Appendix a BOLTZMANN's BATTALION A. Company: Wolfgang
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scientific Contacts of Polish Physicists with Albert Einstein
The Global and the Local: The History of Science and the Cultural Integration of Europe. nd Proceedings of the 2 ICESHS (Cracow, Poland, September 6–9, 2006) / Ed. by M. Kokowski. Bronisław Średniawa * Scientific contacts of Polish physicists with Albert Einstein Abstract Scientific relations of Polish physicists, living in Poland and on emigration,with Albert Einstein, in the first half of 20th century are presented. Two Polish physicists, J. Laub and L. Infeld, were Einstein’s collaborators. The exchange of letters between M. Smoluchowski and Einstein contributed essentially to the solution of the problem of density fluctuations. S Loria, J. Kowalski, W. Natanson, M. Wolfke and L. Silberstein led scientific discussions with Einstein. Marie Skłodowska-Curie collaborated with Einstein in the Commission of Intelectual Cooperation of the Ligue of Nations. Einstein proposed scientific collaboration to M. Mathisson, but because of the breakout of the 2nd World War and Mathisson’s death their collaboration could not be realised. Contacts of Polish physicists with Einstein contributed to the development of relativity in Poland. (1) Introduction Many Polish physicists of older generation, who were active in Polish universities and abroad before the First World War or in the interwar period, had personal contacts with Einstein or exchanged letters with him. Contacts of Polish physicists with Einstein certainly inspired some Polish theoreticians to scientific work in relativity. These contacts encouraged also Polish physicists to make effort in the domain of popularization of relativity and of the progress of physics in the twenties and thirties. We can therefore say that the contacts of Polish physicists with Einstein contributed to the development of theoretical physics in Poland. -
CERN Inaugurates LHC Cyrogenics
FACES AND PLACES SYMPOSIUM CERN inaugurates LHC cyrogenics Inauguration and ribbon-cutting ceremony of LHC cryogenics by CERN officials: from left, Giorgio Passardi, leader of cryogenics for experiments group; Philippe Lebrun, head of the accelerator Members of the CERN cryogenic groups in front of the Globe of technology department; Giorgio Brianti, founder of the LHC Science and Innovation, where the symposium took place. (Globe project; Lyn Evans, LHC project leader and Laurent Tavian, leader conception T Buchi, Charpente Concept and H Dessimoz, Group H.) of the cryogenics for accelerators group. The beginning of June saw the start of a coils operating at 1.9 K. Besides enhancing Tennessee. Although the commissioning new phase at the LHC project, with the the performance of the niobium-titanium work is far from finished, the cyrogenics inauguration of LHC cryogenics. This was superconductor, this temperature regime groups at CERN felt that after 10 years of marked with a symposium in the Globe makes use of the excellent heat-transfer construction it was now a good time to of Science and Innovation attended by properties of helium in its superfluid state. celebrate, organizing the Symposium for the 178 representatives of the research The design for the LHC cryogenics had to Inauguration of LHC Cryogenics that took institutes involved and industrial partners. incorporate both newly ordered and reused place on 31 May-1 June at CERN's Globe of It also coincided with the stable low- refrigeration plant from LEP operating Science and Innovation. After an inaugural temperature operation of the cryogenic plant at 4.5 K – together with a second stage address by CERN’s director-general, for sector 7–8, the first sector to be cooled operating at 1.9 K – in a system that could Robert Aymar, the programme included down (CERN Courier May 2007 p5). -
Great Physicists
Great Physicists Great Physicists The Life and Times of Leading Physicists from Galileo to Hawking William H. Cropper 1 2001 1 Oxford New York Athens Auckland Bangkok Bogota´ Buenos Aires Cape Town Chennai Dar es Salaam Delhi Florence HongKong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi Paris Sao Paulo Shanghai Singapore Taipei Tokyo Toronto Warsaw and associated companies in Berlin Ibadan Copyright ᭧ 2001 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Cropper, William H. Great Physicists: the life and times of leadingphysicists from Galileo to Hawking/ William H. Cropper. p. cm Includes bibliographical references and index. ISBN 0–19–513748–5 1. Physicists—Biography. I. Title. QC15 .C76 2001 530'.092'2—dc21 [B] 2001021611 987654321 Printed in the United States of America on acid-free paper Contents Preface ix Acknowledgments xi I. Mechanics Historical Synopsis 3 1. How the Heavens Go 5 Galileo Galilei 2. A Man Obsessed 18 Isaac Newton II. Thermodynamics Historical Synopsis 41 3. A Tale of Two Revolutions 43 Sadi Carnot 4. On the Dark Side 51 Robert Mayer 5. A Holy Undertaking59 James Joule 6. Unities and a Unifier 71 Hermann Helmholtz 7. The Scientist as Virtuoso 78 William Thomson 8. -
Development Plan 2021–2023
Approved by the general assembly of 12/13/2019. OeAW Development Plan 2021–2023 Glossary AI Artificial Intelligence BMBWF Bundesministerium für Bildung, Wissenschaft und Forschung (Federal Ministry of Education, Science and Research) CLARIN Common Language Resources and Technology Infrastructure DARIAH Digital Research Infrastructure for the Arts and Humanities DH Digital Humanities ESQ Erwin Schrödinger Center for Quantum Science & Technology ESS Earth System Sciences Research Program FWF Fonds zur Förderung der wissenschaftlichen Forschung (Austrian Science Fund) FTI Forschung, Technologie und Innovation (Research, Technology and Innovation) GSK Geistes-, Sozial- und Kulturwissenschaften (Humanities, Social Sciences and Cultural Studies) GUEP Entwurf des Gesamtösterreichischen Universitätsentwicklungsplans 2022–2027 in der Fassung vom 01.08.2019 (draft Austrian University Development Plan 2022–2027 as of 08/01/2019) HI Rom Historisches Institut beim Österreichischen Kulturforum in Rom (Historical Institute of the Austrian Cultural Forum, Rome) HPDA High Performance Data Analysis IP Intellectual Property IPR Intellectual Property Rights JESH Joint Excellence in Science and Humanities funding program at the OeAW NFTE Nationalstiftung für Forschung, Technologie und Entwicklung (National Foundation for Research, Technology and Development) PA Performance agreement between the OeAW and the BMBWF SDG Sustainable Development Goals STEM Science, Technology, Engineering and Mathematics Page 2 of 30 OeAW Development Plan 2021–2023 Table of Contents -
From Brownian Motion to Molecular Simulations
odeling M omputing MATHEMATICAL MODELING AND COMPUTING, Vol. 5, No. 2, pp. 99–107 (2018) M C athematical From Brownian motion to molecular simulations Rovenchak A.1, Trokhymchuk A.2 1Department for Theoretical Physics, Ivan Franko National University of Lviv, 12 Drahomanov Str., Lviv, 79005, Ukraine 2Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., Lviv, 79011, Ukraine (Received 21 December 2018) A brief historical overview towards the contribution of two famous Lviv scholars – Mar- ian Smoluchowski and Stanis law Ulam – to the development of modern physical science fields such as molecular modeling and computer simulations is presented and discussed in connection with recent studies carried out in Lviv universities and research institutions. Keywords: history of science, Monte Carlo simulations, molecular dynamics simula- tions, first principles ab initio simulations 2000 MSC: 01A60, 82-03, 82C40, 82D30, 60J65 UDC: 53(091), 501, 533.723, 544.77 DOI: 10.23939/mmc2018.02.099 , , , δoκε˜ι δε` αυτωι˜ ταδε´ αρχας` ε˜ιναι των˜ , , · , o´λων ατoµoυς´ κα`ι κενoν,´ τα` δ′αλλα παντα´ νενoµ´ισθαι [δoξαζεσθαι´ ] (Diogenes La¨ertius, Democritus, Vol. IX, 44) The first principles of the universe are atoms and empty space; everything else is merely thought to exist. (transl. by Robert Drew Hicks, 1925; reproduced from Wikiquote) 1. Introduction Brownian motion was discovered, most probably, in the late 18th century by a Dutch scholar Jan Ingen-Housz (1730–1799) [1] and is known after the name of a Scottish botanist Robert Brown (1773– 1858), who observed the chaotic motion of pollen grains in water [2]. -
Ludwig Boltzmann Was Born in Vienna, Austria. He Received His Early Education from a Private Tutor at Home
Ludwig Boltzmann (1844-1906) Ludwig Boltzmann was born in Vienna, Austria. He received his early education from a private tutor at home. In 1863 he entered the University of Vienna, and was awarded his doctorate in 1866. His thesis was on the kinetic theory of gases under the supervision of Josef Stefan. Boltzmann moved to the University of Graz in 1869 where he was appointed chair of the department of theoretical physics. He would move six more times, occupying chairs in mathematics and experimental physics. Boltzmann was one of the most highly regarded scientists, and universities wishing to increase their prestige would lure him to their institutions with high salaries and prestigious posts. Boltzmann himself was subject to mood swings and he joked that this was due to his being born on the night between Shrove Tuesday and Ash Wednesday (or between Carnival and Lent). Traveling and relocating would temporarily provide relief from his depression. He married Henriette von Aigentler in 1876. They had three daughters and two sons. Boltzmann is best known for pioneering the field of statistical mechanics. This work was done independently of J. Willard Gibbs (who never moved from his home in Connecticut). Together their theories connected the seemingly wide gap between the macroscopic properties and behavior of substances with the microscopic properties and behavior of atoms and molecules. Interestingly, the history of statistical mechanics begins with a mathematical prize at Cambridge in 1855 on the subject of evaluating the motions of Saturn’s rings. (Laplace had developed a mechanical theory of the rings concluding that their stability was due to irregularities in mass distribution.) The prize was won by James Clerk Maxwell who then went on to develop the theory that, without knowing the individual motions of particles (or molecules), it was possible to use their statistical behavior to calculate properties of a gas such as viscosity, collision rate, diffusion rate and the ability to conduct heat. -
Hans Thirring, on the Formal Analogy Between the Basic Electromagnetic Equations and Einstein’S Gravity Equations in first Approximation
Gen Relativ Gravit (2012) 44:3217–3224 DOI 10.1007/s10714-012-1450-4 GOLDEN OLDIE EDITORIAL Editorial note to: Hans Thirring, On the formal analogy between the basic electromagnetic equations and Einstein’s gravity equations in first approximation Herbert Pfister Published online: 26 October 2012 © Springer Science+Business Media, LLC 2012 Keywords Gravitomagnetism · Frame dragging · Lense–Thirring effect · Experimental relativity · Golden Oldie 1 Technical comments on the Thirring paper The paper contains some inconsistencies and errors, and an undefined quantity, which, however, does not invalidate the final equations for gravitomagnetism. Since in a realistic rotating body (angular velocity ω) there arise centrifugal stresses of order ω2, it is inconsistent to incorporate the velocities v of the field-generating body up to second order but to treat this body as incoherent matter (dust). The same incon- sistency appeared in Thirring’s model of a rotating mass shell [1], which therefore did not correctly solve the Einstein equations (in the shell). For this case the inconsistency was observed and corrected by Lanczos [2]. In the present paper the inconsistency has no severe consequences because the second order terms in v anyhow are quite unimportant. An error in Thirring’s paper appears in the integration volume dV0 which has to be substituted by dV = dV0/(dx4/ds). The same error appeared in Thirring’s paper [1] on the rotating mass shell, was there observed by M. Laue and W. Pauli, and corrected by Thirring in [3]. But, as with the inconsistency with the incoherent The republication of the original paper can be found in this issue following the editorial note and online via doi:10.1007/s10714-012-1451-3. -
Chapter 1 the Biography of a Trafficking Material
Trafficking Materials and Maria Rentetzi Gendered Experimental Practices Chapter 1 The Biography of a Trafficking Material In 1904, an article titled "Radium and Radioactivity" appeared in Century 1 Magazine, a monthly popular magazine published from 1881 to 1930. The article presents Marie Curie's personal account of the discovery of radium and radioactivity. In the article, Curie discusses in depth her arduous attempts to study the radiation of the compounds of uranium and that of known chemical elements, hoping to discover more which are endowed with atomic radioactivity. She revels that it was the chemists who supplied her with the materials she needed. "As I desired to make a very thorough investigation, I had resource to different chemists, who put at my disposal specimens—in some cases the only ones in existence—containing very rare elements." Her next step was to examine different minerals, especially the oxide of uranium 2 ore (pitchblende). To her great surprise, this specimen was found to be four times more active than oxide of uranium itself. The explanation was more than obvious. "The ore must contain a substance more radioactive than uranium and thorium, and this substance must necessarily be a chemical element as yet unknown."1 Her attempts to isolate the new element would lead Marie and Pierre Curie, who joined her research shortly after, to the discovery of both polonium and radium, to the Nobel Prize in Physics in 1903, and to a second Nobel Prize in 1911, this time in chemistry. This chapter attempts to present a cultural -
Chronological List of Correspondence, 1895–1920
CHRONOLOGICAL LIST OF CORRESPONDENCE, 1895–1920 In this chronological list of correspondence, the volume and document numbers follow each name. Documents abstracted in the calendars are listed in the Alphabetical List of Texts in this volume. 1895 13 or 20 Mar To Mileva Maric;;, 1, 45 29 Apr To Rosa Winteler, 1, 46 Summer To Caesar Koch, 1, 6 18 May To Rosa Winteler, 1, 47 28 Jul To Julia Niggli, 1, 48 Aug To Rosa Winteler, 5: Vol. 1, 48a 1896 early Aug To Mileva Maric;;, 1, 50 6? Aug To Julia Niggli, 1, 51 21 Apr To Marie Winteler, with a 10? Aug To Mileva Maric;;, 1, 52 postscript by Pauline Einstein, after 10 Aug–before 10 Sep 1,18 From Mileva Maric;;, 1, 53 7 Sep To the Department of Education, 10 Sep To Mileva Maric;;, 1, 54 Canton of Aargau, 1, 20 11 Sep To Julia Niggli, 1, 55 4–25 Nov From Marie Winteler, 1, 29 11 Sep To Pauline Winteler, 1, 56 30 Nov From Marie Winteler, 1, 30 28? Sep To Mileva Maric;;, 1, 57 10 Oct To Mileva Maric;;, 1, 58 1897 19 Oct To the Swiss Federal Council, 1, 60 May? To Pauline Winteler, 1, 34 1900 21 May To Pauline Winteler, 5: Vol. 1, 34a 7 Jun To Pauline Winteler, 1, 35 ? From Mileva Maric;;, 1, 61 after 20 Oct From Mileva Maric;;, 1, 36 28 Feb To the Swiss Department of Foreign Affairs, 1, 62 1898 26 Jun To the Zurich City Council, 1, 65 29? Jul To Mileva Maric;;, 1, 68 ? To Maja Einstein, 1, 38 1 Aug To Mileva Maric;;, 1, 69 2 Jan To Mileva Maric;; [envelope only], 1 6 Aug To Mileva Maric;;, 1, 70 13 Jan To Maja Einstein, 8: Vol. -
Pilgrimage Through the History of German Natural Science, University
Pilgrimage through the History of German Natural Science, University City Bonn Kaoru Harada Kobe Shoin Women’s College, Sinoharaobanoyama-cho, Nada-ku, Kobe-city, 657-0015, Japan E-mail: [email protected] (Received 10 July 2001, Accepted 10 September 2001) Introduction scientists. The gravestone is a personal monument recording In the Roman days, Bonn was a citadel of Castra official and personal history. Visiting remains and various Bonnensia, and later the city of Bonn was a Teritory of the memorials of famous scholars gives me a satisfactory feeling. Archbishop of Koln for many years. In the year 1786, the The intellectual impression was quite different from that I got by University was established, but it was closed after 10 years. In reading a textbook dealing with the same subject, because grave the year 1818 a new University was established again in Bonn. visiting is a personal contact with historical person. I would like Since then, Bonn has been a University town. Therefore, to call such a visit a “pilgrimage” through the history of natural University of Bonn is relatively new in Germany as is the sciences. We may learn sciences through the pilgrimage, and University of Berlin (established 1810). But many famous also learn history through the pilgrimage. scholars have emerged from the University. The university is In this article, famous scientists are the main target of our officially called “Rheinisch Friedrich-Wilhelm-Universitat zu “pilgrimage”, however, some famous nonscientists are also Bonn” by the name of the founder. However, the organization is included because they are also contributors to our human history. -
Progress Report
Progress Report 2008–2009 We owe special thanks to the Austrian Science Fund (FWF) for its financial support for numerous projects of the research facilities of the Austrian Academy of Sciences All rights reserved Copyright © 2009 by Austrian Academy of Sciences Layout: Art Quarterly Publishing House Werbe- und PR-Agentur GmbH. Printed and bound: Wograndl 3 Table of contents Preface . 5 RESEARCH FACILITIES OF THE SECTION FOR MATHEMATICS AND NATURAL SCIENCES Biology and Medicine CeMM – Research Center for Molecular Medicine GmbH . 11 Breath Research Institute . 14 GMI – Gregor Mendel Institute of Molecular Plant Biology . 18 IMBA – Institute of Molecular Biotechnology GmbH . 22 Institute for Biomedical Aging Research . 26 Institute for Biophysics and Nanosystems Research . 30 Konrad Lorenz Institute for Ethology . 34 Earth Sciences Institute for Geographic Information Science . 37 Center for Geosciences . 40 Commission for the Palaeontological and Stratigraphical Research of Austria . 42 Commission for Geophysical Research . 45 Commission for Quaternary Research . 48 Commission for Basic Research on Mineral Raw Materials . 51 Mathematics, Simulation and Metrology Institute for Integrated Sensor Systems . 55 Acoustics Research Institute . 58 Johann Radon Institute for Computational and Applied Mathematics . 61 Commission for Scientific Visualization . 65 Physics and Materials Sciences Erich Schmid Institute of Materials Science . 68 Institute of High Energy Physics . 71 Institute for Quantum Optics and Quantum Information . 74 Stefan Meyer Institute for Subatomic Physic. 77 Environmental Research Institute for Limnology . 80 Institute of Technology Assessment . 83 Commission for Interdisciplinary Ecological Studies . 86 Space Research Space Research Institute . 89 Commission for Astronomy . 92 Interdepartmental Research Tasks Commission for Scientific Co-operation with the Austrian Federal Ministry of Defence and Sports . -
Light and the Electromagnetic Spectrum
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © JonesLight & Bartlett and Learning, LLCthe © Jones & Bartlett Learning, LLC NOTElectromagnetic FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION4 Spectrum © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALEJ AMESOR DISTRIBUTIONCLERK MAXWELL WAS BORN IN EDINBURGH, SCOTLANDNOT FOR IN 1831. SALE His ORgenius DISTRIBUTION was ap- The Milky Way seen parent early in his life, for at the age of 14 years, he published a paper in the at 10 wavelengths of Proceedings of the Royal Society of Edinburgh. One of his first major achievements the electromagnetic was the explanation for the rings of Saturn, in which he showed that they con- spectrum. Courtesy of Astrophysics Data Facility sist of small particles in orbit around the planet. In the 1860s, Maxwell began at the NASA Goddard a study of electricity© Jones and & magnetismBartlett Learning, and discovered LLC that it should be possible© Jones Space & Bartlett Flight Center. Learning, LLC to produce aNOT wave FORthat combines SALE OR electrical DISTRIBUTION and magnetic effects, a so-calledNOT FOR SALE OR DISTRIBUTION electromagnetic wave.