Geochemistry of Darwin Glass and Target Rocks from Darwin Crater, Tasmania, Australia

Total Page:16

File Type:pdf, Size:1020Kb

Geochemistry of Darwin Glass and Target Rocks from Darwin Crater, Tasmania, Australia Meteoritics & Planetary Science 43, Nr 3, 479–496 (2008) AUTHOR’S Abstract available online at http://meteoritics.org PROOF Geochemistry of Darwin glass and target rocks from Darwin crater, Tasmania, Australia Kieren T. HOWARD School of Earth Sciences, University of Tasmania, Hobart, Tasmania 7000, Australia Present address: Impacts and Astromaterials Research Centre, Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Corresponding author. E-mail: [email protected] (Received 1 March 2007; revision accepted 25 July 2007) Abstract–Darwin glass formed about 800,000 years ago in western Tasmania, Australia. Target rocks at Darwin crater are quartzites and slates (Siluro-Devonian, Eldon Group). Analyses show 2 groups of glass, Average group 1 is composed of: SiO2 (85%), Al2O3 (7.3%), TiO2 (0.05%), FeO (2.2%), MgO (0.9%), and K2O (1.8%). Group 2 has lower average SiO2 (81.1%) and higher average Al2O3 (8.2%). Group 2 is enriched in FeO (+1.5%), MgO (+1.3%) and Ni, Co, and Cr. Average Ni (416 ppm), Co (31 ppm), and Cr (162 ppm) in group 2 are beyond the range of sedimentary rocks. Glass and target rocks have concordant REE patterns (La/Lu = 5.9–10; Eu/Eu* = 0.55–0.65) and overlapping trace element abundances. 87Sr/86Sr ratios for the glasses (0.80778–0.81605) fall in the range (0.76481–1.1212) defined by the rock samples. ε-Nd results range from −13.57 to −15.86. Nd model ages range from 1.2–1.9 Ga (CHUR) and the glasses (1.2–1.5 Ga) fall within the range defined by the target samples. The 87Sr/86Sr versus 87Rb/86Sr regression age (411 ± 42 Ma) and initial ratio (0.725 ± 0.016), and the initial 43Nd/144Nd ratio (0.51153 ± 0.00011) and regression age (451 ± 140 Ma) indicate that the glasses have an inherited isotopic signal from the target rocks at Darwin crater. Mixing models using target rock compositions successfully model the glass for all elements except FeO, MgO, Ni, Co, and Cr in group 2. Mixing models using terrestrial ultramafic rocks fail to match the glass compositions and these enrichments may be related to the projectile. INTRODUCTION expected in small simple impact craters formed in sedimentary target rocks (Howard and Haines 2007). Glass Darwin glass is a siliceous impact glass found in a strewn distribution data are consistent with ejection from Darwin field covering more than 400 km2 in western Tasmania, crater and show: 1) the largest recovered fragments are found Australia. The glass also appears across the state in middens closest to the crater, 2) a decrease in the abundance glass and caves formerly visited by Tasmanian Aboriginals who are fragments away from the crater, and 3) an increase in the the traditional owners of the glass. Darwin glass has been proportion of splashform, relative to irregular or ropy, shapes repeatedly dated at ~800 ka (Gentner et al. 1973) and our away from the crater (Howard and Haines 2003; Howard most recent age estimate of 816 ± 7 ka was determined by Ar- 2004). Ar methods (Loh et al. 2002). Ford (1972; his Fig. 1) Impact glasses and tektites inherit the isotopic and identified a small (diameter = 1.2 km) circular depression geochemical signals of the source rocks melted during their near to the eastern edge of the strewn field in the Southwest formation. The aim of this paper is to test the compatibility of World Heritage Area (42°18.39′S, 145°39.41′E). This the suspected target rocks at Darwin crater as the materials pronounced topographic feature was named Darwin crater melted under impact conditions to form Darwin glass. Most and assumed to be the source of Darwin glass, despite a lack impact glasses and tektites have a composition similar to of conclusive evidence and a paucity of data on the glass or average upper continental crust and, as such, major- and trace- crater. The origin of Darwin glass has been investigated in a element composition alone is rarely enough to conclusively Ph.D. thesis (Howard 2004) and this paper stems from that relate a glass to a suspected target rock or to define an impact work. The geology of Darwin crater has been described in a origin. However, such investigations can effectively rule a detailed petrographic study and is consistent with that suspected target rock in or out of further consideration in 479 © The Meteoritical Society, 2008. Printed in USA. 480 K. T. Howard Fig. 1. Darwin crater and Darwin glass strewn field. The grey shaded area defines the Darwin glass strewn field. studies aimed at defining the impact origin of a glass. In this quartzite the west. Rocks at the crater are correlates of the paper, the geochemical and Sr,Nd isotopic systematics in Eldon Group; a succession of low-grade metasedimentary Darwin glass are shown to be compatible with the suspected rocks consisting of quartzites and slates (Fig. 3). Gould (1866) target rocks at Darwin crater. first named these rocks the “Eldon Beds” and defined them as the rocks overlying the main limestone succession (Gordon STRATIGRAPHY Group), near the mouth of the Gordon and along the Eldon Rivers. Gill and Banks (1950) formally defined the Eldon Darwin crater is situated on the Queenstown 1:250,000 Group and the following formations are recognized: (top) Bell scale geological map sheet (Corbett and Brown 1975; Fig. 2), Shale; Florence Sandstone; Keel Quartzite; Amber Slate and which shows significant geological complexity across the area Crotty Quartzite (base, Fig. 3). The metamorphic grade of the of the strewn field. The densely rainforested valley where rocks is lower greenschist, with the development of aligned Darwin crater lies is a tributary of the Andrew River valley. The micas that define the foliation cleavage of the slate units. In Andrew River valley cuts into Ordovician limestone (Gordon some samples, minor (<2%) chlorite alteration is also observed. Group). Siliceous conglomerate (Denison Group), Two drill holes penetrate the center of the crater. The unconformably dipping off Proterozoic quartzite of the deepest hole penetrated to a depth of ~230 m. Drill cores Engineer Range, forms the east side of the valley, and Silurian intersected fine-grained lacustrine sediments (~60 m thick), Geochemistry of Darwin glass and target rocks from Darwin crater 481 Fig. 2. Geology of the Darwin glass strewn field. Based on Corbett and Brown (1975) and Corbett et al. (1993). overlying poorly sorted coarser crater-fill deposits. The pre- crater-fill samples is far greater than in rocks surrounding the lacustrine crater-fill comprises a complicated package of crater but diagnostic shock indicators (e.g., planar deformation angular polymict breccias of quartz and country rock with very features [PDFs] in quartz grains) have not been observed. The rare glass, monomict sandy breccias of angular quartz, and petrographic features of the suspected target rocks and crater-fill clasts of deformed slate. The degree of deformation evident in samples are described in detail in Howard and Haines (2007). 482 K. T. Howard Fig. 3. Darwin crater geology. Based on field mapping in this study and by R. J. Ford; 1:25,000 scale aerial photographs; Corbett and Brown (1975) and Corbett et al. (1993). METHODOLOGY and these were mounted in epoxy discs 25 mm in diameter. In addition, 26 glass samples <5 mm in size and showing Scanning Electron Microscopy (SEM) splashform (droplet, spheroid, and elongate) shapes (Fig. 4) were collected from across the strewn field, cleaned, and Small pieces of Darwin glass were carefully chipped mounted intact in 25 mm epoxy discs. These “mini-glass” from individual larger fragments and placed in an ultrasonic grains were polished carefully to expose a fresh interior bath in distilled water for cleaning. The studied glass surface for analysis. This is the first time such splashform fragments were collected from across the strewn field. The mini-glass samples of Darwin glass have been reported or detached pieces’ sizes ranged from 2 to 10 mm in diameter analyzed. Geochemistry of Darwin glass and target rocks from Darwin crater 483 612, and the standard BCR-2 was analyzed as an unknown. During the analyses, two analyses of both NIST 612 and BCR-2 were made before ten analyses of Darwin glass, followed by two more analyses each of NIST 612 and BCR-2. As an internal standard the measured intensity of 49Ti during each analysis was normalized to the TiO2 content of each glass determined previously by SEM. Throughout the course of the study, detection limits were between 0.1 and 0.001 ppm. Spectra for data presented here are flat and smooth with little deviation in counts per second throughout the 60 s duration of each analysis. This is generally the case in analyses of tektites and impact glasses that are well suited to the LA-ICPMS technique, especially for determination of refractory elements (rare earth elements [REE], Sr). Suspected Target Rock Sample Selection and Preparation Fig. 4. Splashform Darwin mini-glasses. Scale bar = 1 cm. In total, 33 samples that encompass the range of Eldon Group rocks found around the crater and throughout the drill Major elements were determined using a CAMECA cores were selected for analysis. Most of the analyzed surface SX50 scanning electron microscope, in WDS mode, at the samples were collected along a W-E traverse from the access Central Science Laboratory (CSL), University of Tasmania. track, to the eastern edge of the valley hosting the buried The regulated electron beam current was operated at 25 nA at crater. These samples were collected in situ within the dense an accelerating voltage of 15 kV.
Recommended publications
  • Earth in Upheaval – Velikovsky
    KANSAS CITY, MO PUBLIC LIBRARY MAR 1989 JALS DATE DUE Earth in upheaval. 1 955 . Books by Immarvjel Velikoviky Earth in Upheaval Worlds in Collision Published by POCKET BOOKS Most Pot Ian Books arc available at special quantify discounts for hulk purchases for sales promotions premiums or fund raising SpeciaJ books* or txx)k e\( erj)ts can also tx.' created to ht specific needs FordetaJs write the office of the Vice President of Special Markets, Pocket Books, 12;K) Avenue of the Arm-mas New York New York 10020 EARTH IN UPHEAVAL Smnianue! Velikovsky F'OCKET BOOKS, a division of Simon & Schuster, IMC 1230 Avenue of the Americas, New York, N Y 10020 Copyright 1955 by Immanuel Vehkovskv Published by arrangement with Doubledav tx Compauv, 1m Library of Congiess Catalog Card Number 55-11339 All rights reserved, including the right to reproduce this book or portions thereof in any form whatsoever For information address 6r Inc. Doubledav Company, , 245 Park Avenue, New York, N Y' 10017 ISBN 0-fi71-524f>5-tt Fust Pocket Books punting September 1977 10 9 H 7 6 POCKET and colophon ae registered trademarks of Simon & Schuster, luc Printed in the USA ACKNOWLEDGMENTS WORKING ON Earth in Upheaval and on the essay (Address before the Graduate College Forum of Princeton University) added at the end of this volume, I have incurred a debt of gratitude to several scientists. Professor Walter S. Adams, for many years director of Mount Wilson Observatory, gave me all the in- formation and instruction for which I asked concern- ing the atmospheres of the planets, a field in which he is the outstanding authority.
    [Show full text]
  • Sustainable Murchison 2040 Plan
    Sustainable Murchison 2040 Community Plan Regional Framework Plan Prepared for Waratah-Wynyard Council, Circular Head Council, West Coast Council, King Island Council and Burnie City Council Date 21 November 2016 Geografi a Geografia Pty Ltd • Demography • Economics • Spatial Planning +613 9329 9004 | [email protected] | www.geografia.com.au Supported by the Tasmanian Government Geografia Pty Ltd • Demography • Economics • Spatial Planning +613 9329 9004 | [email protected] | www.geografia.com.au 571 Queensberry Street North Melbourne VIC 3051 ABN: 33 600 046 213 Disclaimer This document has been prepared by Geografia Pty Ltd for the councils of Waratah-Wynyard, Circular Head, West Coast, and King Island, and is intended for their use. It should be read in conjunction with the Community Engagement Report, the Regional Resource Analysis and Community Plan. While every effort is made to provide accurate and complete information, Geografia does not warrant or represent that the information contained is free from errors or omissions and accepts no responsibility for any loss, damage, cost or expense (whether direct or indirect) incurred as a result of a person taking action in respect to any representation, statement, or advice referred to in this report. Executive Summary The Sustainable Murchison Community Plan belongs to the people of Murchison, so that they may plan and implement for a sustainable future. Through one voice and the cooperative action of the community, business and government, Murchison can be a place where aspirations are realised. This plan is the culmination of extensive community and stakeholder consultation, research and analysis. It sets out the community vision, principles and strategic objectives for Murchison 2040.
    [Show full text]
  • Groundwaters in Wet, Temperate, Mountainous,Sulphide-Mining Districts
    Groundwaters in wet, temperate, mountainous, sulphide-mining districts: delineation of modern fluid flow and predictive modelling for mine closure (Rosebery, Tasmania). by Lee R. Evans B.App.Sci.(Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy UNIVERSITY OF TASMANIA September 2009 Cover Image: Elevated orthogonal view of the 3D Rosebery groundwater model grid looking towards the northeast. i Declaration This thesis contains no material that has been accepted for a degree or diploma by the University or any institution, except by way of background information and duly acknowledged in the thesis, and to the best of the candidate’s knowledge and beliefs, contains no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis. Three co-authored conference publications written as part of the present study (Evans et al., 2003; Evans et al., 2004a; and Evans et al., 2004b) are provided in Appendix Sixteen. Lee R. Evans Date: This thesis is to be made available for loan or copying in accordance with the Copyright Act 1969 from the date this statement was signed. Lee R. Evans Date: ii Abstract There are as yet few studies of the hydrogeology of sulphide-mining districts in wet, temperate, mountainous areas of the world. This is despite the importance of understanding the influence of hydrogeology on the evolution and management of environmental issues such as acid mine drainage (AMD). There is a need to determine whether the special climatic and geological features of such districts result in distinct groundwater behaviours and compositions which need to be considered in mining impact studies.
    [Show full text]
  • Macquarie Harbour
    Tasmanian West Coast Foray Part 1 Macquarie Harbour 100nm. Add another 22 when your Gale force winds, driving rain, cold temperatures, a small starting point is at Three Hummock Island. So one or even two stops can sprinkling of sunny days, and all this in late summer… Any be made along the way. takers for a foray down the West Coast of Tasmania? This is We studied two anchorage guides where CHRISTINE DANGER is sailing us over two issues. which are our bibles: Cruising Tasmania by J Brettingham-Moore, and Tasmanian Anchorage Guide published by the Royal Yacht Club of oming down the west coast, Our expedition started from So over two articles, we will share Tasmania. We talked to Tasmanian even during the so-called Melbourne in late February. We with you the sites we visited and friends who know the area well and C best season, is not for the sailed west to Apollo Bay, then south impressions we formed. The first picked the brains of cray fishermen to faint hearted. It is committal, it is to King Island and the Hunter Group, focuses on Macquarie Harbour, the find out about anchorages they use The coast is quite scenic: a mix of TOP: Strahan with its old buildings challenging, but when it all goes and there we waited for the right second on Port Davey. along the coast. There is a wealth of scrub, sand dunes, rocky outcrops … a welcome sight after many smoothly on a well-equipped boat, conditions to start our descent. It did knowledge out there and people are hours at sea.
    [Show full text]
  • 3966 Tour Op 4Col
    The Tasmanian Advantage natural and cultural features of Tasmania a resource manual aimed at developing knowledge and interpretive skills specific to Tasmania Contents 1 INTRODUCTION The aim of the manual Notesheets & how to use them Interpretation tips & useful references Minimal impact tourism 2 TASMANIA IN BRIEF Location Size Climate Population National parks Tasmania’s Wilderness World Heritage Area (WHA) Marine reserves Regional Forest Agreement (RFA) 4 INTERPRETATION AND TIPS Background What is interpretation? What is the aim of your operation? Principles of interpretation Planning to interpret Conducting your tour Research your content Manage the potential risks Evaluate your tour Commercial operators information 5 NATURAL ADVANTAGE Antarctic connection Geodiversity Marine environment Plant communities Threatened fauna species Mammals Birds Reptiles Freshwater fishes Invertebrates Fire Threats 6 HERITAGE Tasmanian Aboriginal heritage European history Convicts Whaling Pining Mining Coastal fishing Inland fishing History of the parks service History of forestry History of hydro electric power Gordon below Franklin dam controversy 6 WHAT AND WHERE: EAST & NORTHEAST National parks Reserved areas Great short walks Tasmanian trail Snippets of history What’s in a name? 7 WHAT AND WHERE: SOUTH & CENTRAL PLATEAU 8 WHAT AND WHERE: WEST & NORTHWEST 9 REFERENCES Useful references List of notesheets 10 NOTESHEETS: FAUNA Wildlife, Living with wildlife, Caring for nature, Threatened species, Threats 11 NOTESHEETS: PARKS & PLACES Parks & places,
    [Show full text]
  • The Geology, Geochemistry and Structure of the Mount Darwin - South Darwin Peak Area, Western Tasmania
    The Geology, Geochemistry and Structure of the Mount Darwin - South Darwin Peak Area, Western Tasmania. by Andrew Thomas Jones B.App.Sci.(RMIT) A thesis submitted in partial fulfihnent of the requirements for the degree ofBachelor of Science with Honours. CE:-iTRE FOR ORE DEPOSIT A:"/D EXPLORATION STUDIES Geology Department, University ofTasmania, November 1993. Abstract The Cambrian Darwin Granite intrudes calc-alkaline rhyolites of the Central Volcanic Complex on the Darwin Plateau, western Tasmania. Two distinct granite phases are recognised, an equigranular granite and a granodiorite. A biotite grade contact aureole is preserved in the Central Volcanic Complex immediate to the Darwin Granite. Debris flow deposits of volcaniclastic conglomerates and sandstones, and coherent dacite lavas of the Mid - Late Cambrian Tyndall Group unconformably overlie the Darwin Granite and Central Volcanic Complex, and are in turn overlain unconformably by pebble to boulder conglomerates of the siliciclastic Owen Conglomerate. Stratigraphic and structural evidence recognise three deformation periods within the Mt Darwin - South Darwin Peak area: the Mid - Late Cambrian, Late Cambrian - Early Ordovician, and the Devonian Tabberabberan Orogeny. Mid - Late Cambrian deformation, evidenced by granitic and foliated volcanic clasts in basal Tyndall Group conglomerate, indicates catastrophic uplift and subsequent unroofing of the granite prior to Tyndall Group deposition. This unconformity represents a significant Cambrian hiatus in the southern Mount Read Volcanics. A second unconformit)r between the Tyndall Group and the Owen Conglomerate marks cessation of Tyndall Group deposition with the onset of deposition of large volumes of siliceous detritus. The two Devonian Tabberabberan-related deformations are characterised by, NW and N­ trending dextral strike slip faulting and locally intense N-trending cleavage development.
    [Show full text]
  • Nowhere Else on Earth
    Nowhere Else on Earth: Tasmania’s Marine Natural Values Environment Tasmania is a not-for-profit conservation council dedicated to the protection, conservation and rehabilitation of Tasmania’s natural environment. Australia’s youngest conservation council, Environment Tasmania was established in 2006 and is a peak body representing over 20 Tasmanian environment groups. Prepared for Environment Tasmania by Dr Karen Parsons of Aquenal Pty Ltd. Report citation: Parsons, K. E. (2011) Nowhere Else on Earth: Tasmania’s Marine Natural Values. Report for Environment Tasmania. Aquenal, Tasmania. ISBN: 978-0-646-56647-4 Graphic Design: onetonnegraphic www.onetonnegraphic.com.au Online: Visit the Environment Tasmania website at: www.et.org.au or Ocean Planet online at www.oceanplanet.org.au Partners: With thanks to the The Wilderness Society Inc for their financial support through the WildCountry Small Grants Program, and to NRM North and NRM South. Front Cover: Gorgonian fan with diver (Photograph: © Geoff Rollins). 2 Waterfall Bay cave (Photograph: © Jon Bryan). Acknowledgements The following people are thanked for their assistance The majority of the photographs in the report were with the compilation of this report: Neville Barrett of the generously provided by Graham Edgar, while the following Institute for Marine and Antarctic Studies (IMAS) at the additional contributors are also acknowledged: Neville University of Tasmania for providing information on key Barrett, Jane Elek, Sue Wragge, Chris Black, Jon Bryan, features of Tasmania’s marine
    [Show full text]
  • Appendix a Recovery of Ejecta Material from Confirmed, Probable
    Appendix A Recovery of Ejecta Material from Confirmed, Probable, or Possible Distal Ejecta Layers A.1 Introduction In this appendix we discuss the methods that we have used to recover and study ejecta found in various types of sediment and rock. The processes used to recover ejecta material vary with the degree of lithification. We thus discuss sample processing for unconsolidated, semiconsolidated, and consolidated material separately. The type of sediment or rock is also important as, for example, carbonate sediment or rock is processed differently from siliciclastic sediment or rock. The methods used to take and process samples will also vary according to the objectives of the study and the background of the investigator. We summarize below the methods that we have found useful in our studies of distal impact ejecta layers for those who are just beginning such studies. One of the authors (BPG) was trained as a marine geologist and the other (BMS) as a hard rock geologist. Our approaches to processing and studying impact ejecta differ accordingly. The methods used to recover ejecta from unconsolidated sediments have been successfully employed by BPG for more than 40 years. A.2 Taking and Handling Samples A.2.1 Introduction The size, number, and type of samples will depend on the objective of the study and nature of the sediment/rock, but there a few guidelines that should be followed regardless of the objective or rock type. All outcrops, especially those near industrialized areas or transportation routes (e.g., highways, train tracks) need to be cleaned off (i.e., the surface layer removed) prior to sampling.
    [Show full text]
  • The Philosophers' Tale
    1 Photo: Ollie Khedun Photo: THE VISION THE CONCEPT THE PROPOSAL The Philosophers’ Tale is The West Coast Range consists The Next Iconic Walk – The of 6 mountains on a north south Philosophers’ Tale 2019 proposal more than just an iconic walk, ridge. The ridge is trisected by the – Chapter One: Owen, takes it is made up of a series of Lyell Highway (between Mt Lyell people on a journey over 28km in iconic walks to be developed and Mt Owen) and the King River 3 days and 2 nights experiencing Gorge (between Mt Huxley and Mt mountain peaks, incredible views, over a period of time. There Jukes). This makes for three distinct button grass plains, cantilever are an abundance of coastal regions, each with their own part platforms and suspension bridges walks – the Overland Track to play in telling the bigger story. over deep river gorges down into All areas have been impacted cool temperate rainforest, majestic is now mature, and people by mining exploration or other waterfalls along the tranquil King are looking for the next development in the past 100 years. River on the incredible West Coast of Tasmania. With the option to option – The Philosophers’ The area is naturally divided into finish via train, hi-rail, raft, kayak, four zones, or in story telling Tale is just that. People will helicopter or jet boat, making it a parlance, ‘Chapters’. The Chapters be drawn locally and across truly unforgettable experience. (outlined on page 8), let’s call them the globe to experience these Owen, Jukes, Lyell and Tyndall lead View West Coast video iconic walks, returning time easily to the staged construction of any proposed track works.
    [Show full text]
  • Unbroken Meteorite Rough Draft
    Space Visitors in Kentucky: Meteorites and Asteroid “Ida.” Most meteorites originate from asteroids. Meteorite Impact Sites in Kentucky Meteorite from Clark County, Ky. Mercury Earth Saturn Venus Mars Neptune Jupiter William D. Ehmann Asteroid Belt with contributions by Warren H. Anderson Uranus Pluto www.uky.edu/KGS Special thanks to Collie Rulo for cover design. Earth image was compiled from satellite images from NOAA and NASA. Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington Space Visitors in Kentucky: Meteorites and Meteorite Impact Sites in Kentucky William D. Ehmann Special Publication 1 Series XII, 2000 i UNIVERSITY OF KENTUCKY Collie Rulo, Graphic Design Technician Charles T. Wethington Jr., President Luanne Davis, Staff Support Associate II Fitzgerald Bramwell, Vice President for Theola L. Evans, Staff Support Associate I Research and Graduate Studies William A. Briscoe III, Publication Sales Jack Supplee, Director, Administrative Supervisor Affairs, Research and Graduate Studies Roger S. Banks, Account Clerk I KENTUCKY GEOLOGICAL SURVEY Energy and Minerals Section: James A. Drahovzal, Head ADVISORY BOARD Garland R. Dever Jr., Geologist V Henry M. Morgan, Chair, Utica Cortland F. Eble, Geologist V Ron D. Gilkerson, Vice Chair, Lexington Stephen F. Greb, Geologist V William W. Bowdy, Fort Thomas David A. Williams, Geologist V, Manager, Steven Cawood, Frankfort Henderson office Hugh B. Gabbard, Winchester David C. Harris, Geologist IV Kenneth Gibson, Madisonville Brandon C. Nuttall, Geologist IV Mark E. Gormley, Versailles William M. Andrews Jr., Geologist II Rosanne Kruzich, Louisville John B. Hickman, Geologist II William A. Mossbarger, Lexington Ernest E. Thacker, Geologist I Jacqueline Swigart, Louisville Anna E.
    [Show full text]
  • Report on Field Investigations Mt Darwin–Mt Murchison Region
    Mineral Resources Tasmania Tasmanian Geological Survey Tasmania DEPARTMENT of Record 2002/18 INFRASTRUCTURE, ENERGYand RESOURCES Western Tasmanian Regional Minerals Program Mount Read Volcanics Compilation Report on field investigations Mt Darwin–Mt Murchison Region K. C. Morrison CONTENTS SUMMARY ……………………………………………………………………… 2 INTRODUCTION ………………………………………………………………… 3 SCOPE OF THE PROJECT ………………………………………………………… 3 ACKNOWLEDGMENTS ………………………………………………………… 3 FIELD TRAVERSES ……………………………………………………………… 4 DISCUSSION AND CONCLUSIONS ……………………………………………… 6 The Tyndall Group–Eastern Quartz-Phyric Sequence problem …………………… 6 Granite and related intrusive rocks — Exploration implications …………………… 7 Exploration potential of the region ……………………………………………… 9 REFERENCES …………………………………………………………………… 12 APPENDIX 1: Rock analyses ……………………………………………………… 14 FIGURES 1. Location of traverses …………………………………………………………… 16 2. Schematic cross section showing Cu-Au exploration potential of the Jukes–Darwin area, southern Mount Read Volcanics ……………………………… 10 While every care has been taken in the preparation of this report, no warranty is given as to the correctness of the information and no liability is accepted for any statement or opinion or for any error or omission. No reader should act or fail to act on the basis of any material contained herein. Readers should consult professional advisers. As a result the Crown in Right of the State of Tasmania and its employees, contractors and agents expressly disclaim all and any liability (including all liability from or attributable
    [Show full text]
  • Department of Lands and Surveys: Report of the Surveyor-General and Secretary for Lands, 1899-1900
    .{No. 41.} 19 0 0. PARLIAMENT OF TASMANIA. DEPARTMENT OF LANDS AND SURVEYS: REPORT OF THE SURVEYOR-GENERAL AND SECRETARY· . FOR LANDS, 1899-1900, \. Presented to both Houses of Parliament by His Excellency's Comurnnd._ Cost of pl'inting-,£34 lOs • ... ·_TASMANIA. REPORT OJI' 'lHE SURVEYOR-GENERAL AND SECRETARY FOR. LANDS POR 18 9 9--1·90 0. ftat:1mania: JOHN VAIL, GOV.ERNMENT PRINTER, HOBART (No. 44.) DEPARTMENT OF LANDS AND SURVEYS. Surveyor- General's Office, Hobart, 13th July, 1900. S1R, I HAVE the honour to furnish you with the following Report on the working of the Departmant of Lands and Surveys for the twelve months ending· 30th of June, 1900. REVENUE. The total territorial revenue collected by the Department of Lands and Surveys during the year ending 31st December, 1899, was £55,860, and the total sum collected during the year ending 31 st December, 1898, was £60,205. These figures show a shortage of £4345, which shortage i'! wholly due to the greater amount collected as Survey Fees during the former year, The estimate made by me in April, 1899, of the revenue to be collected for that year, was £56,400, thus showing a difference between the estimate and the actual receipts of only £540. The revenue collected during the six months ending the 30th Jnne, 1900, is £25,463, and the revenue collected during· the corresponding six months of 1899 was £25,425, showing a very slight difference of £38 iu favour of the later period. The separate headings from which the total receipts are made up are set forth in tppendix A to this Report, Return No.
    [Show full text]