, Size:1020Kb
Two-Dimensional Colloidal Nanocrystals Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret To cite this version: Michel Nasilowski, Benoit Mahler, Emmanuel Lhuillier, Sandrine Ithurria, Benoit Dubertret. Two- Dimensional Colloidal Nanocrystals. Chemical Reviews, American Chemical Society, 2016, 116 (18), pp.10934 - 10982. 10.1021/acs.chemrev.6b00164. hal-01419586 HAL Id: hal-01419586 https://hal.sorbonne-universite.fr/hal-01419586 Submitted on 19 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2D Colloidal Nanocrystals Michel Nasilowski1, Benoit Mahler2, Emmanuel Lhuillier3, Sandrine Ithurria1, Benoit Dubertret1* 1 Laboratoire de Physique et d’Étude des Matériaux, PSL Research University, CNRS UMR 8213, Sorbonne Universités UPMC Univ Paris 06, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France 2 Institut Lumière-Matière, CNRS UMR5306, Université Lyon 1, Université de Lyon, 69622 Villeurbanne CEDEX, France, 3 Institut des Nanosciences de Paris, UPMC-UMR 7588 CNRS, 4 place Jussieu, boîte courrier 840, 75252 Paris cedex 05, France *to whom correspondence should be sent: [email protected] Abstract: In this paper, we review recent progresses on colloidal growth of 2D nanocrystals. We identify four main sources of anisotropy which lead to the formation of plate- and sheet- like colloidal nanomaterials. Defect induced anisotropy is a growth method which relies on the presence of topological defects at the nanoscale to induce 2D shapes objects. Such a method is particularly important in the growth of metallic nanoobjects. Another way to induce anisotropy is based on ligand engineering. The availability of some nanocrystal facets can be tuned by selectively covering the surface with ligands of tunable thickness. Cadmium chalcogenides nanoplatelets (NPLs) strongly rely on this method which offers atomic control in the thinner direction, down to a few monolayers. 2D objects can also be obtained by post or in situ self-assembly of nanocrystals. This growth method differs from the previous ones in the sense that the elementary objects are not molecular precursors, and is a common method for lead chalcogenide compounds. Finally, anisotropy may simply rely on the lattice anisotropy itself as it is common for rod-like nanocrystals. Colloidally grown Transition Metal DiChalcogenides (TMDC) in particular result from such process. We also present hybrid syntheses which combine several of the previously described methods and other paths, such as cation exchange, which expand the range of available materials. Finally, we discuss in which sense 2D-objects differ from 0D nanocrystals and review some of their applications in optoelectronics, including lasing and photodetection, and biology. Keywords: 2D, beyond graphene, nanoplates, colloidal growth, anisotropy, TOC: Table of contents 1. Introduction ........................................................................................................................ 4 2. Defect induced anisotropy ................................................................................................ 16 2.1. Symmetry breaking during nucleation ...................................................................... 16 2.2. Twin defects ............................................................................................................... 17 2.3. Anisotropic growth due to twin defects .................................................................... 18 2.3.1. Singly-twinned nanoparticles ............................................................................. 18 2.3.2. Multiply-twinned nanoparticles ......................................................................... 19 2.4. Inducement of twin defects and oxidative etching ................................................... 22 2.5. Kinetic control and selective passivation of nanoplate growth ................................ 24 3. Ligand engineering ............................................................................................................ 28 3.1. Ligand templating ...................................................................................................... 28 3.2. The case of zinc-blende cadmium chalcogenides nanoplatelets .............................. 30 3.3. Thickness tunability ................................................................................................... 32 3.4. Colloidal 2D heterostructures.................................................................................... 37 3.4.1. Core-shell ............................................................................................................ 38 3.4.2. Core-crown ......................................................................................................... 40 3.5. Alloying and doping: .................................................................................................. 41 3.5.1. Alloying ............................................................................................................... 41 3.5.2. Doping ................................................................................................................ 42 3.6. Hybrid system ............................................................................................................ 43 3.6.1. SiO2 encapsulation ............................................................................................. 43 3.6.2. Metal functionalization ...................................................................................... 44 4. Self-assembly .................................................................................................................... 44 4.1. The case of lead chalcogenides self-assembly .......................................................... 44 4.2. Colloidal structure with 2-x dimensionality ............................................................... 45 5. Colloidal synthesis of chalcogenides with a layered crystalline structure ....................... 49 5.1. Liquid phase exfoliation ............................................................................................. 49 5.2. Colloidal synthesis of transition metal dichalcogenides ........................................... 51 5.2.1. Column IVB and VB chalcogenides ..................................................................... 51 5.2.2. Column VIB chalcogenides, molybdenum and tungsten compounds. .............. 55 5.3. Transformations and applications ............................................................................. 57 5.3.1. Manipulations .................................................................................................... 60 5.3.2. Functionalization ................................................................................................ 61 5.4. IV-VI lamellar chalcogenides...................................................................................... 64 5.5. Tetradymite colloidal compounds ............................................................................. 66 6. Alternative growths and hybrid materials ........................................................................ 68 6.1. Light induced methods .............................................................................................. 68 6.2. Cation exchange ........................................................................................................ 70 6.3. 2D perovskites ........................................................................................................... 72 7. Applications and perspectives .......................................................................................... 75 7.1. Why is 2D special ? .................................................................................................... 76 7.2. Application for light emission .................................................................................... 77 7.3. Application for photodetection ................................................................................. 79 7.4. Applications for biology and chemistry ..................................................................... 82 8. Conclusion ......................................................................................................................... 85 Acknowledgments .................................................................................................................... 86 References ................................................................................................................................ 87 1. Introduction Nanocrystals are particles with at least one dimension comprised between 1 and 100 nm. For the last decades, they have been of growing interest as they exhibit unique properties due to their small size. They are often described as artificial atoms, as their sparse density states can be modified tuning their shape, size and composition.1 Indeed, electron confinement in those nanostructures provides the nanocrystals with properties that are much different