Initiation of DNA Replication After Fertilization Is Regulated by P90rsk at Pre-RC/Pre-IC Transition in Starfish Eggs

Total Page:16

File Type:pdf, Size:1020Kb

Initiation of DNA Replication After Fertilization Is Regulated by P90rsk at Pre-RC/Pre-IC Transition in Starfish Eggs Initiation of DNA replication after fertilization is regulated by p90Rsk at pre-RC/pre-IC transition in starfish eggs Kazunori Tachibana, Masashi Mori1, Takashi Matsuhira, Tomotake Karino, Takuro Inagaki, Ai Nagayama, Atsuya Nishiyama2, Masatoshi Hara, and Takeo Kishimoto3 Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan Communicated by Joan Ruderman, Harvard Medical School, Boston, MA, January 17, 2010 (received for review August 31, 2009) Initiation of DNA replication in eukaryotic cells is controlled through ase, p90Rsk) pathway causes the G1-phase arrest at the pronu- an ordered assembly of protein complexes at replication origins. The cleus stage (6–10). Fertilization induces degradation of Mos to molecules involved in this process are well conserved but diversely shutdown this pathway, leading to the first S phase with no regulated. Typically, initiation of DNA replication is regulated in requirement of new protein synthesis. However, it remains response to developmental events in multicellular organisms. Here, unclear how p90Rsk negatively controls the G1/S-phase tran- we elucidate the regulation of the first S phase of the embryonic cell sition, or to which stage the initiation complex for DNA repli- cycle after fertilization. Unless fertilization occurs, the Mos-MAPK- cation is assembled in unfertilized G1-phase eggs. Here we show p90Rsk pathway causes the G1-phase arrest after completion of that the p90Rsk-dependent G1-phase arrest of unfertilized meiosis in starfish eggs. Fertilization shuts down this pathway, starfish eggs occurs at the pre-RC stage, and that in the absence leading to the first S phase with no requirement of new protein of Cdk1 and Cdk2 activities and Cdc7 accumulation, inactivation synthesis. However, how and in which stage the initiation complex of p90Rsk is necessary and sufficient for further loading of Cdc45 fi for DNA replication is arrested by p90Rsk remains unclear. We nd and the subsequent initiation of DNA replication. that in G1-arrested eggs, chromatin is loaded with the Mcm complex to form the prereplicative complex (pre-RC). Inactivation of p90Rsk Results CELL BIOLOGY fi is necessary and suf cient for further loading of Cdc45 onto Female Pronuclei in Unfertilized Eggs Are Licensed for DNA chromatin to form the preinitiation complex (pre-IC) and the Replication. We first determined the timing of S phase. A 5-min subsequent initiation of DNA replication. However, cyclin A-, B-, pulse incorporation of BrdU to DNA indicates that the first S and E-Cdk’s activity and Cdc7 accumulation are dispensable for ∼ ∼ fi phase begins 30 min and ends 45 min after insemination of these processes. These observations de ne the stage of G1 arrest eggs arrested at G1 phase (Fig. 1A and Fig. S1) (11). In parallel, in unfertilized eggs at transition point from pre-RC to pre-IC, and congression and fusion between female and male pronuclei reveal a unique role of p90Rsk for a negative regulator of this tran- occurred (12), while DNA replication appeared to start sepa- sition. Thus, initiation of DNA replication in the meiosis-to-mitosis rately and almost simultaneously in each pronucleus and then to transition is regulated at the pre-RC stage as like in the G1 check- continue for a little longer period in male pronuclei. Thereafter, point, but in a manner different from the checkpoint. M phase started at ∼60 min (Fig. 1A and Fig. S1). To investigate assembly of the initiation complex for DNA Cdc45 | G1 arrest | Mcm complex | Mos-MAPK pathway | oocyte-to-embryo transition replication before and after fertilization, we isolated cDNAs of starfish orthologs of Cdc6, Mcm2, Mcm7, and Cdc45 and raised antibodies to these proteins (Figs. S2 A–D and S3 A–D). All of NA replication in eukaryotic cells is initiated through an these proteins were detectable in unfertilized eggs, and their Dordered assembly of protein complexes at replication origins E fi protein levels remained constant during cleavage cycles (Fig. 1 (1, 2). Replication origins are rst recognized and bound by the for Cdc45 and Fig. S3H for Cdc6 and Mcm2). Both Cdc6 and origin recognition complex (ORC). During late M or early G1 Mcm2 were already detectable on chromatin of female pronuclei phase, Cdc6 associates onto ORC-containing DNA. Then, MCM in unfertilized eggs arrested at G1 phase (Fig. 1B and C; 0 min). (minichromosome maintenance) proteins associate with the After fertilization, they remained localized on chromatin at ORC- and Cdc6-containing replication origins, requiring Cdt1 to almost constant levels until S phase. As DNA replication pro- form a prereplicative complex (pre-RC). At the onset of S phase, gressed, the Mcm2 signal decreased in mid-S phase (Fig. 1C; Cdc45 associates with the pre-RC to form a preinitiation com- 35 min) and disappeared in late S phase (Fig. 1C; 40 min), plex (pre-IC) that is capable of origin unwinding and of pro- whereas the Cdc6 signal remained until early G2 phase (Fig. 1B; moting assembly of replication forks at replication origin. Thus, Cdc45 plays a crucial role in activation of replication origins. Although the mechanism of initiation of DNA replication is Author contributions: K.T., M.M., M.H., and T. Kishimoto designed research; K.T., M.M., T.M., well conserved, its control is diverse (3). In addition to evolu- T. Karino, T.I., A. Nagayama, A. Nishiyama, and M.H. performed research; K.T., M.M., T.M., tionary variation, DNA replication is regulated in response to M.H., and T. Kishimoto analyzed data; and K.T. and T. Kishimoto wrote the paper. developmental events in multicellular organisms. Fertilization is The authors declare no conflict of interest. the first major event in development and is necessary for both Data deposition: The sequences reported in this paper have been deposited in the DNA releasing meiotic arrest and restarting the cell cycle with ini- Data Bank of Japan (DDBJ) (accession nos. AB474909, AB474910, AB474911, AB474912, AB481214, AB481376, and AB530248). tiation of the first round of DNA replication. In some organisms, Drosophila – 1Present address: Gene Expression Unit, European Molecular Biology Laboratory (EMBL), including and echinoderms (4 6), fertilization is not a Meyerhofstrasse 1, D-69117 Heidelberg, Germany. prerequisite for the completion of meiosis, but required to trig- 2Present address: Laboratory of Replication and Genome Dynamics, Institute of Human ger entry into the first S phase and the subsequent cleavage Genetics, CNRS, 34396 Montpellier Cedex 5, France. fi Asterina pectinifera Patiria pecti- cycles. In star sh (renamed to 3To whom correspondence should be addressed. E-mail: [email protected]. nifera in 2007 at the NCBI Taxonomy Browser), the Mos-MAPK This article contains supporting information online at www.pnas.org/cgi/content/full/ (mitogen-activated protein kinase)-Rsk (p90 ribosomal S6 kin- 1000587107/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1000587107 PNAS Early Edition | 1of6 Downloaded by guest on September 29, 2021 A G1 S G2 M BrdU DNA Merge B Cdc6 DNA Merge C Mcm2 DNA Merge D Cdc45 DNA Merge 10 µm 0 5 10 15 20 25 30 35 40 45 50 55 60 Time after fertilization (min) E Insemination Pro-I MI IK MII G1 S G2 M Cdc45 0 30 60 90 120 150 180 210 Time after 1-MeAde addition (min) Fig. 1. In female pronuclei of starfish eggs, chromatin is loaded with Cdc6 and Mcm2 before fertilization, and then with Cdc45 after fertilization at G1/S- phase transition. (A) Mature eggs, which were arrested at G1 phase after completion of meiosis II, were inseminated. To monitor DNA replication, every 5 min, fertilized eggs were pulse labeled for 5 min with BrdU, extracted, and immunostained with anti-BrdU antibody (green). DNA was stained with DAPI (red). Insets indicate male chromatin, and main figures indicate female chromatin or fused chromatin. (B–D) Every 5 min, isolated eggs were extensively extracted and then immunostained with anti-starfish Cdc6 antibody (B, green), anti-starfish Mcm2 antibody (C, green), and anti-starfish Cdc45 antibody (D, green). (Scale bar, 10 μm.) (E) Cdc45 protein is detectable in immature oocytes and its levels remain constant during meiotic and cleavage cycles. 45 min), declined after mid-G2 phase (Fig. 1B; 50 min), and In male pronuclei, both Cdc6 and Mcm2 were undetectable finally disappeared at M phase (Fig. 1B; 60 min). Similar immediately after fertilization, and then soon became detecte- behavior of Mcm was observed with other antibodies against able (Fig. 1 B and C Insets;0∼20 min), indicating that male human Mcm2 (BM28) and starfish Mcm7 (Fig. S4). pronulei become licensed after fertilization. Indeed, undegrad- Before the G1 arrest, Mcm2 was detectable on chromatin at able form of geminin prevented DNA replication in male pro- each end of meiosis I and II during meiotic cycle, coincidentally nuclei (but not in female pronuclei) after fertilization, even when with decreased levels of cyclin B-Cdk1 activity (Fig. 2A). The it was introduced into G1-phase eggs (Fig. 2D, arrowhead). After Mcm2 loading was dependent on geminin degradation, sup- the loading onto chromatin, Cdc6 and Mcm2 behaved similarly porting that it was mediated by Cdt1 (Fig. 2 B and C) (13). to those in female pronuclei. Consistently, undegradable form of geminin prevented DNA replication in female pronuclei after fertilization, when it was Replication Origins Are Not Activated in Female Pronuclei of introduced into oocytes before, but not after, meiotic maturation Unfertilized Eggs. In contrast to Cdc6 and Mcm2, Cdc45 was (Fig. 2D). Taken together, pre-RC is already formed in female undetectable on chromatin in female pronuclei of unfertilized pronuclei of unfertilized eggs; that is, female pronuclei are G1-phase eggs (Fig. 1D; 0 min). During meiotic maturation licensed for DNA replication before fertilization.
Recommended publications
  • DNA Damage Checkpoint Dynamics Drive Cell Cycle Phase Transitions
    bioRxiv preprint doi: https://doi.org/10.1101/137307; this version posted August 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA damage checkpoint dynamics drive cell cycle phase transitions Hui Xiao Chao1,2, Cere E. Poovey1, Ashley A. Privette1, Gavin D. Grant3,4, Hui Yan Chao1, Jeanette G. Cook3,4, and Jeremy E. Purvis1,2,4,† 1Department of Genetics 2Curriculum for Bioinformatics and Computational Biology 3Department of Biochemistry and Biophysics 4Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill 120 Mason Farm Road Chapel Hill, NC 27599-7264 †Corresponding Author: Jeremy Purvis Genetic Medicine Building 5061, CB#7264 120 Mason Farm Road Chapel Hill, NC 27599-7264 [email protected] ABSTRACT DNA damage checkpoints are cellular mechanisms that protect the integrity of the genome during cell cycle progression. In response to genotoxic stress, these checkpoints halt cell cycle progression until the damage is repaired, allowing cells enough time to recover from damage before resuming normal proliferation. Here, we investigate the temporal dynamics of DNA damage checkpoints in individual proliferating cells by observing cell cycle phase transitions following acute DNA damage. We find that in gap phases (G1 and G2), DNA damage triggers an abrupt halt to cell cycle progression in which the duration of arrest correlates with the severity of damage. However, cells that have already progressed beyond a proposed “commitment point” within a given cell cycle phase readily transition to the next phase, revealing a relaxation of checkpoint stringency during later stages of certain cell cycle phases.
    [Show full text]
  • Metabolic Checkpoints in Cancer Cell Cycle
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2014 Metabolic Checkpoints in Cancer Cell Cycle Mahesh Saqcena Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/106 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] METABOLIC CHECKPOINTS IN CANCER CELL CYCLE By Mahesh Saqcena A dissertation submitted to the Graduate Faculty in Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i 2014 Mahesh Saqcena All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Biochemistry in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Date Dr. David A. Foster (Chair of Examining Committee) Date Dr. Edward J. Kennelly (Executive Officer) Dr. Mitchell Goldfarb (Hunter College) Dr. Paul Feinstein (Hunter College) Dr. Richard Kolesnick (Sloan Kettering Institute) Dr. Frederick R. Cross (Rockefeller University) (Supervisory Committee) THE CITY UNIVERSITY OF NEW YORK iii Abstract METABOLIC CHECKPOINTS IN CANCER CELL CYCLE by Mahesh Saqcena Advisor: Dr. David A. Foster Growth factors (GFs) as well as nutrient sufficiency regulate cell division in metazoans. The vast majority of mutations that contribute to cancer are in genes that regulate progression through the G1 phase of the cell cycle. A key regulatory site in G1 is the growth factor-dependent Restriction Point (R), where cells get permissive signals to divide.
    [Show full text]
  • Working on Genomic Stability: from the S-Phase to Mitosis
    G C A T T A C G G C A T genes Review Working on Genomic Stability: From the S-Phase to Mitosis Sara Ovejero 1,2,3,* , Avelino Bueno 1,4 and María P. Sacristán 1,4,* 1 Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain; [email protected] 2 Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France 3 Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 4 Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain * Correspondence: [email protected] (S.O.); [email protected] (M.P.S.); Tel.: +34-923-294808 (M.P.S.) Received: 31 January 2020; Accepted: 18 February 2020; Published: 20 February 2020 Abstract: Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells.
    [Show full text]
  • Regulation of the Cell Cycle and DNA Damage-Induced Checkpoint Activation
    RnDSy-lu-2945 Regulation of the Cell Cycle and DNA Damage-Induced Checkpoint Activation IR UV IR Stalled Replication Forks/ BRCA1 Rad50 Long Stretches of ss-DNA Rad50 Mre11 BRCA1 Nbs1 Rad9-Rad1-Hus1 Mre11 RPA MDC1 γ-H2AX DNA Pol α/Primase RFC2-5 MDC1 Nbs1 53BP1 MCM2-7 53BP1 γ-H2AX Rad17 Claspin MCM10 Rad9-Rad1-Hus1 TopBP1 CDC45 G1/S Checkpoint Intra-S-Phase RFC2-5 ATM ATR TopBP1 Rad17 ATRIP ATM Checkpoint Claspin Chk2 Chk1 Chk2 Chk1 ATR Rad50 ATRIP Mre11 FANCD2 Ubiquitin MDM2 MDM2 Nbs1 CDC25A Rad50 Mre11 BRCA1 Ub-mediated Phosphatase p53 CDC25A Ubiquitin p53 FANCD2 Phosphatase Degradation Nbs1 p53 p53 CDK2 p21 p21 BRCA1 Ub-mediated SMC1 Degradation Cyclin E/A SMC1 CDK2 Slow S Phase CDC45 Progression p21 DNA Pol α/Primase Slow S Phase p21 Cyclin E Progression Maintenance of Inhibition of New CDC6 CDT1 CDC45 G1/S Arrest Origin Firing ORC MCM2-7 MCM2-7 Recovery of Stalled Replication Forks Inhibition of MCM10 MCM10 Replication Origin Firing DNA Pol α/Primase ORI CDC6 CDT1 MCM2-7 ORC S Phase Delay MCM2-7 MCM10 MCM10 ORI Geminin EGF EGF R GAB-1 CDC6 CDT1 ORC MCM2-7 PI 3-Kinase p70 S6K MCM2-7 S6 Protein Translation Pre-RC (G1) GAB-2 MCM10 GSK-3 TSC1/2 MCM10 ORI PIP2 TOR Promotes Replication CAK EGF Origin Firing Origin PIP3 Activation CDK2 EGF R Akt CDC25A PDK-1 Phosphatase Cyclin E/A SHIP CIP/KIP (p21, p27, p57) (Active) PLCγ PP2A (Active) PTEN CDC45 PIP2 CAK Unwinding RPA CDC7 CDK2 IP3 DAG (Active) Positive DBF4 α Feedback CDC25A DNA Pol /Primase Cyclin E Loop Phosphatase PKC ORC RAS CDK4/6 CDK2 (Active) Cyclin E MCM10 CDC45 RPA IP Receptor
    [Show full text]
  • Cell Cycle Checkpoint in Cancer: a Therapeutically Targetable Double-Edged Sword Roberta Visconti1*, Rosa Della Monica2,3 and Domenico Grieco2,3*
    Visconti et al. Journal of Experimental & Clinical Cancer Research (2016) 35:153 DOI 10.1186/s13046-016-0433-9 REVIEW Open Access Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword Roberta Visconti1*, Rosa Della Monica2,3 and Domenico Grieco2,3* Abstract Major currently used anticancer therapeutics either directly damage DNA or target and upset basic cell division mechanisms like DNA replication and chromosome segregation. These insults elicit activation of cell cycle checkpoints, safeguard mechanisms that cells implement to correctly complete cell cycle phases, repair damage or eventually commit suicide in case damage is unrepairable. Although cancer cells appear to be advantageously defective in some aspects of checkpoint physiology, recent acquisitions on the biochemical mechanisms of the various checkpoints are offering new therapeutic approaches against cancer. Indeed, chemical manipulation of these mechanisms is providing new therapeutic strategies and tools to increase the killing efficacy of major cancer therapeutics as well as to directly promote cancer cell death. In this review we summarize developing concepts on how targeting cell cycle checkpoints may provide substantial improvement to cancer therapy. Keywords: Cell cycle checkpoint, Cancer drug, DNA damage, Mitosis, Chk1, Wee1, Spindle assembly checkpoint, Taxane, Vinca alkaloids, Fcp1 Background opportunities for cancer treatment. Here we will review The mechanisms of cell division and the genome itself how recent efforts to identify new strategies and drugs are routinely endangered by endogenous and exogenous targeting cell cycle checkpoints will likely translate soon insults. For instance reactive oxygen species, produced into benefit to clinical practice in oncology. As outlined during metabolic reactions, inflammation or exciting in Table 1, we will focus our attention on drugs targeting and ionizing radiations, can damage chromosomes and key players of the S and G2/M checkpoints activated in upset chromosome replication and segregation [1, 2].
    [Show full text]
  • Overexpression of CCDC69 Activates P14arf/MDM2/P53 Pathway and Confers Cisplatin Sensitivity Long Cui1,4* , Fang Zhou2, Cui Chen3 and Chi Chiu Wang4,5,6
    Cui et al. Journal of Ovarian Research (2019) 12:4 https://doi.org/10.1186/s13048-019-0479-3 RESEARCH Open Access Overexpression of CCDC69 activates p14ARF/MDM2/p53 pathway and confers cisplatin sensitivity Long Cui1,4* , Fang Zhou2, Cui Chen3 and Chi Chiu Wang4,5,6 Abstract Objectives: The aim of the study is to explore the relationship between CCDC69 expression and resistance of ovarian cancer cells to cisplatin and reveal the underlying mechanism. Methods: One hundred thirty five ovarian cancer patients with intact chemo-response information from The Cancer Genome Atlas (TCGA) database were included and analyzed. Stable CCDC69 overexpressing 293 and ovarian cancer A2780 cell lines were established and subjected to examine cell apoptosis and cell cycle distribution using CCK-8 assay and flow cytometry. Cell cycle and apoptosis pathway were evaluated by immunoblots. Stability of p14ARF/MDM2/p53 pathway related proteins were determined by half-life analysis and ubiquitination experiments. Results: We found that CCDC69 expression was significantly higher in chemo-sensitive groups compared with chemo- resistant groups from TCGA database. High CCDC69 expression was associated longer survival. CCDC69 overexpressing 293 and A2780 cells with wildtype p53 and contributes to cisplatin sensitivity following treatment with cisplatin. We further found over-expression of CCDC69 activated p14ARF/MDM2/p53 pathway. Importantly, we also demonstrated that CCDC69 expression extended p53 and p14ARF protein half-life and shortened MDM2 protein half-life. Ubiquitination assay revealing a decrease in p14 ubiquitination in CCDC69 over-expression cells comparing to cells expressing empty vector. Conclusions: It is tempting to conclude that targeting CCDC69 may play a role in cisplatin resistance.
    [Show full text]
  • The CDK1 Inhibitory Kinase MYT1 in DNA Damage Checkpoint Recovery
    Oncogene (2013) 32, 4778–4788 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE The CDK1 inhibitory kinase MYT1 in DNA damage checkpoint recovery JPH Chow and RYC Poon Inhibition of cyclin-dependent kinase 1 (CDK1) by phosphorylation is a key regulatory mechanism for both the unperturbed cell cycle and the DNA damage checkpoint. Although both WEE1 and MYT1 can phosphorylate CDK1, little is known about the contribution of MYT1. We found that in contrast to WEE1, MYT1 was not important for the normal cell cycle or checkpoint activation. Time-lapse microscopy indicated that MYT1 did, however, have a rate-determining role during checkpoint recovery. Depletion of MYT1 induced precocious mitotic entry when the checkpoint was abrogated with inhibitors of either CHK1 or WEE1, indicating that MYT1 contributes to checkpoint recovery independently of WEE1. The acceleration of checkpoint recovery in MYT1-depleted cells was due to a lowering of threshold for CDK1 activation. The kinase activity of MYT1 was high during checkpoint activation and reduced during checkpoint recovery. Importantly, although depletion of MYT1 alone did not affect long- term cell growth, it potentiated with DNA damage to inhibit cell growth in clonogenic survival and tumor xenograft models. These results reveal the functions of MYT1 in checkpoint recovery and highlight the potential of MYT1 as a target for anti-cancer therapies. Oncogene (2013) 32, 4778–4788; doi:10.1038/onc.2012.504; published online 12 November 2012 Keywords: cell cycle; checkpoint; ionizing radiation INTRODUCTION CHK1/CHK2, which in turn inactivates CDC25 (reviewed in Chen 15 Cyclin-dependent kinase 1 (CDK1) is one of the major kinases for and Poon ).
    [Show full text]
  • Phosphatases Reverse P53-Mediated Cell Cycle Checkpoints
    COMMENTARY Phosphatases reverse p53-mediated cell cycle checkpoints Lawrence A. Donehower1 for the damage or dysfunction to be repaired Departments of Molecular Virology and Microbiology, Molecular, and Cellular Biology, Pediatrics without being transmitted to progeny cells. and the Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 Thus, p53 has been called the “guardian of the genome” (3).Giventheimportanceof p53 as a cellular failsafe mechanism, it is The Cancer Genome Atlas and other large- In the normal cell, the p53 protein func- not surprising that its inactivation is a highly scale cancer genome sequencing projects tions as a stress integrator that becomes selected event in cancer progression. have identified an impressive number of activated in response to myriad dysfunctional Activated p53 can halt cell division in both states (e.g., damaged DNA, aberrant onco- significantly mutated genes that are likely the G1 and G2 phases of the cell division genic signaling, and hypoxia). Once activated, drivers of cancer progression (1). These stud- cycle. G1 is the preparation phase of the cell p53 can initiate stress response programs to ies have definitively confirmed that the gene before replication of its DNA and G2 pre- eliminate the dysfunctional state, such as encoding the p53 tumor suppressor is the pares the cell for mitosis. Arrest and repair of repair of DNA damage. If the stressed cell most frequently mutated gene in human can- cells before DNA replication or mitosis are is dividing, p53 can enact any one of several cers. A major component of the p53 antican- likely to prevent damage-induced mutational antiproliferative programs.
    [Show full text]
  • Cell Cycle Arrest Through Indirect Transcriptional Repression by P53: I Have a DREAM
    Cell Death and Differentiation (2018) 25, 114–132 Official journal of the Cell Death Differentiation Association OPEN www.nature.com/cdd Review Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM Kurt Engeland1 Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV.Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia.
    [Show full text]
  • A Haploid Genetic Screen Identifies the G1/S Regulatory Machinery As a Determinant of Wee1 Inhibitor Sensitivity
    A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity Anne Margriet Heijinka, Vincent A. Blomenb, Xavier Bisteauc, Fabian Degenera, Felipe Yu Matsushitaa, Philipp Kaldisc,d, Floris Foijere, and Marcel A. T. M. van Vugta,1 aDepartment of Medical Oncology, University Medical Center Groningen, University of Groningen, 9723 GZ Groningen, The Netherlands; bDivision of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; cInstitute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos#3-09, Singapore 138673, Republic of Singapore; dDepartment of Biochemistry, National University of Singapore, Singapore 117597, Republic of Singapore; and eEuropean Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands Edited by Stephen J. Elledge, Harvard Medical School, Boston, MA, and approved October 21, 2015 (received for review March 17, 2015) The Wee1 cell cycle checkpoint kinase prevents premature mitotic Wee1 kinase at tyrosine (Tyr)-15 to prevent unscheduled Cdk1 entry by inhibiting cyclin-dependent kinases. Chemical inhibitors activity (5, 6). Conversely, timely activation of Cdk1 depends on of Wee1 are currently being tested clinically as targeted anticancer Tyr-15 dephosphorylation by one of the Cdc25 phosphatases drugs. Wee1 inhibition is thought to be preferentially cytotoxic in (7–10). When DNA is damaged, the downstream DNA damage p53-defective cancer cells. However, TP53 mutant cancers do not response (DDR) kinases Chk1 and Chk2 inhibit Cdc25 phos- respond consistently to Wee1 inhibitor treatment, indicating the phatases through direct phosphorylation, which blocks Cdk1 existence of genetic determinants of Wee1 inhibitor sensitivity other activation (11–13).
    [Show full text]
  • Lnvited Review Gain of Function Properties of Mutant P53 Proteins at the Mitotic Spindle Cell Cycle Checkpoint
    HistolHistopathol (2000) 15: 551-556 Histology and 001: 10.14670/HH-15.551 Histopathology http://www.hh.um .es Ce/fular and Molecular Biology lnvited Review Gain of function properties of mutant p53 proteins at the mitotic spindle cell cycle checkpoint M.L. Hixon, A. Flores, M. Wagner and A. Gualberto Departmentá lbysiologyand Biophysics,Case WesternReserve UniversitySchool of Medicine,Cleveland, Ohio, IB<\. Summary. Mutations in the p53 tumor suppressor gene malignant phenotype. Therefore, it is becoming locus predispose human cells to chromosomal instability. increasingly evident that loss of the mechanisms that This is due in part to interference of mutant p53 proteins maintain the integrity of the human genome is a primary with the activity of the mitotic spindle and postmitotic event in the genesis of cancer. cell cycle checkpoints. Recent data demonstrates that Research addressing the relationship between cell wild type p53 is required far postmitotic checkpoint proliferation and the maintenance of genomic integrity activity, but plays no role at the mitotic spindle in human cells is relatively recent. Extensive evidence checkpoint. Likewise, structural dominant p53 mutants demonstrates that the onset of every phase of the cell demonstrate gain-of-function properties at the mitotic cycle depends critically on the adequate completion of spindle checkpoint and dominant negative properties at the previous cell cycle phase. The coordination of these the postmitotic checkpoint. At mitosis, mutant p53 events is carried out by pathways called cell cycle proteins interfere with the control of the metaphase-to­ checkpoints (Elledge, 1996). These pathways oversee anaphase progression by up-regulating the expression of the progression of the cell cycle and play a crucial role CKsl, a protein that mediates activatory phosphorylation in the maintenance of genomic integrity by coordinating of the anaphase promoting complex (APC) by Cdc2.
    [Show full text]
  • Recent Advances of Cell-Cycle Inhibitor Therapies for Pediatric Cancer Christopher C
    Published OnlineFirst November 2, 2017; DOI: 10.1158/0008-5472.CAN-17-2066 Cancer Review Research Recent Advances of Cell-Cycle Inhibitor Therapies for Pediatric Cancer Christopher C. Mills1, EA. Kolb2, and Valerie B. Sampson2 Abstract This review describes the pivotal roles of cell-cycle and check- MLN8237), Wee1 kinase (MK-1775), KSP (ispinesib), and tubu- point regulators and discusses development of specific cell-cycle lin (taxanes, vinca alkaloids), are presented. The design of mech- inhibitors for therapeutic use for pediatric cancer. The mechanism anism-based combinations that exploit the cross-talk of signals of action as well as the safety and tolerability of drugs in pediatric activated by cell-cycle arrest, as well as pediatric-focused drug patients, including compounds that target CDK4/CDK6 (palbo- development, are critical for the advancement of drugs for rare ciclib, ribociclib, and abemaciclib), aurora kinases (AT9283 and childhood diseases. Cancer Res; 77(23); 6489–98. Ó2017 AACR. Introduction of DNA damage, epigenetics, metabolism, proteolytic degra- dation, stem cell self-renewal, neuronal functions, and sper- Recent preclinical and clinical studies of highly selective matogenesis (2). agents that target various regulators of the mammalian cell Selective members of the CDK family of protein kinases act as cycle demonstrate cell-cycle arrest, inhibition of transcription, oncogenic stimuli in several types of cancer (e.g., CDK1 in breast and apoptotic cell death in models of human cancer. The cell- cancer and colon cancer (3, 4), CDK4 in familial melanoma (5), cycle drives proliferation of cells by the duplication of chromo- and CDK6 in MLL-rearranged leukemia (6).
    [Show full text]