Realtime Ready Plate Layout Human Cell Cycle Regulation Panel, 96

Total Page:16

File Type:pdf, Size:1020Kb

Realtime Ready Plate Layout Human Cell Cycle Regulation Panel, 96 For life science research only. FOR IN VITRO USE ONLY. Human Cell Cycle Regulation Panel, 96 Panel of prevalidated qPCR assays for gene expression profiling of human genes involved in cell cycle regulation Cat. No. 05 339 359 001 2 plates, each containing 96 assays Version November 2008 N Store at +2 to +8°C N Store protected from light! Plate Layout 123456789101112 A 1 2 3 4 5 6 7 8 9 10 11 12 ABL 1 ANAPC2 ANAPC4 ATM ATR BAX BCCIP BCL2 BIRC5 BRCA1 BRCA2 CCNA2 B 13 14 15 16 17 18 19 20 21 22 23 24 CCNB1 CCNB2 CCNC CCND1 CCND2 CCND3 CCNE1 CCNE2 CCNF CCNG1 CCNG2 CCNH C 25 26 27 28 29 30 31 32 33 34 35 36 CCNT1 CCNT2 CDC14A CDC16 CDC2 CDC20 CDC25A CDC25B CDC25C CDC34 CDK2 CDK4 D 37 38 39 40 41 42 43 44 45 46 47 48 CDK5R1 CDK6 CDK7 CDK8 CDKN1A CDKN1B CDKN2A CDKN2B CDKN3 CHEK1 CHEK2 CKS1B E 49 50 51 52 53 54 55 56 57 58 59 60 CKS2 CUL1 CUL2 CUL3 E2F1 E2F2 E2F3 E2F4 E2F5 E2F6 GADD45A GTF2H1 F 61 62 63 64 65 66 67 68 69 70 71 72 GTSE1 JUN KNTC1 KPNA2 LGALS3 MAD2L1 MAD2L2 MCM2 MCM3 MYC PCNA PLK1 G 73 74 75 76 77 78 79 80 81 82 83 84 RAD1 RAD17 RAD51 RAD9A RB1 RBL1 RBL2 SKP2 TFDP1 TFDP2 TP53 WEE1 H 85 86 87 88 89 90 91 92 93 94 95 96 ACTB B2M GAPDH HPRT1 RPL13A 18S YWHAZ RT+ RT+ RT+ RT- RT- H1 – H7: Reference genes H8 – H10: RT positive control H11 – H12: RT minus control Sample Details No. Pos. HGNC- Description No. Pos. HGNC- Description Symbol Symbol 20 B 08 CCNE2 G1/S-specific cyclin-E2. 1 A 01 ABL 1 Proto-oncogene tyrosine-protein kinase ABL1 21 B 09 CCNF G2/mitotic-specific cyclin-F. 2 A 02 ANAPC2Anaphase-promoting complex subunit 2 (APC2) 22 B 10 CCNG1 Cyclin-G1 (Cyclin-G) 3 A 03 ANAPC4Anaphase-promoting complex subunit 4 (APC4) 23 B 11 CCNG2 Cyclin-G2. 4 A 04 ATM Serine-protein kinase ATM 24 B 12 CCNH Cyclin-H (MO15-associated protein) 5 A 05 ATR Serine/threonine-protein kinase ATR 25 C 01 CCNT1 Cyclin-T1 (CycT1) 6 A 06 BAX Apoptosis regulator BAX. 26 C 02 CCNT2 Cyclin-T2 (CycT2) 7 A 07 BCCIP BRCA2 and CDKN1A-interacting protein (Protein TOK- 1) 27 C 03 CDC14A Dual specificity protein phosphatase CDC14A 8 A 08 BCL2 Apoptosis regulator Bcl-2. 28 C 04 CDC16 Cell division cycle protein 16 homolog (CDC16Hs) 9 A 09 BIRC5 Baculoviral IAP repeat-containing protein 5 (Apoptosis 29 C 05 CDC2 Cell division control protein 2 homolog inhibitor survivin) 30 C 06 CDC20 Cell division cycle protein 20 homolog (p55CDC) 10 A 10 BRCA1 Breast cancer type 1 susceptibility protein (RING finger 31 C 07 CDC25AM-phase inducer phosphatase 1 protein 53) 32 C 08 CDC25B M-phase inducer phosphatase 2 11 A 11 BRCA2 Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) 33 C 09 CDC25C M-phase inducer phosphatase 3 12 A 12 CCNA2 Cyclin-A2 (Cyclin-A) 34 C 10 CDC34 Ubiquitin-conjugating enzyme E2 R1 13 B 01 CCNB1 G2/mitotic-specific cyclin-B1. 35 C 11 CDK2 Cell division protein kinase 2 14 B 02 CCNB2 G2/mitotic-specific cyclin-B2. 36 C 12 CDK4 Cell division protein kinase 4 15 B 03 CCNC Cyclin-C (hSRB11) 37 D 01 CDK5R1 Cyclin-dependent kinase 5 activator 1 precursor (CDK5 activator 1) 16 B 04 CCND1 G1/S-specific cyclin-D1 (PRAD1 oncogene) 38 D 02 CDK6 Cell division protein kinase 6 17 B 05 CCND2 G1/S-specific cyclin-D2. 39 D 03 CDK7 Cell division protein kinase 7 18 B 06 CCND3 G1/S-specific cyclin-D3. 40 D 04 CDK8 Cell division protein kinase 8 19 B 07 CCNE1 G1/S-specific cyclin-E1. www.roche-applied-science.com No. Pos. HGNC- Description No. Pos. HGNC- Description Symbol Symbol 41 D 05 CDKN1 Cyclin-dependent kinase inhibitor 1 (p21) 70 F 10 MYC Myc proto-oncogene protein (c-Myc) A 71 F 11 PCNA Proliferating cell nuclear antigen (PCNA) 42 D 06 CDKN1 Cyclin-dependent kinase inhibitor 1B (Cyclin-depen- 72 F 12 PLK1 Serine/threonine-protein kinase PLK1 B dent kinase inhibitor p27) 73 G 01 RAD1 Cell cycle checkpoint protein RAD1 43 D 07 CDKN2 Cyclin-dependent kinase inhibitor 2A, isoform 4 A (p14ARF) 74 G 02 RAD17 Cell cycle checkpoint protein RAD17 (hRad17) 44 D 08 CDKN2 Cyclin-dependent kinase 4 inhibitor B (p14-INK4b) 75 G 03 RAD51 DNA repair protein RAD51 homolog 1 (hRAD51) B 76 G 04 RAD9A Cell cycle checkpoint control protein RAD9A 45 D 09 CDKN3 Cyclin-dependent kinase inhibitor 3 77 G 05 RB1 Retinoblastoma-associated protein (pRb) 46 D 10 CHEK1 Serine/threonine-protein kinase Chk1 78 G 06 RBL1 Retinoblastoma-like protein 1 (107 kDa retinoblastoma- 47 D 11 CHEK2 Serine/threonine-protein kinase Chk2 associated protein) 48 D 12 CKS1B Cyclin-dependent kinases regulatory subunit 1 (CKS-1) 79 G 07 RBL2 Retinoblastoma-like protein 2 (130 kDa retinoblastoma- associated protein) 49 E 01 CKS2 Cyclin-dependent kinases regulatory subunit 2 (CKS-2) 80 G 08 SKP2 S-phase kinase-associated protein 2 (F-box protein 50 E 02 CUL1 Cullin-1 (CUL-1) Skp2) 51 E 03 CUL2 Cullin-2 (CUL-2) 81 G 09 TFDP1 Transcription factor Dp-1 (E2F dimerization partner 1) 52 E 04 CUL3 Cullin-3 (CUL-3) 82 G 10 TFDP2 Transcription factor Dp-2 (E2F dimerization partner 2) 53 E 05 E2F1 Transcription factor E2F1 (E2F-1) 83 G 11 TP53 Cellular tumor antigen p53 (Tumor suppressor p53) 54 E 06 E2F2 Transcription factor E2F2 (E2F-2) 84 G 12 WEE1 Wee1-like protein kinase 55 E 07 E2F3 Transcription factor E2F3 (E2F-3) 85 H 01 ACTB Reference Gene: 56 E 08 E2F4 Transcription factor E2F4 (E2F-4) Actin, cytoplasmic 1 (Beta-actin) 57 E 09 E2F5 Transcription factor E2F5 (E2F-5) 86 H 02 B2M Reference Gene: 58 E 10 E2F6 Transcription factor E2F6 (E2F-6) Beta-2-microglobulin precursor 59 E 11 GADD45Growth arrest and DNA-damage-inducible protein 87 H 03 GAPDH Reference Gene: A GADD45 alpha (DNA- damage-inducible transcript 1) Glyceraldehyde-3-phosphate dehydrogenase 60 E 12 GTF2H1 General transcription factor IIH subunit 1 (General tran- 88 H 04 HPRT1 Reference Gene: scription factor IIH polypeptide 1) Hypoxanthine-guanine phosphoribosyltransferase 61 F 01 GTSE1 G2 and S phase-expressed protein 1 (B99 homolog) 89 H 05 RPL13A Reference Gene: 60S ribosomal protein L13a (23 kDa highly basic pro- 62 F 02 JUN Transcription factor AP-1 (Activator protein 1) tein) 63 F 03 KNTC1 Kinetochore-associated protein 1 (Rough deal 90 H 06 18S Reference Gene: homolog) 18S ribosomal RNA 64 F 04 KPNA2 Importin subunit alpha-2 (Karyopherin subunit alpha-2) 91 H 07 YWHAZ Reference Gene: 65 F 05 LGALS3 Galectin-3 (Galactose-specific lectin 3) 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) 66 F 06 MAD2L Mitotic spindle assembly checkpoint protein MAD2A 1 (MAD2-like 1) 92 H 08 RT positive control 5’ 67 F 07 MAD2L Mitotic spindle assembly checkpoint protein MAD2B 93 H 09 RT positive control middle’ 2 (MAD2-like 2) 94 H 10 RT positive control 3’ 68 F 08 MCM2 DNA replication licensing factor MCM2 (Minichromo- 95 H 11 RT minus control, cDNA some maintenance protein 2 homolog) 96 H 12 RT minus control, RNA 69 F 09 MCM3 DNA replication licensing factor MCM3 (DNA poly- merase alpha holoenzyme-associated protein P1) Contact and Support To ask questions, solve problems, suggest enhancements or report new applications, please visit our Online Technical Support Site at: www.roche-applied-science.com/support To call, write, fax, or email us, visit the Roche Applied Science home page, www.roche-applied-science.com, and select your home country. Country- specific contact information will be displayed. Use the Product Search func- tion to find Pack Inserts and Material Safety Data Sheets. Roche Diagnostics GmbH Roche Applied Science 68298 Mannheim Germany.
Recommended publications
  • CDC25B Mediates Rapamycin-Induced Oncogenic Responses in Cancer Cells
    Published OnlineFirst March 10, 2009; DOI: 10.1158/0008-5472.CAN-08-3222 Research Article CDC25B Mediates Rapamycin-Induced Oncogenic Responses in Cancer Cells Run-qiang Chen,1 Qing-kai Yang,1 Bing-wen Lu,2 Wei Yi,1 Greg Cantin,2 Yan-ling Chen,1 Colleen Fearns,3 John R. Yates III,2 and Jiing-Dwan Lee1 Departments of 1Immunology and Microbial Science, 2Chemical Physiology, and 3Chemistry, The Scripps Research Institute, La Jolla, California Abstract expression of PTEN, increased PI3K activity, and increased expression or activation of AKT in advanced prostate cancer Because the mammalian target of rapamycin (mTOR) pathway (8–10). These aberrations also are indicators of a poor prognosis is commonly deregulated in human cancer, mTOR inhibitors, for prostate cancer patients (11, 12). More importantly, long-term rapamycin and its derivatives, are being actively tested in androgen deprivation treatment for prostate cancer patients that cancer clinical trials. Clinical updates indicate that the reinforces the PI3K/AKT pathway also up-regulates mTOR anticancer effect of these drugs is limited, perhaps due to activation in prostate tumor (9, 10). These abovementioned rapamycin-dependent induction of oncogenic cascades by an experimental and clinical data lead to the supposition that mTOR as yet unclear mechanism. As such, we investigated rapamy- inhibitors (rapamycin and its derivatives) should be effective in cin-dependent phosphoproteomics and discovered that 250 treating human cancer. Unfortunately, recent clinical data indicates phosphosites in 161 cellular proteins were sensitive to that rapamycin shows therapeutic potential in only few types of rapamycin. Among these, rapamycin regulated four kinases human cancer: endometrial carcinoma, renal cell carcinoma, and and four phosphatases.
    [Show full text]
  • The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells
    Published OnlineFirst May 2, 2019; DOI: 10.1158/2159-8290.CD-19-0125 RESEARCH ARTICLE The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells Tamilla Nechiporuk1,2, Stephen E. Kurtz1,2, Olga Nikolova2,3, Tingting Liu1,2, Courtney L. Jones4, Angelo D’Alessandro5, Rachel Culp-Hill5, Amanda d’Almeida1,2, Sunil K. Joshi1,2, Mara Rosenberg1,2, Cristina E. Tognon1,2,6, Alexey V. Danilov1,2, Brian J. Druker1,2,6, Bill H. Chang2,7, Shannon K. McWeeney2,8, and Jeffrey W. Tyner1,2,9 ABSTRACT To study mechanisms underlying resistance to the BCL2 inhibitor venetoclax in acute myeloid leukemia (AML), we used a genome-wide CRISPR/Cas9 screen to identify gene knockouts resulting in drug resistance. We validated TP53, BAX, and PMAIP1 as genes whose inactivation results in venetoclax resistance in AML cell lines. Resistance to venetoclax resulted from an inability to execute apoptosis driven by BAX loss, decreased expression of BCL2, and/or reliance on alternative BCL2 family members such as BCL2L1. The resistance was accompanied by changes in mitochondrial homeostasis and cellular metabolism. Evaluation of TP53 knockout cells for sensitivities to a panel of small-molecule inhibitors revealed a gain of sensitivity to TRK inhibitors. We relate these observations to patient drug responses and gene expression in the Beat AML dataset. Our results implicate TP53, the apoptotic network, and mitochondrial functionality as drivers of venetoclax response in AML and suggest strategies to overcome resistance. SIGNIFICANCE: AML is challenging to treat due to its heterogeneity, and single-agent therapies have universally failed, prompting a need for innovative drug combinations.
    [Show full text]
  • Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
    Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts.
    [Show full text]
  • DNA Damage Checkpoint Dynamics Drive Cell Cycle Phase Transitions
    bioRxiv preprint doi: https://doi.org/10.1101/137307; this version posted August 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. DNA damage checkpoint dynamics drive cell cycle phase transitions Hui Xiao Chao1,2, Cere E. Poovey1, Ashley A. Privette1, Gavin D. Grant3,4, Hui Yan Chao1, Jeanette G. Cook3,4, and Jeremy E. Purvis1,2,4,† 1Department of Genetics 2Curriculum for Bioinformatics and Computational Biology 3Department of Biochemistry and Biophysics 4Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill 120 Mason Farm Road Chapel Hill, NC 27599-7264 †Corresponding Author: Jeremy Purvis Genetic Medicine Building 5061, CB#7264 120 Mason Farm Road Chapel Hill, NC 27599-7264 [email protected] ABSTRACT DNA damage checkpoints are cellular mechanisms that protect the integrity of the genome during cell cycle progression. In response to genotoxic stress, these checkpoints halt cell cycle progression until the damage is repaired, allowing cells enough time to recover from damage before resuming normal proliferation. Here, we investigate the temporal dynamics of DNA damage checkpoints in individual proliferating cells by observing cell cycle phase transitions following acute DNA damage. We find that in gap phases (G1 and G2), DNA damage triggers an abrupt halt to cell cycle progression in which the duration of arrest correlates with the severity of damage. However, cells that have already progressed beyond a proposed “commitment point” within a given cell cycle phase readily transition to the next phase, revealing a relaxation of checkpoint stringency during later stages of certain cell cycle phases.
    [Show full text]
  • Atlas Antibodies in Breast Cancer Research Table of Contents
    ATLAS ANTIBODIES IN BREAST CANCER RESEARCH TABLE OF CONTENTS The Human Protein Atlas, Triple A Polyclonals and PrecisA Monoclonals (4-5) Clinical markers (6) Antibodies used in breast cancer research (7-13) Antibodies against MammaPrint and other gene expression test proteins (14-16) Antibodies identified in the Human Protein Atlas (17-14) Finding cancer biomarkers, as exemplified by RBM3, granulin and anillin (19-22) Co-Development program (23) Contact (24) Page 2 (24) Page 3 (24) The Human Protein Atlas: a map of the Human Proteome The Human Protein Atlas (HPA) is a The Human Protein Atlas consortium cell types. All the IHC images for Swedish-based program initiated in is mainly funded by the Knut and Alice the normal tissue have undergone 2003 with the aim to map all the human Wallenberg Foundation. pathology-based annotation of proteins in cells, tissues and organs expression levels. using integration of various omics The Human Protein Atlas consists of technologies, including antibody- six separate parts, each focusing on References based imaging, mass spectrometry- a particular aspect of the genome- 1. Sjöstedt E, et al. (2020) An atlas of the based proteomics, transcriptomics wide analysis of the human proteins: protein-coding genes in the human, pig, and and systems biology. mouse brain. Science 367(6482) 2. Thul PJ, et al. (2017) A subcellular map of • The Tissue Atlas shows the the human proteome. Science. 356(6340): All the data in the knowledge resource distribution of proteins across all eaal3321 is open access to allow scientists both major tissues and organs in the 3.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/26/2021 02:04:00PM Via Free Access
    26 1 Endocrine-Related N Portman et al. CDK4/6 inhibitor resistance in 26:1 R15–R30 Cancer breast cancer REVIEW Overcoming CDK4/6 inhibitor resistance in ER-positive breast cancer Neil Portman1,2, Sarah Alexandrou1,2, Emma Carson1,2, Shudong Wang3, Elgene Lim1,2 and C Elizabeth Caldon1,2 1The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia 2St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia 3Centre for Drug Discovery and Development, Cancer Research Institute, University of South Australia, Adelaide, South Australia, Australia Correspondence should be addressed to C E Caldon: [email protected] Abstract Three inhibitors of CDK4/6 kinases were recently FDA approved for use in combination Key Words with endocrine therapy, and they significantly increase the progression-free survival of f CDK4/6 inhibitors patients with advanced estrogen receptor-positive (ER+) breast cancer in the first-line f estrogen receptor treatment setting. As the new standard of care in some countries, there is the clinical f breast cancer emergence of patients with breast cancer that is both CDK4/6 inhibitor and endocrine f endocrine therapy therapy resistant. The strategies to combat these cancers with resistance to multiple treatments are not yet defined and represent the next major clinical challenge in ER+ breast cancer. In this review, we discuss how the molecular landscape of endocrine therapy resistance may affect the response to CDK4/6 inhibitors, and how this intersects with biomarkers of intrinsic insensitivity. We identify the handful of pre-clinical models of acquired resistance to CDK4/6 inhibitors and discuss whether the molecular changes in these models are likely to be relevant or modified in the context of endocrine therapy resistance.
    [Show full text]
  • Funkce CDK12 a CDK13 V Regulaci Transkripce Hana Paculová
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BIOCHEMIE Funkce CDK12 a CDK13 v regulaci transkripce Disertační práce Hana Paculová Školitel: Mgr. Jiří Kohoutek, Ph.D Brno 2018 Bibliogra cký záznam Autorka: Mgr. Hana Paculová Prrodovedecáá aaául,a鏈 Maaarkáova unvverv,a Úa,av bvochemve Název práce: Funáce CDK12 a CDK13 v regulacv ,ranaárvpce Studijní program: Bvochemve Studijní obor: Bvochemve Školitel: Mgr. Jvr Kohou,eá鏈 Ph.D Akademický rok: 2017/2018 Po et stran: 89 Klí ová slova: Ckálvn-dependen,n ávnaaa鏈 CDK12鏈 ,ranaárvpce鏈 RNA polkmeraaa II鏈 raáovvna vaječnáů鏈 CHK1 Bibliographic entry Author: Mgr. Hana Paculová Facul,k oa acvence鏈 Maaarká unvverav,k Department of Biochemistry Title oF dissertation: CDK12 and CDK13 aunc,von vn ,ranacrvp,von regula,von Degree programme: Bvochemva,rk Field oF study: Bvochemva,rk Supervisor: Mgr. Jvr Kohou,eá鏈 Ph.D Academic year: 2017/2018 Number oF pages: 89 Keywords: Ckclvn-dependen ávnaae鏈 CDK12鏈 ,ranacrvp,von鏈 RNA polkmeraae II鏈 ovarvan cancer鏈 CHK1 Abstrakt Ckálvn-dependen,n ávnaaa 12 (CDK12) je ,ranaárvpčn ávnaaa鏈 á,erá rd expreav avých clových genů ,m鏈 že aoaaorkluje RNA polkmeraau II v průbehu elongačn aáe ,ranaárvpce. CDK12 je apojena do neáolváa bunečných preceaů鏈 což ahrnuje odpoveď na pošáoen DNA鏈 vývoj a bunečnou dvaerencvacv a aea,rvh mRNA. CDK12 bkla popaána jaáo jeden genů鏈 á,eré jaou čaa,o mu,ovánk v hvgh-grade aerónm ovarválnm áarcvnomu鏈 nvcméne vlvv ,ech,o mu,ac na aunácv CDK12 a jejvch role v áarcvnogenev dopoaud nebkla a,anovena. Zjva,vlv jame鏈 že ve,švna mu,ac CDK12鏈 á,eré bklk naleenk v nádorech鏈 brán vk,voren áomplexu CDK12 a Ckálvnem K a vnhvbuj ávnaaovou aá,vvv,u CDK12.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • Differential Expression Profile Prioritization of Positional Candidate Glaucoma Genes the GLC1C Locus
    LABORATORY SCIENCES Differential Expression Profile Prioritization of Positional Candidate Glaucoma Genes The GLC1C Locus Frank W. Rozsa, PhD; Kathleen M. Scott, BS; Hemant Pawar, PhD; John R. Samples, MD; Mary K. Wirtz, PhD; Julia E. Richards, PhD Objectives: To develop and apply a model for priori- est because of moderate expression and changes in tization of candidate glaucoma genes. expression. Transcription factor ZBTB38 emerges as an interesting candidate gene because of the overall expres- Methods: This Affymetrix GeneChip (Affymetrix, Santa sion level, differential expression, and function. Clara, Calif) study of gene expression in primary cul- ture human trabecular meshwork cells uses a positional Conclusions: Only1geneintheGLC1C interval fits our differential expression profile model for prioritization of model for differential expression under multiple glau- candidate genes within the GLC1C genetic inclusion in- coma risk conditions. The use of multiple prioritization terval. models resulted in filtering 7 candidate genes of higher interest out of the 41 known genes in the region. Results: Sixteen genes were expressed under all condi- tions within the GLC1C interval. TMEM22 was the only Clinical Relevance: This study identified a small sub- gene within the interval with differential expression in set of genes that are most likely to harbor mutations that the same direction under both conditions tested. Two cause glaucoma linked to GLC1C. genes, ATP1B3 and COPB2, are of interest in the con- text of a protein-misfolding model for candidate selec- tion. SLC25A36, PCCB, and FNDC6 are of lesser inter- Arch Ophthalmol. 2007;125:117-127 IGH PREVALENCE AND PO- identification of additional GLC1C fami- tential for severe out- lies7,18-20 who provide optimal samples for come combine to make screening candidate genes for muta- adult-onset primary tions.7,18,20 The existence of 2 distinct open-angle glaucoma GLC1C haplotypes suggests that muta- (POAG) a significant public health prob- tions will not be limited to rare descen- H1 lem.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Metabolic Checkpoints in Cancer Cell Cycle
    City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2014 Metabolic Checkpoints in Cancer Cell Cycle Mahesh Saqcena Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/106 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] METABOLIC CHECKPOINTS IN CANCER CELL CYCLE By Mahesh Saqcena A dissertation submitted to the Graduate Faculty in Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2014 i 2014 Mahesh Saqcena All Rights Reserved ii This manuscript has been read and accepted for the Graduate Faculty in Biochemistry in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Date Dr. David A. Foster (Chair of Examining Committee) Date Dr. Edward J. Kennelly (Executive Officer) Dr. Mitchell Goldfarb (Hunter College) Dr. Paul Feinstein (Hunter College) Dr. Richard Kolesnick (Sloan Kettering Institute) Dr. Frederick R. Cross (Rockefeller University) (Supervisory Committee) THE CITY UNIVERSITY OF NEW YORK iii Abstract METABOLIC CHECKPOINTS IN CANCER CELL CYCLE by Mahesh Saqcena Advisor: Dr. David A. Foster Growth factors (GFs) as well as nutrient sufficiency regulate cell division in metazoans. The vast majority of mutations that contribute to cancer are in genes that regulate progression through the G1 phase of the cell cycle. A key regulatory site in G1 is the growth factor-dependent Restriction Point (R), where cells get permissive signals to divide.
    [Show full text]
  • The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression
    International Journal of Molecular Sciences Review The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression Tingting Zou and Zhenghong Lin * School of Life Sciences, Chongqing University, Chongqing 401331, China; [email protected] * Correspondence: [email protected] Abstract: The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs. Keywords: cell cycle regulation; CDKs; cyclins; CKIs; UPS; E3 ubiquitin ligases; Deubiquitinases (DUBs) Citation: Zou, T.; Lin, Z. The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. 1. Introduction Int. J. Mol. Sci. 2021, 22, 5754. https://doi.org/10.3390/ijms22115754 The cell cycle is a ubiquitous, complex, and highly regulated process that is involved in the sequential events during which a cell duplicates its genetic materials, grows, and di- Academic Editors: Kwang-Hyun Bae vides into two daughter cells.
    [Show full text]