Anatomy of the Anterior Cruciate Ligament C

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy of the Anterior Cruciate Ligament C View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Knee Surg Sports Traumatol Arthrosc (2006) 14: 204–213 KNEE DOI 10.1007/s00167-005-0679-9 V. B. Duthon Anatomy of the anterior cruciate ligament C. Barea S. Abrassart J. H. Fasel D. Fritschy J. Me´ne´trey (PLB). They are not isometric with the Received: 15 February 2005 J. Me´ne´trey (&) Accepted: 2 April 2005 Unite´d’Orthope´die et de Traumatologie du main change being lengthening of the Published online: 19 October 2005 Sport, Service de Chirurgie Orthope´dique et AMB and shortening of the PLB Ó Springer-Verlag 2005 de Traumatologie de l’Appareil Moteur, during flexion. The ACL has a Hoˆ pitaux Universitaires de Gene` ve, microstructure of collagen bundles of 24, rue Micheli-du-Crest, 1211 Geneva 14, Switzerland multiple types (mostly type I) and a E-mail: [email protected] matrix made of a network of proteins, Tel.: +41-22-37279211 glycoproteins, elastic systems, and Fax: +41-22-3727927 glycosaminoglycans with multiple functional interactions. The complex Abstract The anterior cruciate ultrastructural organization and ligament (ACL) is a band of dense abundant elastic system of the ACL connective tissue which courses from allow it to withstand multiaxial stres- the femur to the tibia. The ACL is a ses and varying tensile strains. The V. B. Duthon Æ S. Abrassart Æ J. H. Fasel key structure in the knee joint, as it ACL is innervated by posterior artic- Division of Anatomy, resists anterior tibial translation and ular branches of the tibial nerve and is Department of Morphology, University of Geneva, Geneva, Switzerland rotational loads. When the knee is vascularized by branches of the middle extended, the ACL has a mean length genicular artery. C. Barea Æ D. Fritschy Æ J. Me´ne´trey of 32 mm and a width of 7–12 mm. Sports Medicine Unit, Department of Orthopaedic Surgery, There are two components of the Keywords Anterior cruciate University Hospital of Geneva, Geneva, ACL, the anteromedial bundle ligament Æ Anteromedial bundle Æ Switzerland (AMB) and the posterolateral bundle Posterolateral bundle Introduction the complex anatomy, function, and biomechanics of the ACL is critical to elucidate the mechanisms of injury, The anterior cruciate ligament (ACL) is a key structure understand the fate of chronic ACL deficiency, and to in the knee joint, as it resists anterior tibial translation improve surgical reconstruction. The purpose of this and rotational loads [15, 37, 46]. It is one of the most paper is to present a systematic review of original re- frequently injured structures during high impact or search studies dealing with the macroanatomy and sporting activities [45]. The ACL does not heal when microanatomy of the ACL. torn, and surgical reconstruction is the standard treat- ment in the field of sports medicine [9]. Such recon- Embryology struction aims at restoring the kinematics and stability of the injured knee, to prevent future degenerative The ACL appears as a mesenchymal condensation in the changes [27]. Therefore, an adequate understanding of blastoma at 6.5 weeks of gestation, well before joint 205 cavitation [18]. It is surrounded by a mesentery-like fibers fan out as they approach their tibial attachment fold of synovium that originates from the posterior [12]. They attach to a fossa located anterior and lateral capsular apparatus of the knee joint. Thus, while the to the medial tibial spine. This fossa is a wide, depressed ACL is located intraarticularly, it remains extra-synovial area approximately 11 mm wide (range, 8–12 mm) and throughout its course [18]. 17 mm (range, 14–21 mm) in the antero-posterior direction [7, 21, 22, 44]. Near its attachment, the ACL sends a variable amount of fibers anteriorly beneath the Macroanatomy transverse intermeniscal ligament, and some extensions may blend with both the attachment of the anterior or The ACL is a band-like structure of dense connective posterior horn of the lateral meniscus. The tibial tissues. Its femoral attachment displays a shape com- attachment is somewhat wider and stronger than the parable to a vertically disposed semicircle [21]. The bony femoral attachment [7, 21, 22]. attachment is located at the posterior part of the inner Functionally, Girgis et al. divided the ACL into two surface of the lateral femoral condyle and not, as parts, the anteromedial bundle (AMB) and the pos- sometimes presumed, at the roof of the intercondylar terolateral bundle (PLB) [21], while other authors have notch. The ACL is lateral to the midline and occupies separated the ACL in three functional bundles (AMB, the superior 66% of the lateral aspect of the notch on an intermediate band, and PLB) [6, 26]. However, the two- anterior view of the flexed knee joint. The size of the bundle model has been generally accepted as the best bony attachment can vary from 11 to 24 mm across [7, representation to understand ACL function (Fig. 2). 44]. From its femoral attachment, the ACL runs ante- The fascicles of the AMB originate at the most riorly, medially, and distally to the tibia. Its length anterior and proximal aspect of the femoral attachment ranges from 22 to 41 mm (mean, 32 mm) and its width and insert at the anteromedial aspect of the tibial from 7 to 12 mm [6] (Fig. 1). attachment [6]. Conversely, the fascicles of the PLB The cross-sectional shape of the ACL is ‘‘irregular’’ originate at the postero-distal aspect of the femoral and not circular, elliptical or any other simple geometric attachment and insert at the posterolateral aspect of the form. This shape changes with the angle of flexion, tibial attachment [6]. A larger number of fascicles make but is generally larger in the anterior–posterior direc- up the PLB as compared to the AMB [50]. With the knee tion. The cross-sectional area increases from the femur in extension the fascicles of the ACL run in a fairly to the tibia, as follows: 34 mm2 proximally, 33 mm2 parallel fashion when viewed sagitally. During flexion, mid-proximally, 35 mm2 at mid-substance level, 38 mm2 there is a slight lateral rotation of the ligament as a mid-distally, and 42 mm2 distally [23] (Fig. 1). The ACL whole around its longitudinal axis, and the AMB begins Fig. 1 Front view of a left knee showing the ACL in the femoral intercondylar notch. The mean length is 32 mm (range, 22–41 mm) (left picture) and the mean width is 10 mm (range, 7–12 mm). The cross- sectional area varies in size and shape from the femur to the tibia (right picture) 206 Fig. 2 The AMB and the PLB are not isometric; the AMB tightens during knee flexion while the PLB becomes slack. The AMB spirals around the rest of the ligament so that the two bundles are no longer par- allel at 110° of flexion to spiral around the rest of the ligament. This relative movement of one bundle upon the other is due to the Microanatomy orientation of the bony attachments of the ACL [7, 21] (Fig. 2b). In full extension there is a significant differ- Microscopically, we can distinguish three zones within ence in length between the AMB (34 mm) and the PLB the ACL: (22.5 mm) [26]. The two bundles are not isometric in 1. The proximal part, which is less solid, is highly cel- flexion/extension, but experience different patterns of lular, rich in round and ovoid cells, containing some length changes during passive knee flexion. Hollis et al. fusiform fibroblasts, collagen type II and glycopro- [26] showed that the AMB lengthens and tightens in teins such as fibronectin and laminin (Fig. 4a). flexion, while the PLB shortens and becomes slack. 2. The middle part, containing fusiform and spindle- According to the same authors, the AMB increases by shaped fibroblasts (Fig. 5a), is a high density of 1.9 mm (5%) at 30° of knee flexion, and by 4 mm (12%) collagen fibers, a special zone of cartilage and fibro- at 90°. Conversely, the PLB decreases by 3.2 mm (14%) cartilage (especially in the anterior part where the when the knee is passively flexed from 0 to 30°, and by ligament faces the anterior rim of the intercondylar 7.1 mm (32%) at 90° of knee flexion [26]. As compared notch), and elastic, and oxytalan fibers. The oxytalan to full extension, the posterior fibers become slack in fibers withstand modest multidirectional stresses, flexion, and thus leave the anteromedial fibers as the while elastic fibers absorb recurrent maximal stress restraint to anterior tibial load. The two bundles are no [51]. The fusiform and spindle-shaped fibroblasts are longer parallel because the AMB spirals around the rest prominent in this middle part, which is also named of the ligament. Amis and Dawkins [6] showed that the fusiform zone, and is located in the middle part beyond 90° of knee flexion the AMB continues to and the proximal one-quarter of the ligament. The lengthen and surprisingly the PLB tightens as one ap- fusiform cell zone is characterized by a high number proaches full flexion (Fig. 3). In contrast to Hollis et al. of longitudinally oriented cells with fusiform-shaped [26], they found that the AMB initially shortens until 30° nuclei, longitudinal blood vessels, and high crimp of flexion, and then gradually elongates until it reaches length. These fibroblasts show features close to the maximal length at 120°. Internal rotation lengthens the medial collateral ligament (MCL) and dermal ACL a little more than does external rotation, most fibroblasts [38]. The cytoplasm of the cells in this noticeably at 30° of flexion.
Recommended publications
  • The Patellar Arterial Supply Via the Infrapatellar Fat Pad (Of Hoffa): a Combined Anatomical and Angiographical Analysis
    Hindawi Publishing Corporation Anatomy Research International Volume 2012, Article ID 713838, 10 pages doi:10.1155/2012/713838 Research Article The Patellar Arterial Supply via the Infrapatellar Fat Pad (of Hoffa): A Combined Anatomical and Angiographical Analysis Gregor Nemschak and Michael L. Pretterklieber Center of Anatomy and Cell Biology, Department of Applied Anatomy, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna, Austria Correspondence should be addressed to Michael L. Pretterklieber, [email protected] Received 3 February 2012; Accepted 21 March 2012 Academic Editor: Konstantinos Natsis Copyright © 2012 G. Nemschak and M. L. Pretterklieber. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Even though the vascular supply of the human patella has been object of numerous studies until now, none of them has described in detail the rich arterial supply provided via the infrapatellar fat pad (of Hoffa). Therefore, we aimed to complete the knowledge about this interesting and clinically relevant topic. Five human patellae taken from voluntary body donators were studied at the Department of Applied Anatomy of the Medical University of Vienna. One was dissected under the operation microscope, a second was made translucent by Sihlers-solution, and three underwent angiography using a 3D X-ray unit. The results revealed that the patella to a considerable amount is supplied by arteries coursing through the surrounding parts of the infrapatellar fat pad. The latter were found to branch off from the medial and lateral superior and inferior genicular arteries.
    [Show full text]
  • The Science of Aging Skin Leslie Baumann, MD; Susan Weinkle, MD
    REVIEW Improving Elasticity: The Science of Aging Skin Leslie Baumann, MD; Susan Weinkle, MD Although collagen changes from both chronologic aging and photoaging have been well stud- ied, there is a dearth of research into the elastin component of the dermis. No products have been approved by the US Food and Drug Administration for either replacing elastin or stimulating its syn- thesis. Recently, a zinc complex was shown to increase dermal elastin staining, hypodermal fat, and epidermal thickness in animal studies. Histologic studies of the same zinc complex in humans have revealed increased deposition of functional elastin fibers following 10 days of use. In the clinical trials reported here, there was an increase in functional elastin, as well as improvements in fine lines and wrinkles. COSNo adverse events were noted. DERM ollagen and elastin are the fibers that make collagen bundles and endow the skin with rebounding up the dermal matrix. Cosmetic dermatol- properties. Tropoelastin molecules, which are precur- ogists have long used topical medications, sors to elastin, bind covalently with cross-links to form fillers, and light-based and laser-based elastin. Elastin fibers are assembled on bundles of micro- therapies to improve the loss of collagen fibrils composed of fibrillin. The latter forms a template Cthat occurs in aging skin. However, until recently, no fill- on which elastin is deposited.1 Most elastin production ers orDo topical agents have been availableNot to treat the loss is restricted Copy to a narrow window of development. Elas- of function of elastin, which is also an important feature togenesis increases dramatically during fetal life, peaks of dermal photoaging.
    [Show full text]
  • Synovial Joints Permit Movements of the Skeleton
    8 Joints Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes 8.1 Contrast the major categories of joints, and explain the relationship between structure and function for each category. 8.2 Describe the basic structure of a synovial joint, and describe common accessory structures and their functions. 8.3 Describe how the anatomical and functional properties of synovial joints permit movements of the skeleton. © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes (continued) 8.4 Describe flexion/extension, abduction/ adduction, and circumduction movements of the skeleton. 8.5 Describe rotational and special movements of the skeleton. © 2018 Pearson Education, Inc. Module 8.1: Joints are classified according to structure and movement Joints, or articulations . Locations where two or more bones meet . Only points at which movements of bones can occur • Joints allow mobility while preserving bone strength • Amount of movement allowed is determined by anatomical structure . Categorized • Functionally by amount of motion allowed, or range of motion (ROM) • Structurally by anatomical organization © 2018 Pearson Education, Inc. Module 8.1: Joint classification Functional classification of joints . Synarthrosis (syn-, together + arthrosis, joint) • No movement allowed • Extremely strong . Amphiarthrosis (amphi-, on both sides) • Little movement allowed (more than synarthrosis) • Much stronger than diarthrosis • Articulating bones connected by collagen fibers or cartilage . Diarthrosis (dia-, through) • Freely movable © 2018 Pearson Education, Inc. Module 8.1: Joint classification Structural classification of joints . Fibrous • Suture (sutura, a sewing together) – Synarthrotic joint connected by dense fibrous connective tissue – Located between bones of the skull • Gomphosis (gomphos, bolt) – Synarthrotic joint binding teeth to bony sockets in maxillae and mandible © 2018 Pearson Education, Inc.
    [Show full text]
  • Chapter Nine- Joints and Articulations
    Chapter 9 Activity: Joints 1. List the three structural categories of joints and briefly describe the criteria used for structural classification of joints. 2. List the three functional classifications of joints, and briefly describe the basis for the functional classification of joints. 3. Which functional class of joints contains joints that are freely movable? 1. Synarthrosis 2. Amphiarthrosis 3. Diarthrosis a) 1 only c) 3 only e) All of these choices b) 2 only d) Both 2 and 3 4. Which of the following is a type of fibrous joint composed of a thin layer of dense irregular fibrous connective tissue found between the bones of the skull? 1. Syndesmoses 2. Gomphosis 3. Suture a) 1 only c) 3 only e) None of these choices b) 2 only d) Both 1 and 2 5. The epiphyseal plate in a long bone is an example of which type of joint? a) Gomphosis c) Symphysis e) Synchondrosis b) Suture d) Synovial 6. The joint between the first rib and the manubrium of the sternum is classified as a) a synchondrosis. c) a cartilaginous joint. e) None of these choices. b) a synarthrosis. d) All of these choices. 7. Which of the following is(are) made from dense regular connective tissue? a) Ligaments c) Articular fat pads e) Synovial fluid b) Articular cartilage d) Synovial membrane 8. What unique characteristics would a person who is "double-jointed” possess? Answer: 9. Briefly describe the functions of synovial fluid. Answer: 10. Briefly describe what is happening when a person “cracks their knuckles”. Answer: 11. Which of the following structures include the fibular and tibial collateral ligaments of the knee joint? a) Synovial membranes c) Menisci e) Tendon sheath b) Articular fat pads d) Extracapsular ligaments 12.
    [Show full text]
  • About Your Knee
    OrthoInfo Basics About Your Knee What are the parts of the knee? Your knee is Your knee is made up of four main things: bones, cartilage, ligaments, the largest joint and tendons. in your body Bones. Three bones meet to form your knee joint: your thighbone and one of the (femur), shinbone (tibia), and kneecap (patella). Your patella sits in most complex. front of the joint and provides some protection. It is also vital Articular cartilage. The ends of your thighbone and shinbone are covered with articular cartilage. This slippery substance to movement. helps your knee bones glide smoothly across each other as you bend or straighten your leg. Because you use it so Two wedge-shaped pieces of meniscal cartilage act as much, it is vulnerable to Meniscus. “shock absorbers” between your thighbone and shinbone. Different injury. Because it is made from articular cartilage, the meniscus is tough and rubbery to help up of so many parts, cushion and stabilize the joint. When people talk about torn cartilage many different things in the knee, they are usually referring to torn meniscus. can go wrong. Knee pain or injury Femur is one of the most (thighbone) common reasons people Patella (kneecap) see their doctors. Most knee problems can be prevented or treated with simple measures, such as exercise or Articular cartilage training programs. Other problems require surgery Meniscus to correct. Tibia (shinbone) 1 OrthoInfo Basics — About Your Knee What are ligaments and tendons? Ligaments and tendons connect your thighbone Collateral ligaments. These are found on to the bones in your lower leg.
    [Show full text]
  • Anterior (Cranial) Cruciate Ligament Rupture
    Cranial Cruciate Ligament Rupture in Dogs The cruciate ligaments are tough fibrous bands that connect the distal femur (thigh bone) to the proximal tibia (shin bone). Two cruciate ligaments, the cranial (anterior) and the posterior cruciate ligaments, are found in the knee joint of dogs and cats (and most other domestic animals). These ligaments work like a hinge joint in the knee and are responsible for providing anterior-posterior stability to the knee joint. Normal Knee Joint of a Dog Rupture of the cranial cruciate ligament is rare in cats. It occurs frequently in overweight, middle- and older-aged dogs. Certain dog breeds appear to be predisposed to cranial cruciate ligament rupture. Most commonly, the cocker spaniel and rottweiler are affected. The miniature and toy poodle, Lhasa apso, bichon frise, golden retriever, Labrador retriever, German shepherd and mastiff seem to be predisposed as well. The normal knee joint works as a hinge, keeping the knee stable as it bends. Tearing of the cranial cruciate ligament causes instability of the knee joint and it ceases to function properly. Most cranial cruciate ligament tears in dogs occur gradually, resulting in a low-level lameness that may or nay not improve over time. After the ligament tears, inflammation occurs within the joint. Continued use and weight bearing by the dog often causes the ligament to rupture completely. Dogs that rupture one cruciate ligament have about a fifty percent chance of rupturing the other. Normal Knee Joint of a Dog Rupture of the cranial cruciate ligament in dogs can also occur acutely. Similar to cranial cruciate ligament rupture in humans, resulting from athletic injuries to the knee, dogs can tear this ligament by jumping up to catch a ball or Frisbee or by jumping out of a truck or off a porch.
    [Show full text]
  • Flavio Akira Sakae Distribuição Das Fibras Colágenas E Do Sistema De
    Flavio Akira Sakae Distribuição das fibras colágenas e do sistema de fibras elásticas na camada superficial da lâmina própria da prega vocal com edema de Reinke Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutor em Ciências Área de concentração: Otorrinolaringologia Orientador: Prof. Dr. Domingos Hiroshi Tsuji São Paulo 2008 Dados Internacionais de Catalogação na Publicação (CIP) Preparada pela Biblioteca da Faculdade de Medicina da Universidade de São Paulo Óreprodução autorizada pelo autor Sakae, Flavio Akira Distribuição das fibras colágenas e do sistema de fibras elásticas na camada superficial da lâmina própria da prega vocal com edema de Reinke / Flavio Akira Sakae. -- São Paulo, 2008. Tese(doutorado)--Faculdade de Medicina da Universidade de São Paulo. Departamento de Oftalmologia e Otorrinolaringologia. Área de concentração: Otorrinolaringologia. Orientador: Domingos Hiroshi Tsuji. Descritores: 1.Edema laríngeo 2.Colágeno 3.Tecido elástico 4.Membrana mucosa 5.Cordas vocais USP/FM/SBD-146/08 "O único homem que está isento de erros, é aquele que não arrisca acertar." Albert Einstein Dedicatória Aos meus queridos pais, Masao e Junko, por tudo que fazem por mim, pelo apoio incondicional e amor eterno. São os meus ídolos. A minha esposa, Renata, amor da minha vida, pela alegria de viver, companheirismo e incentivo constante. A minha irmã, Cristiane, por ter contribuído em todos os passos de minha vida. Agradecimentos Ao meu orientador, Prof. Dr. Domingos Hiroshi Tsuji pela oportunidade e apoio na concretização deste sonho. Sua amizade e franqueza foram essenciais na elaboração deste trabalho. É o grande mestre. Ao Prof. Dr.
    [Show full text]
  • A Study of Popliteal Artery and Its Variations with Clinical Applications
    Dissertation on A STUDY OF POPLITEAL ARTERY AND ITS VARIATIONS WITH CLINICAL APPLICATIONS. Submitted in partial fulfillment for M.D. DEGREE EXAMINATION BRANCH- XXIII, ANATOMY Upgraded Institute of Anatomy Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai - 600 003 THE TAMILNADU Dr.M.G.R. MEDICAL UNIVERSITY CHENNAI – 600 032 TAMILNADU MAY-2018 CERTIFICATE This is to certify that this dissertation entitled “A STUDY OF POPLITEAL ARTERY AND ITS VARIATIONS WITH CLINICAL APPLICATIONS” is a bonafide record of the research work done by Dr.N.BAMA, Post graduate student in the Institute of Anatomy, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai- 03, in partial fulfillment of the regulations laid down by The Tamil Nadu Dr.M.G.R. Medical University for the award of M.D. Degree Branch XXIII- Anatomy, under my guidance and supervision during the academic year from 2015-2018. Dr. Sudha Seshayyan,M.B.B.S., M.S., Dr. B. Chezhian, M.B.B.S., M.S., Director & Professor, Associate Professor, Institute of Anatomy, Institute of Anatomy, Madras Medical College, Madras Medical College, Chennai– 600 003. Chennai– 600 003. The Dean, Madras Medical College & Rajiv Gandhi Govt. General Hospital, Chennai Chennai – 600003. ACKNOWLEDGEMENT I wish to express exquisite thankfulness and gratitude to my most respected teachers, guides Dr. B. Chezhian, Associate Professor Dr.Sudha Seshayyan, Director and Professor, Institute ofAnatomy, Madras Medical College, Chennai – 3, for their invaluable guidance, persistent support and quest for perfection which has made this dissertation take its present shape. I am thankful to Dr. R. Narayana Babu, M.D., DCH, Dean, Madras Medical College, Chennai – 3 for permitting me to avail the facilities in this college for performing this study.
    [Show full text]
  • CRANIAL CRUCIATE LIGAMENT RUPTURE Anatomy There Are Two Cruciate Ligaments in the Canine Stifle (Knee) Joint, the Cranial and Th
    Robert H. Galloway, D.V.M Teresa Millar, D.V.M 7020 Francis Road, Suite 100 Richmond, BC V6Y 1A2 (604) 274-9938 www.stevestonvethospital.com CRANIAL CRUCIATE LIGAMENT RUPTURE Anatomy There are two cruciate ligaments in the canine stifle (knee) joint, the cranial and the caudal ligaments. In human knees, they are known as the ACL and PCL. The cranial cruciate ligament is the one most commonly injured in dogs resulting in discomfort and stifle instability with subsequent arthritis. Two cartilage pads called menisci are found within each knee. Femur FEMUR Patella Fabella CCL Meniscus Lateral Patellar Ligament Collateral Ligament Tibial Slope Tibia Photo credit: dfwvetsurgeons.com Why did the ligament rupture? We do not fully understand the cause of cranial cruciate ligament rupture in dogs but we do know that most cases are a result of slowly progressive cranial cruciate ligament (CrCL) degeneration. A genetic cause is being researched and there is considerable support for this belief. Once weakened, the ligament can then rupture with minimal trauma. Dogs that rupture the cruciate ligament in one stifle are at an increased risk of rupturing the ligament in the other stifle (at least a 50% chance). © 2015 – Steveston Veterinary Hospital Clinical Signs Lameness is the most common symptom seen with CrCL rupture and can range from mild intermittent lameness with mild partial ligament tears to non-weight bearing lameness with complete tears and co-existent meniscal damage. Diagnosis The CrCL rupture is diagnosed by palpation (feeling the knee) and eliciting drawer motion or laxity within the joint. Dogs with mild ligament tears and those who are very tense may require sedation.
    [Show full text]
  • Differentiation of the Secondary Elastic Cartilage in the External Ear of the Rat
    Int..I. Dc\'. Bi,,!. 35: 311-320 (1991) 311 Differentiation of the secondary elastic cartilage in the external ear of the rat ZELIMIR BRADAMANTE*', LJILJANA KOSTOVIC-KNEZEVIC', BOZICA LEVAK-SVAJGER' and ANTON SVAJGER' 'Institute of Histology and Embryology and 2/nstitute of Biology, Faculty of Medicine, University of Zagreb, Republic of Croatia, Yugoslavia ABSTRACT The cartilage in the external ear of the rat belongs to the group of secondary cartilages and it has a unique structural organization. The chondrocytes aretransformed intotypical adipose cells, the proteoglycan cartilage matrix is reduced to thin capsules around the cells and the rest of the extracelullar matrix is occupied by a network of coarse elastic fibers. It appears late in development 116-day fetus) and needs more than one month for final development. The differentiation proceeds in several steps which partly overlap: the appearance of collagen fibrils, elastin fibers, the proteoglycan matrix, and the adipose transformation of chondrocytes. The phenotype of this cartilage and the course of its differentiation are very stable, even in very atypical experimental environmental conditions. The only exceptions are explants in organ culture in vitro and perichondrial regenerates. In these conditions the development of elastic fibers is slow and poor while the production of the proteogycan matrix is abundant. The resulting cartilage then displays structural characteristics of hyaline cartilage rather than those of the initial elastic one. KEY WORDS: elastic mrlilagf, tI/(Wdrogfllt'.\'i.\. plasfogellf'.\is, extenuil Ntr, rat Introduction Structural organization The elastic cartilage belongs to the group of secondary or ac- According to Baecker (1928) and Schaffer (1930) the cartilage cessory cartilages since it is not a part of the cartilagineous in the external ear (external auditory meatus and pinna) of the rat primordium of the body skeleton as is most hyaline cartilage can be defined as: a) cellular or parenchymatous, [jecause of the (Schaffer, 1930).
    [Show full text]
  • Posterolateral Corner Knee Injuries: Review of Anatomy and Clinical Evaluation Eric W
    REVIEW Posterolateral Corner Knee Injuries: Review of Anatomy and Clinical Evaluation Eric W. Schweller, DO Peter J. Ward, PhD From the Department of The structures in the posterolateral corner of the knee, which stabilize the joint, Osteopathic Internship at are often involved in injuries to the posterior cruciate ligament. Familiar struc- Charleston Area Medical Center in West Virginia tures include the anterior cruciate ligament, posterior cruciate ligament, tibial (Dr Schweller) and the collateral ligament, and menisci. Less familiar are the structures of the postero- Department of Biomedical lateral corner, the most important of which are the fibular collateral ligament, Sciences at West Virginia School of Osteopathic popliteus tendon, and popliteofibular ligament, which resist varus angulation, Medicine in Lewisburg external rotation, or posterior translation of the tibia. Injury to the posterolateral (Dr Ward). corner can be assessed with the posterolateral drawer, dial, reverse pivot shift, Financial Disclosures: external rotation recurvatum, and varus stress tests. The purpose of this review None reported. is to highlight the posterolateral corner of the knee and injuries to its structures Support: None reported. so that physicians can more accurately diagnose these injuries and provide Address correspondence appropriate treatment. Management focuses on restoring the fibular collateral to Peter J. Ward, PhD, Department of Biomedical ligament, popliteofibular ligament, and, in certain cases, the popliteus tendon. Sciences, West Virginia J Am Osteopath Assoc. 2015;115(12):725-731 School of Osteopathic doi:10.7556/jaoa.2015.148 Medicine, 400 N Lee St, Lewisburg, WV 24901-1128. E-mail: pward @osteo.wvsom.edu njuries to the posterolateral corner of the knee have become increasingly studied in Submitted June 3, 2015; orthopedics during the past 10 to 15 years.
    [Show full text]
  • Clinical Outcomes of Elastin Fibre Defects
    ytology & f C H i o s l t a o n l o r g u y o Hassan et al., J Cytol Histol 2013, 4:1 J Journal of Cytology & Histology DOI: 10.4172/2157-7099.1000166 ISSN: 2157-7099 CommentaryResearch Article OpenOpen Access Access Clinical Outcomes of Elastin Fibre Defects Ashfaq Ul Hassan1*, Ghulam Hassan2, Zahida Rasool3 and Shabinul Hassan3 1Anatomy Department, SKIMS Medical College, Bemina, Srinagar, Kashmir, India 2Department of Anatomy, Al Qassim University, Saudi Arabia 3Islamic University of Science and Technology, Kashmir, India Abstract Elastic fibres are a major class of extracellular matrix fibres that are abundant in dynamic connective tissues such as arteries, lungs, skin and ligaments. Their structural role is to endow tissues with elastic recoil and resilience. They also act as an important adhesion template for cells, and they regulate growth factor availability. Mutations in major structural components of elastic fibres, especially elastin, fibrillins and fibulin-5, cause severe, often life-threatening, heritable connective tissue diseases such as Marfan syndrome, Menkes Syndrome, Cutis laxa. Elastic-fibre function is also frequently compromised in damaged or aged elastic tissues. The ability to regenerate or engineer elastic fibres and tissues remains a significant challenge, requiring improved understanding of the molecular and cellular basis of elastic-fibre biology and pathology. The aim of the article is to present in brief the structural details of elastin fibres, the defects and pleiotrophic effects as a result of damage and various clinical conditions associated with defects in elastin fibres ranging from rare pediatric syndromes to common entities like hypertension.
    [Show full text]