<<

KR0000138 KAERI/RR-1968/99

Study on the Fundamentals of Atomic Energy

Development of the plastic solid- cell for tunable solid-state dye and study on its optical properties

31/31 KAERI/RR-1968/99

Study on the Fundamentals of Atomic Energy

Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties 2000^

s. T=J

H

=L

4 Ti:sapphire, Cr:LISAF, Alexandrite^ 4^r aL^fl eflo]x^ ^^^o] 7fl^s)$i o.^. e>]z]^ JL^| efl o] ^

-3- % sol-gel, silica, polymer^ 7f

3H7.it-

34. m.

Coplolex NK-552]- methylmetacylatel- host material^, -s}^ JZ^-fl

4 T]S\O] 3101

Til 5} Til

o]

—4- IV.

Copolex NK-55^- Poly methylmetacylate(PMMA)-& AA host materialS^M

71 €4. °1 ^"f S^^l 71^71

3]- 3mJ/pulse( 5 PMMA5] ^-f

-^ 10.8% ^^^ GIM^ ^^713] TJ^- 71^-7] 6cm?] iii GIM^ Ji

V.

-5- 01 O.512}J1

4*110}

-6- SUMMARY

I . Project Title

Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties n. Objective and Importance of the Project

It is essential to use tunable lasers in atomic spectroscopy, environmental analysis and the atmospheric remote sensing. And it is required to use a compact and rugged tunable lasers for the portable measurement system. The most widely used tunable lasers are dye lasers based on liquid solutions which can offer wide tuning range and high efficiency. However, because of dye degradation, heating, and triplet-state formation, dye solutions have to be flowed through the laser cavity to maintain constant gain and beam quality. This requires bulky dye-flow systems and reservoirs, which requires large quantities of often flammable and toxic solvent to dissolve dye.

Many efforts have been done worldwide, to develop novel tunable solid-state laser materials which can substitute in liquid and several solid-state laser materials, such as, Ti^sapphire, GrLiSAF, Alexandrite, and fosterite have developed. The lasers with these materials can be compact, robust, and versatile. But these material are expensive and the lasing wavelengths of these lasers are generally near infrared region, which means that frequency conversion process is needed to get visible wavelength.

Recently there have been many studies all over the world to

-7- fabricate solid-state dyes by doping dyes in sol-gel, silica, and polymers. It's because that solid-state dyes can be produced in an extremely low unit cost and have the same tunability as liquid-dyes and therefore can solve the problems which both solid-state laser materials and liquid-dyes have respectively. Dye-doped solids may be refreshed within the laser cavity by either movement or replacement and also tunability over the entire visible range range is possible with several automatically interchangeable gain elements doped with different dyes. So solid-state dye lasers have potential to become small, efficient and cheap tuning extentions to pulse pump lasers.

By considering that the advanced countries are eager to develop these solid-state dyes and the laser market is governed by these countries, it is very important to develop solid-state dyes and compact tunable solid-state dye lasers system by ourselves. And it is the very object of the project.

DI. Scope and Contents of Project

In this year, we have investigated the-state-of-the-art of the advanced countries and have studied the appropriate plastic host materials which are suitable for doping dyes. And as results we have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. And by doping several dyes in the host materials we have tried to extend the tuning range. The flatness and homogeniety of the solid-state dyes have been investigated. We also designed and constructed various kinds of solid-state oscillators which is very compact because there is no circulating system. And a new oscillator in which the gain element can be rotated and translated by the stepping motors has been constructed to increase the operation time. Finally, we have performed a series of lasing experiment in various kinds of laser oscillators with different solid-state dyes.

IV. Result of Project

In this year, we have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA with each polymerization process in which there are free radical reaction, polymerization process, molding, and heat treatment. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better propeties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slope efficiency of 10.8% and in the grazing incidence cavity, 1.2%. We have constructed a very compact grazing-incidence cavity which is only 6-cm long and the linewidth of the laser was less than 1.5 GHz with 3~ns pulse duration. And we have fabricated a disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

V. Proposal for Applications

We could make a solid-state dye laser system which is very compact, handy and versatile when we develop the technologies of the fabrication of the solid-state dyes through this project. This means that this laser system can be applied to atmospheric and underwater sensing, monitoring of the environmental pollutions, local area communication networks, and spectroscopy.

And as a solid-state dye laser can be compact, inexpensive, short in maintenance time, and nontoxic and the solid-state dyes are disposable,

-9- the advanced countries, such as the United States, recognized the merits of them and are eager to apply it to medicine. Therefore it will be possible to apply the solid-state dye laser system to the apparatus of medical treatments after the development of the laser system is finished.

And almost all of the tunable lasers, including dye lasers, in our country have been imported from other countries. So we could expect this laser system might be a substitute of some of them when we finish the development.

We believe that ceaseless supports are necessary to reach the final goal of the project because it is possible to develop a new versatile system with small research fund and we can obtain the fabrication technology of laser gain media.

-10— Summary *i] 1 ^ A1 ^ 15

*i| 2 # ^Nl^ 7l#7fl^- ^3§- 17

3 # 4^-7]-^. JL^H^H^-g- #^^ ^€ ^]4 -20 ^1 1 € Copolex NK-551- °l-§-^ Ji^l^^€ ^1^- 20 ^ 2 ^ PMMA* o].g-$. Ji^^i€ ^1^1- 28 ^11 3 € 3.^1 ^4i€ %^*3 ^A\ 34 ^1 4 ^ Bflo]^ Afl^o^ SA^ 39

l^o} rtx\ m^ 42

*ll 2 ^ Littrow ^ ^^l7]o]|^o] ^O]^ Hav^i s^ 55 4 3 ^ GIM^ ^7HA^ %)o}^ ^v^i S.A^ 65 4 4 %$[$.*$ 4^-71-€ 31 ^^i 5fl6l^ *11*J- 77

c yC\- 7$ S- Q4

6 # t^^tl 85

-11- 3-1. ADCCAllyl Diglycol Carbonate)^ 3-2 Copolex NK-551- 3-3 Copolex NK-551-

3-4. ^^s] ^£ 5xi04mole/l^^1 4^1. 3-14 eH*l ^§^^i ^^i 4^ #^^1 ^sf 3-15. Rhodamine 6G s] i^^l ^^ ^ e|o]x-] 4-1. ^^^ SJ*S 5J^^ ^^171 ^S. 4-2 f^ ^*S SJ^^ ^^7] ^a. 4-3. Copolex NK-551: °1-M>5 J *l 4-4. Copolex NK 55* ^-g-^ 5j sj

4-5. ^^ ^^-7f ^ ji^l AVE}] q± 4-6. ^^ q±7\ %

4-7. ^^-^i7f %!7j-£l PMMA

PMMA •§--&

4-9.

-12- 4-10.

4-11.

4-12. f^^S Littrow^ ^7] 4-13. ^^^ Littrow1^ ^$.7}. 4-14. Copolex NK-551- °l-g-^ ^^^ Littrow1^ JL^fl 4-15. Copolex NK-551- ©l-g-tb Littrow^ ^^7loil^ 4-16. ^^ ^dt7> ^7]-^ Sr^-g- #B]-^BJ1- oj-g-*]- 32.^11 ^^ 4-17. ^^- ^4i7} ^7}^ ^^--g- #^^EJ# oj-g-fV Littrow^

4-18. Edmund PMMA ^ °|-g-?t Littrow^

4-19 ^1^-si ^-^^171- 47]& Littrow^ Ji^l^ 4-20. PMMA J1*I) ^i >i# ol-g-tt Littrow^ 4-21. PMMA JI^I ^^ ^-i- °l-§-^ Littrow^

4-22. ^^g Grazing Incidence^ ^7] 4-23. ^^^ Grazing Incidence^ ^^7] ^3:. 4-24. Copolex NK-55-& ^1-g-t!: ^^ ^ Grazing Incidence^

4-25. Copolex NK-551: °l-g-t!: #^^ Grazing Incidence^!

4-26. ELK4^ PMMA Ji^l q± €-& °l-g-^ ^^^ Grazing Incidence

4-27. ELK4S] PMMA Ji^I q± -il- oj-g-f}- s>|3g Grazing Incidence

^ ^^7]21 #^ ^^|E.^. 4-28. ELK4^ PMMA1- °l-g-^ ^^^ Grazing Incidence^ JL^fl ^i

4-29. Littman^ 4^30.

-13- 4-31. PD502 JELe} 4-32. 5.Z-1 4^ 7-f-^ *H PC 4-33. AMC-4XI I 4-34. ^£-^4 s

PD502 ^

-14- 1 S- M

LIDAR ^1,

-g-o]§>4.

nm

ABif i=-o)jL Xfl^

Til

m<>] $i4.

037]

S14.

-15- efl o] ^ nfl «fl ir 3 el 4.

] O. G. Peterson^- B. B. Snavelys^ PMMA°H Rhodamine ^il- (laser rod)^^AS ^1-JL #2flA] ^^^ ^§M sflo]^

w v 4^(triplet stateHHs] ^>^ o #(stimulated emission)^ ^€AoKquenchingH #^1"^^-^: S.H-Si-^412] 1985\1 D. A. Gromovfe Xanthene ^I's ^i (Rhodamine 6G chloride, Rhodamine 6G perchlorate, dye HB)l-i- MPMM A (Modified PMMA) Ji^-^} °J4(polymer host)°fl ^7fsl-^4. MMA(methyl methacrylate)^ ofl^-i-s] ^ v]-£6\] 4^ ^^ S.^-(conversion efficiency), s)l°]^i ^4^ ^^(laser damage threshold)^

damage resistance)0! T^JI ^dtS| ^S1^ ^1 ^(photobleaching resistance)0! SL&\ i]}o)x] rflsl; J:^(conversion efficiency)^ ^4TT ^*

MPMMA(modified PMMA)°11 Xanthene 311^ ^j^Rhodamine 6G chloride, Rhodamine 6G perchlorate, dye 11B Q Oxazine-17^- ^7 1 30^mol/liter°J -^-f^^i 3-^ #$1 AJI^# ^5^ ^ ^ 20mm x 7^0} i0~30mm°i ^1^^ o]^^ ^

3(single shot damage threshold)^ 13J/cm2^.^ feSJ:^^ <^E^ a] ^^ ^^}^ 3^o| 8mm^ ^ ^S

3l-i:(pumping

—17— conversion efficiency)4 (life time ; longevity) -#BJ)

20%

Xanthene density) Dp=4 ^ ^ ^3§ o]]ui^] 10% oj^j ^.^ iui^]^ 0.1J/cm2°14. Rhodamine ^ Rhodamine ^4^] ^]£ ^(monomer composition)°\}5- s]

materiaDS.'H SiO27|-

Tetramethoxylane[Si(OCH3)4 ; TMOS] Teraethoxysilane [Si(OC2H5)4 ; TEOS]f-ir Solgel F. Salin^j sulforhodamine 640^ fe- 20% Littrow

E. J. A. Pope^^ silica gel-PMMA 4t

1990\i Edward T. Knobbed Solgel ^^.5. Rhodamine4 Coumarin ^!it %i7l-5| ORMOSIL(organically modified silicate) Ji^-4 ^4(polymer host)* ^|^«H ^ °1 ^-(optical gain), ^1°]^ ^^Klaser oscillation)4 (photostability))-i- r

o. ofl^j

Ufl^-ofl

40:l MPMMA* l(laser damage threshold energy)* §14^ 4.[9,10,14,19]

-18- [12,18,30]£ "S Eastman Kodak^ F. J. Duarte 3.%-g: 1994^B]

7J . [15,20,21,22,23,24,32, 35,38]

Manchester tfltvo] T_ A_ KJ^ ^^.^ PMMASf Solgeli

iJi§Fji ^4125,33,37] ^ff^geflH^ Otago tfl^ I. T. McKinnie n-f-^r PMMA2] 2-hydroxyethyl methacrylate4 methyl methacrylate^

Akihiro Tagaya nf^ ^

Coumarin ^if ^7f^ sol-gel 11^1

4129,30,41,42,45]

-19- Copolex NK-55

Copolex NK-55 (thermosetting plastics)^ Qg.7} -^*14, *1 (thermosetting resin £^ ^•t^lKcrosslinked matrix)^ methylol melamine-cr (condensation reaction) °ll 5] sfl ^JLtb H^l melamine ^* (thermoplastics)^

1, CR-39S] ^r ^^^ ADC(Allyl Diglycol Carbonate)°1 JL 9~15 cps(centipoise), PH 7±l4 1.498°]4. M^ copolex

8.0cst(centistoke)°H, 20 AA 1.134 1.505614. 3~24 •-^4 IPP 27%4 CT ^^^11 (monomer) UV

4. efl o]

i ^M9] pore 7 V 3-34 E °1 ^S. 28°C

\I 3^1 A

-20- Copolex NK-55°11 %7}Q ^±^r Rhodamine 6G chloride0]4. 5xiO'4mole/lS >fl^)-$ ^^1 n^ 3-4^14. «l^^.S.fe efl°l^ # 3 ^ - 10 afl ^7>A]^ 5xiO" mole/l^S. ^^7]- 3mm o] n^ 3-5614. ^^ ^31^2^^ #^§f7l ^*> fe Milton Roy nt$\ Spectrophotometer (Model : Spectronic® 3000 3-64

-21- o II CH2—CH2—O—C—O—CH2—CH=CH2 CH,—CH2—O—C—O—CH2—CH=CH- II O 3-1. ADCCAllyl Diglycol Carbonate)^

-22- Monomer

OHgomer

Monomer+ IPP^ OH 391 (63%) (27%)

Oligomer Monomer + (96.8%) Oligomer (3.2%)

I SE40COIIA1 ! 10-205? E

r 2i AI

3-2 Copolex NK-55-

-23- 4 6 8 10 12 14 16 18 20 Time(hr)

3-3 Copolex NK-55 A]

-24- •'' ' £ • 'ii

3-4. 5xiO"\-44mole/l^I Copolex NK-55

-25- "T?

3-5 5X10\~ 3mole/13.

-26- >00 300 400 500 600 700 800 Wavelength(nm)

3-6. Copolex NK-55

-27- 2 ^ PMMA1- H 1

^ /1/10 °1-5>614. ^115] 3.7]4 ^-^fe- 20mmx 10mm

7Evc|-_ 4^-^ 4^ a:^£ #^^4 3-$ 3-84 ^o] UV 475nm ~

eflo]^ ^4:71- ^7>£l Jlxfl Aj-Efl ^5]^ ^^^ PMMA^ 3-94 7^°1 Free Radical £-§- 3-104 ^4. 7ls ^^

MMA St^t 100°C44 ^£# -i-el^^l 44*1 H^V §H^ ^ 44 MMAf ^r^^H 2-^7} life 5i# 4^ 80°C^i44 ^-4?t4. t 90~95ti- ^-44^4 ^^1- ^-4 60°C44

(AIBN),

44. 48to]4si ^£# 444^ 5J°) T'flno- -^--5144. 4 104 #°1 44^ > PMMA

-28- 20mm

•i-r'.JK'a-. s-si:!:•:''.::• ••!-:! «•: r. •"':••- 10mm

3-7.

-29- 200 300 400 500 600 700 800 900 Wavelength(nm)

3-

-30- )c=o

(a) Methyl methacrylate

VWWVV W w > electron Initiator HH vwwvv \

HH I^H vwwvv ^H W A (ft (b) Free radical propagation

•§-

—31— Temp. =85 - 95°C ye Oligome Solution

p Solution Filtering Caster

2-step 3-step 4-step

Temp.(°C) CO Temp. =47.5-48 °C

Temperature Control

5-step 6 8 10 12 Time(hr) I Zh. 6) " \\

3-11.

-33- 3

71 £ ^ l;^i-0l 4 SA>§f7l ^§}^ 5^^- 612nm^] TEMoo He-Ne 4 °] z\ (Research Electro-Optics, Inc. Model : LHOR~0300)#

4. ZL^ 3-121- *L#, He-Ne 3H ^ tij^. ^^7-l5l7r 200mm*] €2f °]-§-§f

50mm^4 ol^Al^] trfl^ zVz|^ ^ol^ ale) ^ ^ o] 4^

Spectrophotometerl- °l-§-«}°i - Rhodamine ^ItS ^^£1^ 4^ Al^g^ Rhodamine 6G (Exiton)^

^7] ^sflA-1 ofl^-^-ofl

51

3-12^1 (e)^r ^s] s mmo]^§fol o^sl 4=. ^^HIA-15. ^^^ ^1# #^f} 5}o]c]-. .^ ^ 7-15l ofl A-] He--Ne5l ell°1 ^ uJsl aj^o] ?t ^y_w ^moim^}- E|ES Ji^l^Efl^i ^^sl

nlAJlfV olxHl o]^ A>e^ ^-s-ol ^^ Sl ^4. n}^7>X]5L ^fl 3V£l A) 3g o) ^ ^ofl 3-1221 t ^^1 ^°> H-r^i^i i?S^ol ^iltfls.

y $14. ir^T ^s^s] J ^Efli-r #x) ^§j;cK ^V^7fl(Zygo Corp.)!? °1-§-?):

-34- ^^5] ^t§^: ^^*V ^4 3mJ/pulse( 5-9 3-144 ^-^ %^^± o.^S.% ^^4. ^^ ^4 PMMAS]

-35- Screen

Manufactured Solid-State Dye

3-12. He-Ne

-36- Commercial Manufactured Solid-State Dye Solid-State Dye 3-13. Zygo-1-

-37- 14 J2 12 J- 10 P-nlv'uieihvl mfthacrvlate) 2 8 c 6

I 2 8 ° 10 20 30 40 50 60 70 Number of laser pulses x 1000 3-14. 4 *L

fe- 7)7} 4i^ ojsj^ 4- 4)4:2] ^^^ OL %^o] 50% afe 70% ^fi£ ^^i^lfe watt-hours S. £^l§l-fe- 3M iL -sf^ rhodamine 6G^1 ^-f ^ 2000 watt-hoursl- ^fe

711

4.

^. cfA]

-39- - o rhodamine

556nm

-40^ Potential energy and cross section of Rhodamine 6G dye

Short Wavelength

S!x>gl6l Absorption ss I s

•fi <

o I a.

Long Wavelength Structural Sublevgl Cross sections coordinate populations

-15. Rhodamine 6G fi]

-41- . 3j^ J|*S(plane-parallel)^ 4-14 ^o] #^2§^4 ZL^ 4-2^1 ^^^^^.^ 550nm ~ 650 nm 4°HAi ^4"i: 99%

4-14

17] ^ §H ^^ ^ a] T^ o.6fl Afl^ 4^ Brewster Angled ^ ^1 AI ^ ^ ^§ 5] £ - 2:

Copolex NK-55 ^rnfl ^(host material)°ll Rhodamine 6G chloride* $7} } 4\± i|4 ii^g 4-34 ^Vol 3J*S 5J^^ ^^l7lofl ^^1*>^4. i^] 21 i^ ^^ l^^l^l clia. ^Efloic}. ^#7lsi ^o]^ 7cm<=lJi ^

^-fil ^1^41- 3mJ/pulse^ *g5.Sr$5l-fr ^ ^ °1 ^ r a^ 4-44 7EVO1 f"S 4^ 557nm^H>H 4 lOnm

PMMA f'llf

4-54

__42_ t- 3mJ/pulse^ ^*>SM- *fl 3M ^^^ n^ 3-64 £°1 f1^^-^ 600nmi^ ef 20nm

S]4 Edmund Industrial Optics S.

7} %7}& PMMA ^^ °l-g-$ eflc]^ ^v^i ^^£ 0>^-ei ^sS§f^4. o] f. 5}^^ ^^ ^ol7V 5mm7> s]5.^- ^^><^ €fiAS ^ir&iL^ «»11- 45. ^^ 50S) ^£ ^7]-^^; *> ^ #%•

4-84 ^"°1 2fl°l^ #^ ^a]M^^: #^tt ^4 ^^4^" 605nm°iH ^ 20nm

ELK 5)4^1 ^1^^ PMMA^ll JL^l ^i -i-l: ZL^ 4-94 ^°1 ^~ 5^ ^^ 4-104 ^°1 4^ 590nm

^4 71^-71 3L^^1 10.8%^1 Si4.

-43- 532 nm Pump Baem

Cylindrical Lens

igh Reflection Mirror j Output Coupler Dya Laser Output

4-1.

—44- 532 nm Pump Baem

Focusing Lens

High Reflection Mirror •j ~ Output Coupler

J N t.l

4-2

-45- * * nf] 4-3. Copolex NK-55-I- £-)] O] ^ .

-46- J$L !ntensity(arb. unit)

\m o r^ XJ x 4-5.

-48- 580 590 600 610 620 630 Wavelength(nm)

—49- 4-7.

-50- aSe0 570 580 590 600 610 620 630 640 Wavelength(nm)

4-8. £l PMMA ^4 ^1 3fl E

-51- -52- 560 570 580 590 600 610 Wavelength(nm)

4-ia

-53- 1000

Slope Efficiency = 10.8 %

0 12345678 Pump Energy(mJ/pulse)

4-11.

-54- Littrow^ ^^71^ n% 4-124 £<>i f^^§4 izeJ 4-133 3) a.5. ^4^4. 4-§-€ #*}% tsa^ £1^344 groove 24001ines/mm°M 650 nm A}o]oflA^ Copolex NK-55 31 ^ q±. 4.Q Littrow^ ^^17](ZLSJ 4-14)

^ 545nm~585nm

PMMA i^ xfl^ eflol^-g. ^^ 4-164 ^o] ^^§^4 ^^ 4-17i^

620nm . Edmund Industrial Optics^! PMMA^H Littrow^ ^7}$] sf^^s]-^ H^ 4-184 £°1 590nm~620nm?W ^%&$t7} 7f^§]-^4. ^^^^ PMMAi rhodamine 6G7V ^^l7l^ n^ 4-194 4-204 £°l

-55- 532 nm Pump Bae

Focusing Lens Holographic Grating

Dye Laser Output

4-12. f^ Littrow^

-56- 532 nm Pump Baem

Cylindrical Lens

Holographic Grating fy

Output Coupler

4-13. Littrow^

-57- * !

$ 4-14. Copolex NK-55 Littrow^ Ji^] *A± 4°}

-58- -L&] 4-15. Copolex NK-551- *]-%•$} a-]

-59— 4-16. $±7}

-60- 580 590 600 610 620 630 Wavelength(nm)

4-17.

-61- 1.6 2f1-4

•g 1.0 §0.8 | 0.6 fj 0.4 "" 0.2 0.0 570 580 590 600 610 620 630 Wavelength(nm)

4-18. Edmund PMMA Littrow^

-62-

*H 6 S-

[1]. B. H. Soffer and B. B. McFarland, "Continuously tunable narrow-band organic dye lasers", Appl. Phys. Lett. 10, 266 (1967). [2]. O. G. Peterson and B. B. Snavely, "Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate", Appl. Phys. Lett. 12, 238 (1968). [3]. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, "Efficient plastic-host dye lasers", J. Opt. Soc. Am. B 2, 1028-1031 (July 1985). [4]. F. Salin, G. Le Saux, P. Georges, A. Brun, C. Bagnall and J. Zarzycki, "Efficient tunable solid-state near 630 nm using sulforhodamine 640-doped silica gel", Opt. Lett. 14, 785-787(3 May 1989). [5]. E. J. A. Pope, M. Asami, and J. D. Mackenzie, "Transparent silica gel-PMMA composites", J. Mater. Res. 4, 1018-1026(1989). [6]. Edward T. Knobbe, Bruce Dunn, Peter D. Fuqua, and Fumito Nishida, "Laser behavior and photostability characteristics of organic dye doped silicate gel materials", Appl. Opt. 29, 2729-2733(20 June 1990). [7]. Theodore G. Pavlopoulos, Joseph H. Boyer, Mayur Shah, Kannappan Thangaraj, and Mou-Ling Soong, "Laser action from 2,6,8-trisubstituted 1,3,5,7-tetramethyl-pyrromethene-BF2 complexes : parti", Appl. Opt. 29, 3885-3886(20 September 1990). [8]. Joseph H. Boyer, Anthony Haag, Mou-Ling Soong, Kannappan

-85- Thangaraj, and Theodore G. Pavlopoulos, "Laser action from 2,6,8~trisubstituted l,3,5,7-tetramethyl-pyrromethene-BF2 complexes : part2", Appl. Opt. 30, 3788-3789(20 September 1991). [9]. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitalio, and A. M. Prokhorov, "Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities", J. Opt. Soc. Am. B 9, 143-151 (January 1992). [10]. D. Lo, J. E. Parris, J. L. Lawless, "Laser and properties of dye-doped sol-gel silica from 400nm to 800nm", Appl. Phys. B 56, 385-390(28 Feburary 1993) [11]. Steven C. Guggenheimer, Joseph H. Boyer, Kannapan Thangaraj, Mayur Shah, Mou-Ling Soong, and Theodore G. Pavlopoulos, "Efficient laser action from two cw laser-pumped pyrromethen-BF2 complexes", Appl. Opt. 32, 3942-3943(20 July 1993). [12]. A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki, "Polymer optical fiber amplifier", Appl. Phys. Lett. 63, 883-884(16 August 1993) [13]. Robert E. Hermes, Toomas H. Allik, Suresh CHandra, J. Andrew Hutchinson, "High efficincy pyrromethene doped solid-state dye lasers", Apl. Phys. Lett. 63, 877-879(16 August 1993). [14]. M. L. Ferrer, A. U. Acuna, F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, and R. Sastre, "Proton-transfer lasers from solid polymetric chains with covalently bound 2-(2'-hydroxyphenyl)benzimidazole groups", Appl. Opt. 33, 2266-2272(20 April 1994). [15]. F. J. Duarte, "Solid-state multiple-prism grating dye laser

-86- oscillators", Appl. Opt. 33, 3857-3860(20 June 1994). [16]. William P. Partridge, Jr., Normand M. Laurendeau, Charles C. Johnson and Richard N. Steppel, "Performance pyrromethene 580 and 597 in a commercial ND^YAG-pumped dye-laser system", Opt. Lett. 19, 1630-1632(15 October 1994) [17]. FMicheal Cavana, Patrick Georges, Jean-Francois Perelgritz, Alain Brun, Frederic Chaput, and Jean-Pierre Boilot, "Perylene- and pyrromethene-doped xerogol for a pulsed laser", Appl. Opt. 34, 428-431(20 January 1995) [18]. Akihiro Tagaya, Yasuhiro Koike, Eisuke Nihei, Shigehiro Tetamoto, Kazuhito Fujii, Tsuyoshi Yamamoto, and Keisuke Sasaki, "Basic performance of an organic dye-doped polymer optical fiber amplifier", Appl. Opt, 34, 988-992(20 Feburary 1995) [19]. A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, and S. Popov, Solid-state dye laser with modified poly (methyl methacrylate)-doped active elements", Appl. Opt. 34, 1516-1518(20 March 1995). [20]. F. J. Duarte, "Narrow-linewidth oscillators and intracavity dispersion", in Tunable Lasers Handbook, F. J. Duarte, Ed. (Academic, New York, 1995) pp. 9-31. [21]. F. J. Duarte, "Chap. 5 Dye lasers, in Tunable Lasers Handbook", F. J. Duarte, Ed.(Academic, New York, 1995) pp. 167-218. [22]. F. J. Duarte, "Opportunity beckons for solid-state dye lasers", Laser Focus World 31(5), 187-189 (1995). [23]. F. J. Duarte, "Solid-state dispersive dye laser oscillator: very compact cavity", Opt. Commun. 117, 480-484 (15 June 1995). [24]. F. J. Duarte, "Compact solid-state dye laser oscillators", in Optics

-87- in 1995, B. Guenther, Guest Editor, Optics and Photonics News 6(12), 33 (1995). [25]. Mark D. Rahn and Terence A. King, "Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly (methyl methacrylate) host media", Appl. Opt. 34, 8260-8271(20 December 1995). [26], A. Costela, I. Garcia-Morenno, J. M. Figuera, F. Amat-Guerri, and R. Sastre, "Soild-state dye lasers based on polymers incorporateing covalently bounded modified rhodamine 6G", Appl. Phys. Lett. 68, 593-595(29 January 1996). [27]. Hiroshi Taniguchi, Masahisa Nishiya, Shinji Tanisaki, and Humio Inaba "Lasing behavior in a liquid sperical dye laser containing highly scattering nanopaticles", Opt. Lett. 21, 263-265(15 Feburary 1996) [28]. Arnaud Dubois, Michael Canava, Alain Brun, Frederic Chaput, and Jean-Pierre Boilot, "Photostability of dye molecules trapped in solid matrices", Appl. Opt. 35, 3193-3199(20 June 1996) [29]. Wentao Hu, Hui Ye, Chuangdong Li, Zhonghong Jiang, and Fuzheng Zhou, "All-solid-state tunable DCM dye laser pumped by a diode-pumped ND:YAG laser", Appl. Opt. 36, 579-583(20 January 1997) [30]. Akihito Tagaya, Shigehiro Teramoto, Eisuke Nihei, Keisuke Sasaki, and Yasuhiro Koike, "High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for preparation and spectral investigation", Appl. Opt. 36, 572-578(20 January 1997) [31]. Mario J. Cazeca, XinLi Jiang, Jayant Kumar, and Sukant K. Tripathy, "Epoxy matrix for solid-state dye laser applications", Appl. Opt. 36, 4965-4968(20 July 1997) [32]. F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, "Dispersive solid-state dye laser oscillators", Opt. Quantum Electron. 29, 461-472 (1997). [33]. Mark D. Rahn, Terence A. King, Anthony A. Gorman, and Ian Hamblett, "Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and soild dye lasers", Appl. Opt. 36, 5862-5871 (20 August 1997). [34]. Mohammed Faloss, Michael Canva, Patrick Georges, Alain Bran, Frederic Chaput, and Jean-Pierre Boilot, "Toward million of laser pulses with pyrromethene- and perylene-doped xerogels", Appl. Opt. 36, 6760-6763(20 September 1997). [35]. F. J. Duarte, "Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator", Opt. Laser Technol. 29, 513-516 (1997). [36]. A. Costela, I. Garcia-Moreno, J. Barroso, and R. Sastre, "Laser performance of Coumarin 540A dye molecules in polymeric hodt media with different viscosities : From liquid solution to solid polymer matrix", J. Appl. Phys. 83, 650-660(15 January 1998) [37]. Mark D. Rahn and Terence A. King, "High-performance solid-state dye laser based on perylence-orange-doped poly com glass", J. Mod. Opt. 45, 1259-1267(1998). [38]. F. J. Duarte, T. S. Taylor, A. Costela, I. Garcia-Moreno, and R. Sastre, "Long-pulse narrow-linewidth dispersive solid-state dye laser oscillator", Appl. Opt. 37, 3987-3989 (20 June 1998). [39]. Hong-kee Law, Teck-Yong Tou, and Seik-Weng Ng,

-89- "Energy-transfer dye laser in solgel silica", Appl. Opt. 37, 5694-5696,(20 August 1998). [40]. Sergei Popov, "Dye photodestruction in solid-state dye laser with a polymeric gain medium", Appl. Opt. 37, 6449-6455(20 September 1998). [41]. Kwong-Cheong Yee, Teck-Yong Tou, and Seik-Weng Ng, "Hot-press molded poly (methyl methacrylate) matrix for solid-state dye lasers", Appl. Opt. 37, 6381-6385(20 September 1998). [42]. D. Lo, S. K. Lam, C. Ye, K. S. Lam, "Narrow linwidth operation of solid state dye laser based on sol-gel silica", Opt. Commun. 156, 361-320(15 November 1998). [43]. Shirn M. Giffin, Iain T. Mckinnie, William J. Wads worth, Anthony D. Woolhouse, Gerald J. Smith, Tim G. Haskell, "Solid state dye lasers based on 2-hydroxyethyl methacrylate and methyl methacrylate co-polymers", Opt. Commun. 161, 163-170(1 March 1999). [44]. William J. Wadswoth, Shirin M. Giffin, Iain T. Mckinnie, John C. Sharpe, Anthony D. Woolhouse, Timothy G. Haskell, and Gerald J. Smith, "Thermal and optical properties of polymer hosts for solid-state dye lasers", Appl. Opt. 38, 2504-2509(20 April 1999). [45]. S. K. Lam, X.-L. Zhu, D. Lo, "Single longitudinal mode lasing of coumarin-doped sol-gel sillica laser", Appl. Phys. B 68, 1151-1153(1999).

-90- INIS

KAERI/RR-1968/99

2000.1

89p. ^g-c o 7] 29.7 Cm.

| S-91 Copolex NK-554 Poly methylmetacylate(PMMA)

3mJ/pulse( 5-9 J/cm2)4 ^SiM^HH 4-5-4 ££• . PMMA

560-620nmS] ^ 10.8% $A

ell

, Colpolesx NK-55, PMMA, , GIM BIBLIOGRAPHIC INFORMATION SHEET

Performing Org. Sponsoring Org. Stamdard Report No. INIS Subject Code Report No. Report No. KAERI/RR-1968/99

Title / Subtitle Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties Project Manager Ko, Do-Kyeong (Quantum Optics Team) and Department Researcher and Jongmin Lee(Quantum Optics Team), Byung Heon Cha(") Department Jonghoon Yi("), Kang Soo Lee("), Sung-Ho Kim(") Gwon Lim(") Publication Publication Taejon Publisher KAERI Jan. 2000 Place Date Page 89p. 111. & Tab. Yes( o ), No ( ) Size 29.7 Cm.

Note '99 Institute Basic Project

Classified Open( O ), Restricted( ), Report Type Research Report Class Document

Sponsoring Org. Contract No.

Abstract (15-20 we have fabricated solid-state dyes with Copolex NK-55, Lines) which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better propeties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slope efficiency of 10.8% and in the grazing incidence cavity, 1.2%. We have constructed a very compact grazing-incidence cavity which is only 6-cm long and the linewidth of the laser was less than 1.5 GHz with 3~ns pulse duration. And we have fabricated a disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. Subject Keywords (About 10 words)

solid-state dyes, tunable, Colpolex NK-55, PMMA, laser, compact, grazing-incidence