Department of Electrical Engieering Indus Institute

Total Page:16

File Type:pdf, Size:1020Kb

Department of Electrical Engieering Indus Institute DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –I TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE SH0101 Differential Calculus & Matrix 1 04 02 00 05 06 30 10 60 00 00 100 Algebra 2 SH0001 Engineering Physics 03 00 02 04 05 30 10 60 40 60 200 3 EL0001 Electrical Workshop 00 00 02 01 02 00 00 00 40 60 100 EL0002 Elements of Electrical 4 03 00 02 04 05 30 10 60 40 60 200 Engineering 5 ME0001 Engineering Graphics 01 06 00 04 07 30 10 60 00 00 100 6 EC0001 Basic Electronics 02 00 02 03 04 30 10 60 40 60 200 7 MT0001 Materials Science 03 00 00 03 03 30 10 60 00 00 100 8 SH0102 Technical English 01 02 00 02 03 30 10 60 00 00 100 TOTAL 17 10 08 26 35 210 70 420 160 240 1100 DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –II TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE SH0201 Integral Calculus and 1 04 02 00 05 06 30 10 60 00 00 100 Linear Algebra 2 SH0002 Engineering Chemistry 03 00 02 04 05 30 10 60 40 60 200 3 ME0004 Mechanical Workshop 00 00 02 01 02 00 00 00 40 60 100 ME0002 Elements of Mechanical 4 Engineering 03 00 02 04 05 30 10 60 40 60 200 5 CE0001 Computer Programming 03 00 02 04 05 30 10 60 40 60 200 6 CV0002 Engineering Mechanics 03 02 00 04 05 30 10 60 00 00 100 7 CV0001 Environmental Science 01 00 02 02 03 30 10 60 40 60 200 Business Communication 8 SH0202 01 02 00 02 03 30 10 60 00 00 100 and Presentation Skill TOTAL 18 06 10 26 34 210 70 420 200 300 1200 DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –III TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE Differential equations & 3 2 0 4 5 1 SH0301 integral transform 30 10 60 00 00 100 EL0301 Network Analysis 3 2 0 4 5 2 30 10 60 00 00 100 EL0302 Power Generation 3 2 0 4 5 3 30 10 60 00 00 100 Electronics Devices & EL0303 3 0 2 4 5 4 Circuit 30 10 60 40 60 200 EC0301 Digital Logic Design 3 0 2 4 5 5 30 10 60 40 60 200 EL0304 3 2 2 5 7 6 Electrical Machines-I 30 10 60 40 60 200 Human Values and 1 0 0 0 1 7 SH0307 Professional Ethics 30 10 60 00 00 100 TOTAL 19 08 06 25 33 210 70 420 80 120 900 DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –IV TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE Complex Analysis and 3 2 0 4 5 30 10 60 00 00 1 SH0401 numerical methods 100 EC0404 Electromagnetic 3 2 0 4 5 30 10 60 00 00 2 100 EL0401 Power System I 3 2 0 4 5 30 10 60 00 00 3 100 EL0402 Electrical Machines-II 4 0 2 5 6 30 10 60 40 60 4 200 EL0403 Control theory 3 2 0 4 5 30 10 60 00 00 5 100 EL0404 Electrical Measurements 3 0 2 4 5 30 10 60 40 60 6 200 Cyber Security and 1 0 0 0 1 30 10 60 00 00 7 CE0407 Intellectual Property Right 100 20 8 4 210 70 420 80 120 TOTAL 25 32 900 DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –V TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE EL0501 Power Electronics 3 0 2 4 5 30 10 60 40 60 200 1 Microprocessor & EL0502 3 0 2 4 5 30 10 60 40 60 200 2 Microcontroller Interfacing EL0503 3 2 0 4 5 30 10 60 00 00 100 3 Electrical Design EL0504 3 0 2 4 5 30 10 60 40 60 200 4 Industrial Instrumentation EL0505 Power System-II 4 0 2 5 6 30 10 60 40 60 200 5 Electrical Power Utilization EL0506 3 2 0 4 5 30 10 60 00 00 100 6 & Traction Technical Communication 1 0 0 0 1 30 10 60 00 00 100 7 SH0507 and Soft Skills 210 70 420 200 300 TOTAL 20 04 8 25 32 1200 DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –VI TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME SR THEORY PRACT CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE EL0601 High Voltage Engineering 3 0 2 4 5 30 10 60 40 60 200 1 EL0602 Switchgear & Protection 4 0 2 5 6 30 10 60 40 60 200 2 EL0603 Electrical Drives & Control 3 0 2 4 5 30 10 60 40 60 200 3 EL0604 Electrical Machine Design I 3 2 0 4 5 30 10 60 00 00 100 4 EL0605 Advanced Control Theory (EL-I) EL0606 Industrial Automation 3 2 0 4 4 30 10 60 0 00 100 5 (EL-I) EL0607 Soft Computing Technique (EL-I) EL0608 Electrical Power Quality (EL-II) EL0609 EHV AC & DC (EL-II) 3 2 0 4 5 30 10 60 00 00 100 6 EL0610 Special machines (EL-II) EL0611 MOOC Course (EL-II) Advanced Technical 1 0 0 0 1 30 10 60 00 00 100 7 SH0607 Communication and Soft Skills 210 70 420 80 120 TOTAL 21 04 06 25 31 900 DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –VII TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE EL0701 Power System Design 3 0 2 4 5 30 10 60 40 60 1 200 Power System Operation & EL0702 3 2 2 5 7 30 10 60 40 60 2 Control 200 EL0703 Electrical Machine Design II 3 2 0 4 5 30 10 60 00 00 3 100 Testing & Commissioning of EL0704 3 0 2 4 5 30 10 60 40 60 4 Electrical Equipment 200 EL0705 Energy Management & Audit 3 2 0 4 5 30 10 60 00 00 5 100 EL0706 Flexible AC Transmission System (EL-III) EL0707 Advanced Power Electronics & Applications (EL-III) 3 2 0 4 5 30 10 60 00 00 6 100 EL0708 Power System Planning (EL-III) EL0709 MOOC Course (EL-III) 7 CV0712 Disaster Management 01 00 00 00 01 30 10 60 00 00 100 TOTAL 19 08 06 25 33 210 70 420 120 180 1000 DEPARTMENT OF ELECTRICAL ENGIEERING INDUS INSTITUTE OF TECHNOLOGY & ENGINEERING INDUS UNIVERSITY B-TECH ELECTRICAL ENGINEERING, SEMESTER –VIII TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE 1 EL0801 Project 00 00 40 20 40 00 00 00 40 60 100 TOTAL 00 00 40 20 40 00 00 00 40 60 100 1ST SEMESTER B-TECH ELECTRICAL ENGINEERING, SEMESTER –I TEACHING & EXAMINATION SCHEME WITH EFFECT FROM JULY 2017 TEACHING EXAMINATION SCHEME SCHEME THEORY PRACT SR CODE SUBJECTS NO CIE L T P HOURS TOTAL CREDITS MID IE ESE CIE ESE SH0101 Differential Calculus & Matrix 1 04 02 00 05 06 30 10 60 00 00 100 Algebra 2 SH0001 Engineering Physics 03 00 02 04 05 30 10 60 40 60 200 3 EL0001 Electrical Workshop 00 00 02 01 02 00 00 00 40 60 100 EL0002 Elements of Electrical 4 03 00 02 04 05 30 10 60 40 60 200 Engineering 5 ME0001 Engineering Graphics 01 06 00 04 07 30 10 60 00 00 100 6 EC0001 Basic Electronics 02 00 02 03 04 30 10 60 40 60 200 7 MT0001 Materials Science 03 00 00 03 03 30 10 60 00 00 100 8 SH0102 Technical English 01 02 00 02 03 30 10 60 00 00 100 17 10 08 26 35 210 70 420 160 240 1100 TOTAL Subject: Differential Calculus & Matrix Algebra Program: B.Tech All Branches Subject Code: SH0101 Semester: I Teaching Scheme Examination Evaluation Scheme University University Continuous Continuous Total Theory Practical Internal Internal Examination Examination Evaluation Evaluation (CIE)- (CIE)- Lecture Tutorial Practical Credits Theory Practical 4 2 0 5 60 00 40 00 100 Course Objectives: 1. To provide mathematical knowledge and skills needed to support their concurrent and subsequent engineering studies.
Recommended publications
  • IS 649 (1997): Methods for Testing Steel Sheets for Magnetic Circuits of Power Electrical Apparatus [MTD 4: Wrought Steel Products]
    इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 649 (1997): Methods for testing steel sheets for magnetic circuits of power electrical apparatus [MTD 4: Wrought Steel Products] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” IS 649 : 1997 METHODS OF TESTING STEEL SHEETS FOR MAGNETIC CIRCUITS OF POWER ELECTRICAL APPARATUS ( Secod Revision, ) ICS 77.1403); 77.IJO.W; 2O.O-K~.10 BUREAU OF INDIAN STANDARDS h4ANAK BIHAVAN, 9 BAHADUR SHAIH ZAFAR h4ARC; NEW DELHI 1 10002 l’rice Croup 1 1 Wrought Steel Products Sectional Committee MTD 4 FOREWORD This Indian Standard (Second Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Wrought Steel Products Sectional Committee had been approved by the Metallurgical Engineering Division Council.
    [Show full text]
  • Title Here Electricity, Magnetism And… Survival
    3/1/2015 Electricity,Title Magnetism Here and… Survival Author Steve Constantinides,Venue Director of Technology Arnold Magnetic TechnologiesDate Corporation March 1, 2015 1 © Arnold Magnetic Technologies [email protected] What we do… Performance materials enabling energy efficiency Magnet Permanent High Precision Thin Production & Magnet Performance Metals Fabrication Assemblies Motors • Specialty Alloys from 0.000069” ~1.75 microns • Rare Earth • Precision • Smaller, Faster, • Sheets, Strips, & Samarium Cobalt Component Hotter motors Coils (RECOMA®) Assembly • Power dense • Milling, Annealing, • Alnico • Tooling, package Coating, Slitting • Injection molded Machining, • High RPM magnet • ARNON® Motor • Flexible Rubber Cutting, Grinding containment Lamination • Balancing • >200°C Operation Material • Sleeving • Light‐weighting Engineering | Consulting | Testing Stabilization & Calibration | Distribution 2 © Arnold Magnetic Technologies 1 3/1/2015 Agenda • Energy and Magnetism • Permanent Magnets and Motors • Applications • Soft magnetic materials • Future of magnetic materials 3 © Arnold Magnetic Technologies Energy in-Efficiency 25.8 65% is waste energy 38.2 60.6% Lost Energy 39.4% “Useful” Delivered Energy Additional losses at end use applications A quad is a unit of energy equal to 1015 (a short-scale quadrillion) BTU, or 1.055 × 1018 joules (1.055 exajoules or EJ) in SI units. 4 © Arnold Magnetic Technologies 2 3/1/2015 Renewable Energy Electricity Generation (USA) U.S. 4.8% of total production CHP= Combined Heat
    [Show full text]
  • Slr-Pc – 280 B
    www.downloadmela.com *SLRPC280B* SLR-PC – 280 B Seat Set No. A T.E. Information Technology (Part – II) Examination, 2015 Self Learning HSS NETWORK SETUP AND MANAGEMENT (New) Day and Date : Tuesday, 26-5-2015 Max. Marks : 50 Time : 3.00 p.m. to 5. 00 p.m. Instructions : 1) Q. No. 1 is compulsory. It should be solved in first 15 minutes in Answer Book Page No. 3. Each question carries one mark. 2) Answer MCQ/Objective type questions on Page No. 3 only. Don’t forget to mention, Q.P. Set (A/B/C/D) on Top of Page. MCQ/Objective Type Questions Duration : 15 Minutes Marks :10 1. Choose the correct answer (10×1=10) 1) ____________ are usually used to extend a connection to a remote host. A) Repeater B) Router C) Firewall D) None of these 2) A ___________ creates a collision domain on each port. A) Ethernet Switch B) Hub C) Router D) none of the choices are correct 3) __________ are virtual separation within switch that provide distinct logical LANs that each behave as if they were configured on a separate physical switch. A) Router B) VPN C) VLAN D) none of the choices are correct 4) If the address of destination is not on a local network, the packet must be forwarded to ______________ A) Switch B) Hub C) Gateway D) none of the choices are correct P.T.O. www.downloadmela.com - World's number one free educational download portal www.downloadmela.com SLR-PC – 280 B -2- *SLRPC280B* 5) OSPF is used for ____________ A) Routing of packets B) Shortest path routing of packets C) Simulation of packets D) None of the choices are correct 6) _____________ running as an application on a server may share the server with other functions such as DNS or mail, though generally and restrict its activities to security-related tasks.
    [Show full text]
  • (Η Vwatts Tf BK W ( = (Η
    UNIT I – MAGNETIC CIRCUITS AND MAGNETIC MATERIALS PART - A 1. Define magnetic flux density. (Nov - 2017) It is the flux per unit area at right angles to the flux it is denoted by B and unit is Weber/m2. 2. Define self-inductance. (Nov - 2017) The property of a coil that opposes any change in the amount of current flowing through it is called self-inductance. 3. Define relative permeability. (May - 2017) It is equal to the ratio of flux density produced in that material to the flux density produced in air by the same magnetizing force μ r=μ /μ 0 4. Give the expression for hysteresis losses and eddy current losses. (May - 2017) 1.6 2 Hysteresis loss = W (Bmax ) fVWatts 2 2 2 Eddy Current Loss = We K e (Bmax ) f t VWatts 5. What is a hysteresis loss? (Nov - 2016) o Energy loss takes place due to the molecular friction in the material. o This loss is in the form of heat 1.6 2 o Hysteresis loss = W (Bmax ) fVWatts 6. Define flux linkage. (Nov - 2016) Flux linkage is the magnetic flux running through, or "linked" to a coil, so the field strength times the coil area. The product of the magnetic flux and the number of turns in a given coil. Φ = nφ = nBA Where, n is Number of turns in a coil, B is Field Strength, A is area of coil. 7. State Ampere’s law. (May - 2016) The line integral of the magnetic field around some closed loop is equal to the times the algebraic sum of the currents which pass through the loop.
    [Show full text]
  • Designing with Thin Gauge
    Designing with Thin Gauge Presented by Steve Constantinides, Director of Technology Arnold Magnetic Technologies SMMA Fall Technical Conference, October 2008 Our world touches your world every day… 1 • Demand for electrical device efficiency gains which started decades ago due to economic factors have accelerated, propelled by the unprecedented rise in energy costs and the alleged impact of energy consumption on global weather instability. © 2008 Arnold Magnetic Technologies Agenda • Introduction • Manufacturing Process • GOES versus NGOES • Motor Efficiency • Loss Factors • NGO Thin Gauge (Arnon) Our world touches your world every day… 2 • Over the last several years I’ve spoken about permanent magnets. However, the magnetic material that is utilized in far great tonnage than magnets is the family of soft magnetic materials, especially Iron-Silicon whose usage spans both motor/generator and transformer/inductor applications. • Often referred to as Electrical Steel, Iron Silicon is available in both Grain Oriented (GOES) and Non-Oriented (NGOES) forms. © 2008 Arnold Magnetic Technologies Two Main Applications for Electrical Steel Handbook of Small Electric Motors Switched Reluctance Motors and their Control, p.154 T.J.E. Miller Our world touches your world every day… 3 • There are two main uses for Electrical Steel: Transformers/Inductors and Motors/Generators. • Transformers are used not only for Electrical Power Distribution, but in virtually every power supply in every electrically powered electronic device in offices and homes. • Motors have moved from industrial uses in the 1800 and early 1900’s to home and automotive uses. In homes for example, we use motors in garage door openers, washing machines and dryers, furnaces for home heating, refrigerator compressor pumps, bathroom exhaust fans, garbage disposals, and electric powered hand tools.
    [Show full text]
  • Partial Core Power Transformer
    Partial Core Power Transformer Ming Zhong, B.E.(Hons) A thesis submitted in partial fulfillment of the requirement for the degree of Master of Engineering in Electrical and Computer Engineering at the University of Canterbury, Christchurch, New Zealand. April 2012 a b Abstract This thesis describes the design, construction, and testing of a 15kVA, 11kV/230V partial core power transformer (PCPT) for continuous operation. While applications for the partial core transformer have been developed for many years, the concept of constructing a partial core transformer, from conventional copper windings, as a power transformer has not been investigated, specifically to have a continuous operation. In this thesis, this concept has been investigated and tested. The first part of the research involved creating a computer program to model the physical dimensions and the electrical performance of a partial core transformer, based on the existing partial core transformer models. Also, since the hot-spot temperature is the key factor for limiting the power rating of the PCPT, the second part of the research investigates a thermal model to simulate the change of the hot-spot temperature for the designed PCPT. The cooling fluid of the PCPT applied in this project was BIOTEMP ®. The original thermal model used was from the IEEE Guide for Loading Mineral-Oil-Immersed transformer. However, some changes to the original thermal model had to be made since the original model does not include BIOTEMP ® as a type of cooling fluid. The constructed partial core transformer was tested to determine its hot-spot temperature when it is immersed by BIOTEMP ®, and the results compared with the thermal model.
    [Show full text]
  • Laboratory Name Accreditation Standard Certificate Number Page
    Laboratory Name ELECTRICAL RESEARCH AND DEVELOPMENT ASSOCIATION ERDA NORTH LABORATORY GURUGRAM, CBIP CENTRE OF EXCELLENCE GROUND FLOOR, PLOT NO. 21 SECTOR 32, GURGAON, HARYANA , INDIA Accreditation Standard ISO/IEC 17025:2017 Certificate Number TC-5728 Page No. : 1 / 64 Validity 31/07/2019 to 30/07/2021 Last Amended on - S.No Discipline / Group Product / Material of Specific Test Test Method Range of Testing/ Test Performed Specification Limits of Detection against which tests are performed Permanent Facility 1 ELECTRICAL- 1. Electrical and Test of Repeatability of IS 13779:1999 up to 300V1mA to ELECTRICAL Electronic (Static) errors (Reaffirmed 2014) CI. 120A45Hz to 55HzP.F. INDICATING & Energy Meter 2. No. 12.17 IS +1 to -1 RECORDING Prepayment/ Smart 14697:1999 INSTRUMENTS Meters (Reaffirmed 2014) CI. No. 12.16 CBIP Publication No.: 304:2008 CI. No. 5.6.9 CBIP Publication No.: 325:2015 Cl. No. 5.6.9 Cl. No. 5.6.7 of IS 15884:2010 Cl. No. 6.12 of IS 16444 (Part 1) : 2015 Cl. No. 6.12 of IS 16444 (Part 2) : 2017: 2017 This is annexure to 'Certificate of Accreditation' and does not require any signature. Laboratory Name ELECTRICAL RESEARCH AND DEVELOPMENT ASSOCIATION ERDA NORTH LABORATORY GURUGRAM, CBIP CENTRE OF EXCELLENCE GROUND FLOOR, PLOT NO. 21 SECTOR 32, GURGAON, HARYANA , INDIA Accreditation Standard ISO/IEC 17025:2017 Certificate Number TC-5728 Page No. : 2 / 64 Validity 31/07/2019 to 30/07/2021 Last Amended on - S.No Discipline / Group Product / Material of Specific Test Test Method Range of Testing/ Test Performed Specification Limits of Detection against which tests are performed 2 ELECTRICAL- 1.
    [Show full text]
  • Frequency Response Modeling of Transformer Windings Utilizing the Equivalent Parameters of a Laminated Core
    energies Article Frequency Response Modeling of Transformer Windings Utilizing the Equivalent Parameters of a Laminated Core Konstanty Marek Gawrylczyk * and Katarzyna Trela West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-310 Szczecin, Poland; [email protected] * Correspondence: [email protected] Received: 17 May 2019; Accepted: 18 June 2019; Published: 20 June 2019 Abstract: The aim of the article is to present the method for modeling transformer winding inductance, taking into account the complex magnetic permeability and equivalent electric conductivity of the magnetic core. In the first stage of the research, a physical model of a 24-turn coil wound on the distribution transformer core was prepared. The Frequency Response Analysis (FRA) measurements of the coil were taken; then, the inductance of the coil as a function of frequency was calculated from the received frequency response curves. In the second stage, two-dimensional (2D) and three-dimensional (3D) computer models of the coil based on the finite element method (FEM) were established. In order to obtain the equivalent inductance characteristics of the winding modeled in 2D and 3D in a wide frequency range, the equality of the reluctance of the limbs and yokes in both models was assured. In the next stage of the research, utilization of the equivalent properties for the laminated magnetic material simulations was proposed. This outcome can be used to calculate the frequency response of the winding of the power transformer. The other obtained result is the method for modeling the resonance slope, which is visible on the inductance curve received from the FRA measurement.
    [Show full text]
  • Electrical Steel (Crgo)
    Grain-Oriented Electrical Steel Technical Data Sheet Grain-Oriented Electrical Steel Available in the Following Thicknesses: 7-mil or 0.007" (0.18 mm) 9-mil or 0.009" (0.23 mm) 11-mil or 0.011" (0.27 mm) 12-mil or 0.012" (0.30 mm) 14-mil or 0.014" (0.35 mm) Technical Services GOES Strategic Business Unit - Bagdad Plant 585 Silicon Drive Leechburg, PA 15656 U.S.A. GOES Technical Information and Inside Sales 800-289-7454 Data are typical, are provided for informational purposes, and should not be construed as maximum or minimum values for specification or Allegheny Technologies Incorporated for final design, or for a particular use or application. The data may be revised anytime without notice. We make no representation or 1000 Six PPG Place warranty as to its accuracy and assume no duty to update. Actual data on any particular product or material may vary from those shown Pittsburgh, PA 15222-5479 U.S.A. herein. TM is trademark of and ® is registered trademark of ATI Properties, Inc. or its affiliated companies. ® The starburst logo is a www.ATImetals.com registered trademark of ATI Properties, Inc. © 2012 ATI. All rights reserved. VERSION 1 (3/1/2012): PAGE 1 of 32 Grain-Oriented Electrical Steel Technical Data Sheet TABLE OF CONTENTS Introduction .......................................................................... 3 Typical Physical Properties ................................................. 3 Typical Mechanical Properties.... ........................................ 4 Coatings and Insulation ......................................................
    [Show full text]
  • Ee2451 - Electrical Energy Generation, Conservation & Utilization Unit V – Electric Traction
    EE2451 - ELECTRICAL ENERGY GENERATION, CONSERVATION & UTILIZATION UNIT V – ELECTRIC TRACTION PART-A 33. What are the essentials of a good braking system? 1. What are the requirements of an ideal traction system? (NOV/DEC 12) 34. What are the recent trends in electric traction? (May/Jun 13), (APR/MAY 2. Classify the supply system for electric traction. 14) 3. What are the advantages and disadvantages of electric traction? 35. What is plugging? 4. What is speed time curve and why it is used? 36. What is Rheostatic braking? 5. What are the types of speed used for traction? 6. What are the factors affecting schedule speed? 37. What is Regenerative braking? 7. What are the motors used in traction system? 38. What are the advantages of Regenerative braking? 8. What are the factors affecting energy consumption? 39. What are the disadvantages of Regenerative braking? 9. What is meant by mechanical braking? Name the types of brakes used. 40. What are the disadvantages of electric traction? (May/Jun 13) 10. Name the various systems of current collection system and where are they 41. Name the advanced methods in speed control of traction motors. employed? 42. What are the advantages of microprocessor based control of traction 11. Name the systems of traction. motors? 12. What are the advantages of electric traction? (Apr/May 10) 13. How would you analyze the speed time curve for electric train? 43. Define the continuous rating of motor. (Apr/May 10) 14. What is crest speed? (NOV/DEC 12) 44. Why induction motor is is preferred for industrial applications.
    [Show full text]
  • Electrical Machines – I
    EE6401 - ELECTRICAL MACHINES – I QUESTION BANK (2 MARK Q & A, 16 MARK Q) UNIT - I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS 1. What is magnetic circuit? The closed path followed by magnetic flux is called magnetic circuit. 2. Define magnetic flux? The magnetic lines of force produced by a magnet is called magnetic flux it is denoted as Ф and its unit is Weber 3. Define magnetic flux density? It is the flux per unit area at right angles to the flux it is denoted by B and unit is Weber/m2. 4. Define magneto motive force? MMF is the cause for producing flux in a magnetic circuit. the amount of flux setup in the core decent upon current(I)and number of turns(N).the product of NI is called MMF and it determine the amount of flux setup in the magnetic circuit MMF=NI ampere turns (AT) 5. Define reluctance? The opposition that the magnetic circuit offers to flux is called reluctance. It is defind as the ratio of MMF to flux. It is denoted by S and its unit is AT/m . 6. What is retentivity? The property of magnetic material by which it can retain the magnetism even after the removal of inducing source is called retentively . 7. Define permeance? It is the reciprocal of reluctance and is a measure of the cause the ease with which flux can pass through the material its unit is wb/AT. 8. Define magnetic flux intensity? It is defined as the mmf per unit length of the magnetic flux path.
    [Show full text]
  • DESIGN of HIGH VOLTAGE TRANSFORMER USING FINITE ELEMENT METHOD M.Leela Nivashini, K.Madhumitha, S.Sindhu, Dr.R.V.Maheswari
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 03, MARCH 2020 ISSN 2277-8616 DESIGN OF HIGH VOLTAGE TRANSFORMER USING FINITE ELEMENT METHOD M.Leela Nivashini, K.Madhumitha, S.Sindhu, Dr.R.V.Maheswari Abstract—: A transformer is a static device that is mainly used for stepping up and down the voltage level. The Power transformer is a kind of transformer that is used to transfer electrical energy in any part of the electrical circuit between the generator and the distribution primary circuits. These transformers area unit employed in distribution systems to interface intensify and step down voltages. The transformer is important in transmission and distribution hence their testing is also essentially equal. The cost of a high voltage transformer is too high and also unavoidable equipment in that domain, hence it has to be designed properly before implementation in real-time. Simulating the transformer with the designed parameters will give the same results as in the real model. So it is easy for analyzing the EF distribution and calculating the losses and that can be easily avoided while implementing in real-time. The simulation of a three-phase 11/0.4 KV power transformer using the Finite Element Method is carried out in this project. Index Terms— Power transformer, Losses —————————— —————————— 1 INTRODUCTION Electrical device could be a passive device that transfers 2 POWER TRANSFORMER electricity between 2 or a lot of circuits. Current in the primary winding produces magnetic flux, this in turn creates variable 2.1 DESCRIPTION EMF in the secondary winding of the same electrical device.
    [Show full text]