The Paradise Nut - a Natural Selenium Source

Total Page:16

File Type:pdf, Size:1020Kb

The Paradise Nut - a Natural Selenium Source The Paradise nut - a natural Selenium source You may drive out nature with a fork - it will HOOC-CH(NH2)-CH2-CH2-Se-CH2-CH(NH2)-COOH always revert". In our time the sentence of the Latin poet is more appreciated than ever. The advantage of this compound is that it (like the "Naturalness" is an attractive feature of any sulphur analog cystathionine) is not incorporated product, especially if it is to be used as food. metabolism at a precursor of the seleno amino acids, into proteins. Thus, proteins cannot be damaged. Vitamins and trace elements are considered to namely selenocystathionine (ARONOW, 1965): Rather, the uncommon amino acid is "compart- be more valuable if they come from a natural Caption for pix mentalized" in certain parts of the plant in the free source. form rendering these parts less attractive to browsing For the important trace element animals. Selenium is thus used as a selenium a natural source exists in the form protective agent. And the selenium of the seeds of the paradise nut tree. accumulator plants can thrive on selenif- The name Paradise nut or Sapucaia nut erous soils unlike all other plants. is used for the genus Lecythis of which 26 Paradise or Brazil nuts can be species have been described (MORI 1990). used as sources for nutritional Together with the genus Bertholettia (only selenium provided they do contain one species: B. excelsa, the Brazil nut) it sufficient selenium to make the forms the subfamily of the Lecythidoideae processing economical. This is rarely of the family Lecythidaceae. Many the case with Brazil nuts: Bertholettia members of the Lecythidaceae have an excelsa cannot be cultivated (in pure interesting characteristic: They accumu- stands the trees do not bear seeds), the late selenium in the seeds if they grow in nuts are collected from the wild and the seleniferous soil. Selenium accumulation provenance of individual lots is usually has been found in the Brazil nut unknown. And this provenance can be any (PALMER, 1982), in the species Lecythis location of the entire Amazonian region ollaria (KERDEL-VEGAS, 1966), Lecythis where soils are often free of selenium. minor (DICKSON, 1969), Lecythis Individual Brazil nuts may have a very high pisonis (ANDRADE 1999) and Lecythis selenium content, but the average tuyrana (BEHR, 2002). It is likely that concentration in commercial lots is fairly low selenium accumulation is a common (SECOR 1989, CHANG 1995). characteristic of the entire genus Lecythis, In contrast, paradise nut species (in or, to include the Brazil nut, of the entire particular L. ollaria and L. minor) have more subfamily Lecythidoideae. narrow distribution ranges. Provenances can thus be selected in view of the occurrence of Why and how does Selenium selenium. Paradise nuts too are collected from present in the soil end up in the the wild. Their cultivation has often been seeds of paradise and Brazil nut recommended ("Frutales de Venezuela" trees? (HOYOS, 1989), "Some Fruits and Nuts for the Tropics" (KENNARD, 1960), "Edible Nuts Selenium is actually an element which of the World" (MENNINGER, 1977) and is detrimental to most plants. They absorb "Tropische Nutzpflanzen " (BRUECHER, the selenium from the soil as selenate and 1977). But so far the cultivation was not a process it in analogy to the common success. It should be stressed that biochemical pathway of sulphur. Most plants common nut species (walnut, almond, cannot differentiate between selenium and pecan) do not accumulate selenium in sulphur and therefore incorporate selenium at the seeds (CARLSON), it is an exclu- random instead of sulphur into amino acids: sive characteristic of the They synthesise instead of cysteine to a Lecythidoideae subfamily of the certain degree selenocysteine and instead Lecithidaceae. of methionine selenomethionine. Most plants By pressing shelled paradise do also not differentiate between normal nuts a meal is obtained which sulphur containing amino acids and these may contain as much as several seleno analogs and thus incorporate them in thousand milligrams selenium random substitution of the sulphur analogs per kilogram. For practical into proteins (DAWSON, 1988). There are certain purposes it is blended with a differences between sulphur amino acids and carrier to obtain a standard selenium selenium amino acids: The selenium atom is concentration of 1000 mg/kg. While the Se larger and - more important - it behaves concentration in the pure nut meal varies, it chemically somewhat differently. The Se- is fairly constant (and low) in the oil: H bond in selenocysteine is more acidic (that Around 4 mg Se/kg. This is explained by the is, it ionises at lower pH) than the S-H bond; fact that the selenium in paradise nut is also it is more prone to oxidation. predominantly present as Thus, in proteins Se-H groups form selenocystathionine which is water readily -Se-Se- crosslinking bridges. These, soluble and has a correspondingly low together with the higher degree of ionisa- solubility in oil. The high molecular weight tion contorts proteins and makes them and low volatility of Selenocystathionine has -from a certain Se concentration on also the consequence that paradise nut -dysfunctional: The organism - be it plant or meal does not have the offensive odour animal - dies if it has absorbed too much commonly associated with organic selenium selenium (HUBER, 1967). Selenium accumulator compounds. plants have found a solution for this dilemma. The importance of an adequate They interrupt the normal biochemical nutritional selenium intake is generally known pathway of selenium and therefore shall be summarized only shortly here. Selenium is essential for human and animal nutrition. It occurs in the body in appr. 35 proteins, generally in the form of seleno- cysteine. Many of the proteins are enzymes (glutathione peroxidases, iodothyronine deiodinases, thioredoxine reductase), the function of others selenium group, the blinded phase was stopped Cancer Prevention (Selenoprotein P, Selenoprotein W) is unknown, they in Patients With Carcinoma of the Skin. JAMA, December 25, early". Crucial for the prevention effect seem to 1996, vol 276, No. may simply be storage forms. Non-proteinaceous be certain selenium metabolites, e.g. seleno- 24,1957-1963 selenium occurs in form of certain metabolites (e.g. diglutathione. This compound does not harm COMBS, G.F.; COMBS, St.B., 1986: The role of Selenium in selenodiglutathione) which do also have an normal cells but causes apoptosis of tumor cells by Nutrition, Academic important function. Selenium is further found in low Press 1986, S. 511 inducing the tumor suppressor protein, p53 DAWSON, J.C.; ANDERSON, J.W., 1988: Incorporation of cysteine concentration in all (e.g. muscle) proteins where (LANFEAR 1994). and selenosysteine into cystathionine and selenocystathionine by methionine (and probably also cysteine) is randomly "Selenium modulates immunity: Se deficiency crude extracts of spinach. Phytochemistry 27, 3453-3460 substituted by the seleno analogs selenomethionine impairs immunity, Se intakes above those habitually DICKSON, J. D., 1969): Notes on Hair and Nail Loss After Ingesting (and selenocysteine). Sapucaia consumed in many Western countries boost Nuts (Lecythis elliptica). Econ. Bot., 23,133-134 Selenium is not evenly distributed in the body. In immunity and high Se intakes lead to toxic effects HOYOS, J. F., 1989: Frutales en Venezuela. Soc. de Cienc. Nat. La times of deficiency the element is rapidly lost from and suppression of immunity" (McKENZIE 2002, p. Salle, muscle and liver and retained in brain, endocrine 229). The influence of selenium on the immune Monografia No. 36, Caracas, 1989, S. 124 and reproductive organs, apparently because it is HUBER, R.E., CRIDDLE, R.S. 1967: Comparison of the Chemical system has many facets which cannot be discussed Properties of essential for the functioning of these organs. Even in detail here. Only one function shall be mentioned, Selenocysteine and Selenocystine with Their Sulfur Analogs. Arch. within organs certain selenoenzymes are expressed the role of selenium, or rather the selenoenzyme Biochem. with preference over others in periods of under- glutathione peroxidase in the so-called "respiratory Biophys. 122,164 (1967). supply (McKENZIE, 2002, p. 234). HUTTUNEN, J.K., 1997: Selenium and cardiovascular diseases - burst". The respiratory burst is a rapid generation of an update. Biomed.l and Environm.l Science 10, 220-226 reactive oxygen species (ROS), most of all superoxide KARDINAAL, A.F. et al., 1997: Association between toenail How much selenium intake is sufficient? (O2-.) which certain lymphocytes direct against selenium and risk of acute myocardial infarction in European men: The Euramic Study: European invading microorganisms to destroy them. For the Antioxidant Myocardial Infarction and Breast Cancer.American LEVANDER and MORRIS (1984) determined optimal function of the respiratory burst a sufficient Journal of the dietary selenium requirement to maintain a concentration of the glutathione peroxidase is Epidemiology 145, 373-379. balance to be 80 mcg per person per day for men decisive and indispensible. Hydrogen peroxide KENNARD; WINTERS, 1960: Some Fruits and Nuts for the Tropics, and 57 mcg for women or 1 mcg/kg body weight in p.78, generated in the process threatens to damage other Miscellaneous Publication No. 801, US Dept. of Agriculture general. At equilibrium, excretion equals intake. Is this cell functions and most of all it blocks the enzyme KERDEL-VEGAS, F., 1966: The Depilatory and Cytotoxic Action of balance requirement an optimal value? It is rather a which provides the superoxide in the first place. The "Coco de Mono" minimum value, if the results of certain intervention respiratory burst cannot start unless the hydrogen (Lecythis ollaria). Econ. Bot. 20,187-195 studies are considered, e.g. of CLARK (1996). KIEM, J.; KOSLOWSKI, G., 1987: Platelet and erythrocyte kinetics peroxide is removed. The removal of the hydrogen studied with Selenium-74. Trace Element - Anal. Chem. in Med. Cancer incidence reduction was observed at supple- peroxide is effected by glutathione peroxidase which and Biol.
Recommended publications
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Sapucaia Nuts (Lecythis Pisonis) Modulate the Hepatic Inflammatory and Antioxidant Metabolism Activity in Rats Fed High-Fat Diets
    Vol. 15(25), pp. 1375-1382, 22 June, 2016 DOI: 10.5897/AJB2016.15377 Article Number: A72D7DA59059 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Sapucaia nuts (Lecythis pisonis) modulate the hepatic inflammatory and antioxidant metabolism activity in rats fed high-fat diets Marcos Vidal Martins1*, Izabela Maria Montezano de Carvalho2, Mônica Maria Magalhães Caetano1, Renata Celi Lopes Toledo1, Antônio Avelar Xavier1 and José Humberto de Queiroz1 1Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Brazil. 2Departamento de Nutrição, Universidade Federal de Sergipe, Brazil. Received 1 April 2016, Accepted 18 May, 2016. Lecythis pisonis Cambess is commonly known as “sapucaia” nut. Previous studies show that it is rich in unsaturated fatty acids and in antioxidant minerals. The aim of the present study was to assess the antioxidant and anti-inflamatory effects of this nut after its introduction into a control (AIN-93G) or high- fat diet in Wistar rats. The animals were divided into four groups: a control diet, the same control diet supplemented with sapucaia nuts, a high-fat diet or the high-fat diet supplemented with sapucaia nuts and were fed with these diets for 14 or 28 days. The gene expression of the markers tumor necrosis factor (TNF)-α NFκB (p65) zinc superoxide dismutase (ZnSOD) and heat shock protein 72 (HSP72) was determined by the chain reaction to the quantitative reverse transcription-polymerase chain reaction (q- PCR). The antioxidant activity was also measured as thiobarbituric acid reactive substances (TBARS) through the activity of the SOD enzyme.
    [Show full text]
  • Federal Register/Vol. 77, No. 163/Wednesday
    50622 Federal Register / Vol. 77, No. 163 / Wednesday, August 22, 2012 / Rules and Regulations CROP GROUP 14–12: TREE NUT GROUP—Continued Bur oak (Quercus macrocarpa Michx.) Butternut (Juglans cinerea L.) Cajou nut (Anacardium giganteum Hance ex Engl.) Candlenut (Aleurites moluccanus (L.) Willd.) Cashew (Anacardium occidentale L.) Chestnut (Castanea crenata Siebold & Zucc.; C. dentata (Marshall) Borkh.; C. mollissima Blume; C. sativa Mill.) Chinquapin (Castaneapumila (L.) Mill.) Coconut (Cocos nucifera L.) Coquito nut (Jubaea chilensis (Molina) Baill.) Dika nut (Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill.) Ginkgo (Ginkgo biloba L.) Guiana chestnut (Pachira aquatica Aubl.) Hazelnut (Filbert) (Corylus americana Marshall; C. avellana L.; C. californica (A. DC.) Rose; C. chinensis Franch.) Heartnut (Juglans ailantifolia Carrie`re var. cordiformis (Makino) Rehder) Hickory nut (Carya cathayensis Sarg.; C. glabra (Mill.) Sweet; C. laciniosa (F. Michx.) W. P. C. Barton; C. myristiciformis (F. Michx.) Elliott; C. ovata (Mill.) K. Koch; C. tomentosa (Lam.) Nutt.) Japanese horse-chestnut (Aesculus turbinate Blume) Macadamia nut (Macadamia integrifolia Maiden & Betche; M. tetraphylla L.A.S. Johnson) Mongongo nut (Schinziophyton rautanenii (Schinz) Radcl.-Sm.) Monkey-pot (Lecythis pisonis Cambess.) Monkey puzzle nut (Araucaria araucana (Molina) K. Koch) Okari nut (Terminalia kaernbachii Warb.) Pachira nut (Pachira insignis (Sw.) Savigny) Peach palm nut (Bactris gasipaes Kunth var. gasipaes) Pecan (Carya illinoinensis (Wangenh.) K. Koch) Pequi (Caryocar brasiliense Cambess.; C. villosum (Aubl.) Pers; C. nuciferum L.) Pili nut (Canarium ovatum Engl.; C. vulgare Leenh.) Pine nut (Pinus edulis Engelm.; P. koraiensis Siebold & Zucc.; P. sibirica Du Tour; P. pumila (Pall.) Regel; P. gerardiana Wall. ex D. Don; P. monophylla Torr. & Fre´m.; P.
    [Show full text]
  • Download E-Book (PDF)
    African Journal of Biotechnology Volume 15 Number 25, 22 June 2016 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer-reviewed. Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/AJB Submit manuscript online http://ms.academicjournals.me/ Editor-in-Chief Associate Editors Prof. Dr. AE Aboulata George Nkem Ude, Ph.D Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Ain Shams, Cairo, Crawford Building, Rm 003A Egypt Bowie State University 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. Applied and Environmental Microbiology Research Group (AEMREG), N. John Tonukari, Ph.D Department of Biochemistry and Microbiology, Department of Biochemistry University of Fort Hare. Delta State University P/Bag X1314 Alice 5700, PMB 1 South Africa Abraka, Nigeria Dr.
    [Show full text]
  • Bonpland and Humboldt Specimens, Field Notes, and Herbaria; New Insights from a Study of the Monocotyledons Collected in Venezuela
    Bonpland and Humboldt specimens, field notes, and herbaria; new insights from a study of the monocotyledons collected in Venezuela Fred W. Stauffer, Johann Stauffer & Laurence J. Dorr Abstract Résumé STAUFFER, F. W., J. STAUFFER & L. J. DORR (2012). Bonpland and STAUFFER, F. W., J. STAUFFER & L. J. DORR (2012). Echantillons de Humboldt specimens, field notes, and herbaria; new insights from a study Bonpland et Humboldt, carnets de terrain et herbiers; nouvelles perspectives of the monocotyledons collected in Venezuela. Candollea 67: 75-130. tirées d’une étude des monocotylédones récoltées au Venezuela. Candollea In English, English and French abstracts. 67: 75-130. En anglais, résumés anglais et français. The monocotyledon collections emanating from Humboldt and Les collections de Monocotylédones provenant des expéditions Bonpland’s expedition are used to trace the complicated ways de Humboldt et Bonpland sont utilisées ici pour retracer les in which botanical specimens collected by the expedition were cheminements complexes des spécimens collectés lors returned to Europe, to describe the present location and to de leur retour en Europe. Ces collections sont utilisées pour explore the relationship between specimens, field notes, and établir la localisation actuelle et la composition d’importants descriptions published in the multi-volume “Nova Genera et jeux de matériel associés à ce voyage, ainsi que pour explorer Species Plantarum” (1816-1825). Collections in five European les relations existantes entre les spécimens, les notes de terrain herbaria were searched for monocotyledons collected by et les descriptions parues dans les divers volumes de «Nova the explorers. In Paris, a search of the Bonpland Herbarium Genera et Species Plantarum» (1816-1825).
    [Show full text]
  • When Is a Nut Not a Nut?
    432 FLORIDA STATE HORTICULTURAL SOCIETY, 1972 Apply insecticides properly. When using sprays Apply either Nemagon or Sarolex at the rate it is important to apply the insecticide in a large recommended on the label. For Nemagon apply amount of water in order to soak the thick mats to moist soil with 150-200 gallons of water, of St. Augustinegrass. drenching 1,000 square feet of turf. For Sarolex Jar attachments to garden hoses are excellent apply to moist soil with 30-50 gallons of water tools for home gardeners to apply sprays. Use the drenching 1,000 square feet of turf. Immediately type which required 15 to 20 gallons of water after applying either material, water the lawn passing through the hose to empty the quart jar. thoroughly with one inch of additional water. Some of these materials are on the market in dry, The easiest and most economical method of granulated form for direct application with ferti controlling weeds is the judicial use of all sound lizer-spreader machines. practices of turf grass management. Diseases of turfgrass are common in South The safest way for homeowners to control Florida (3). In general, the presence of a disease weeds in a St. Augustine lawn is to use a weed is indicated when either the grass continues to and feed combination. This herbicide-fertilizer decline or the condition spreads to new areas. combination will in time control both broad-leaf Control of a disease is usually accomplished by the and grass-type weeds. A practical approach, and use of a fungicide.
    [Show full text]
  • Proceedings: Hawaii Tropical Fruit Growers Third Annual Conference
    TAHR • COLLEGE OF TROPICAL AGRICULTURE AND HUMAN RESOURCES • UNIVERSITY OF HAWAII PROCEEDINGS: 3rd ANNUAL HAWAII TROPICAL FRUIT GROWERS CONFERENCE October 22 - 24, 1993 Hawaii Naniloa Hotel Hilo, Hawaii Proceedings: Hawaii Tropical Fruit Growers Third Annual Conference October 22-24, 1993 Hawaii Naniloa Hotel, Hilo, Hawaii PREFACE ¥arketing and promotion of tropi~al speciality fruits was a major focus of the conference. A panel presented perspectives on marketing from a state agency, a grower, and a restauranteur. The presentation on the Australian experiences in marketing tropiCal fruits was also informative and potentially useful for Hawaii growers, who will be faced with related situations and issues when their orchards ,come into production. The hosts at the three field trip orchard sites should be commended for their open and frank comments, as well as for their unselfish sharing of information on cultural practices for tropical fruits. Editors: C. L. Chia Extension Specialist in Horticulture D. O. Evans Research Associate Department of Horticulture College of Tropical Agriculture and Humari Resources University of Hawaii at Manoa Cover: The pendula nut (Couepia longipendula) is an undomesticated tree of the Amazon. At present it is harvested as a subsistence food, but it has potential for development into a commercial horticultural crop. Photo courtesy of Charles Clement; see p. 23 - 28. DisClaimer Pesticides should be used in accordance with label instructions, Mention of a trade or proprietary name does not constitute a guarantee or warranty of the product by the University of Hawaii and does not imply its approval for use in Hawaii or recommendation of its use to the exclusion of other unmentioned products.
    [Show full text]
  • Economically Important Plants Arranged Systematically James P
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 1-2017 Economically Important Plants Arranged Systematically James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: http://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Economically Important Plants Arranged Systematically" (2017). Botanical Studies. 48. http://digitalcommons.humboldt.edu/botany_jps/48 This Economic Botany - Ethnobotany is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. ECONOMICALLY IMPORTANT PLANTS ARRANGED SYSTEMATICALLY Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 30 January 2017 This list began in 1970 as a handout in the Plants and Civilization course that I taught at HSU. It was an updating and expansion of one prepared by Albert F. Hill in his 1952 textbook Economic Botany... and it simply got out of hand. I also thought it would be useful to add a brief description of how the plant is used and what part yields the product. There are a number of more or less encyclopedic references on this subject. The number of plants and the details of their uses is simply overwhelming. In the list below, I have attempted to focus on those plants that are of direct economic importance to us.
    [Show full text]
  • Morfologia De Frutos, Sementes E Plântulas De Lecythidoideae
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BOTÂNICA) MORFOLOGIA DE FRUTOS, SEMENTES E PLÂNTULAS DE LECYTHIDOIDEAE LORENA PATRICIA FIGUEIRA RODRIGUES Manaus, Amazonas Julho, 2020 LORENA PATRICIA FIGUEIRA RODRIGUES MORFOLOGIA DE FRUTOS, SEMENTES E PLÂNTULAS DE LECYTHIDOIDEAE ORIENTADORA: ISOLDE DOROTHEA KOSSMANN FERRAZ Dissertação apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em Ciências Biológicas, área de concentração Botânica. Manaus, Amazonas Julho, 2020 Relação da banca julgadora Dra. Maria Anália Duarte de Souza Universidade Federal do Amazonas - UFAM Dra. Denise Maria Trombert de Oliveira Universidade Federal de Minas Gerais – UFMG Dra. Ely Simone Cajueiro Gurgel Museu Paraense Emílio Goeldi – MPEG ii iii F475m Rodrigues, Lorena Patricia Figueira Morfologia de frutos, sementes e plântulas de Lecythidoideae / Lorena Patricia Figueira Rodrigues; orientadora Isolde Dorothea Kossmann Ferraz. -- Manaus: [s.l.], 2020. 145 f. Dissertação (Mestrado – Programa de Pós Graduação em Botânica) – Coordenação do Programa de Pós – Graduação, INPA, 2020. 1. morfologia de propágulos. 2. polaridade na germinação. 3. morfologia de plântula. 4. taxonomia. 5. análise multivariada. I. Ferraz, Isolde Dorothea Kossmann, orient. II. Título. CDD: 580 Sinopse: Este estudo descreve e ilustra algumas espécies Neotropicais de Lecythidaceae (subfamília Lecythidoideae), nativas das florestas amazônicas. O estudo é divido em dois capítulos:
    [Show full text]
  • Perennial Edible Fruits of the Tropics: an and Taxonomists Throughout the World Who Have Left Inventory
    United States Department of Agriculture Perennial Edible Fruits Agricultural Research Service of the Tropics Agriculture Handbook No. 642 An Inventory t Abstract Acknowledgments Martin, Franklin W., Carl W. Cannpbell, Ruth M. Puberté. We owe first thanks to the botanists, horticulturists 1987 Perennial Edible Fruits of the Tropics: An and taxonomists throughout the world who have left Inventory. U.S. Department of Agriculture, written records of the fruits they encountered. Agriculture Handbook No. 642, 252 p., illus. Second, we thank Richard A. Hamilton, who read and The edible fruits of the Tropics are nnany in number, criticized the major part of the manuscript. His help varied in form, and irregular in distribution. They can be was invaluable. categorized as major or minor. Only about 300 Tropical fruits can be considered great. These are outstanding We also thank the many individuals who read, criti- in one or more of the following: Size, beauty, flavor, and cized, or contributed to various parts of the book. In nutritional value. In contrast are the more than 3,000 alphabetical order, they are Susan Abraham (Indian fruits that can be considered minor, limited severely by fruits), Herbert Barrett (citrus fruits), Jose Calzada one or more defects, such as very small size, poor taste Benza (fruits of Peru), Clarkson (South African fruits), or appeal, limited adaptability, or limited distribution. William 0. Cooper (citrus fruits), Derek Cormack The major fruits are not all well known. Some excellent (arrangements for review in Africa), Milton de Albu- fruits which rival the commercialized greatest are still querque (Brazilian fruits), Enriquito D.
    [Show full text]
  • An Evolutionary Perspective on Human Cross-Sensitivity to Tree Nut and Seed Allergens," Aliso: a Journal of Systematic and Evolutionary Botany: Vol
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 33 | Issue 2 Article 3 2015 An Evolutionary Perspective on Human Cross- sensitivity to Tree Nut and Seed Allergens Amanda E. Fisher Rancho Santa Ana Botanic Garden, Claremont, California Annalise M. Nawrocki Pomona College, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, Evolution Commons, and the Nutrition Commons Recommended Citation Fisher, Amanda E. and Nawrocki, Annalise M. (2015) "An Evolutionary Perspective on Human Cross-sensitivity to Tree Nut and Seed Allergens," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 33: Iss. 2, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol33/iss2/3 Aliso, 33(2), pp. 91–110 ISSN 0065-6275 (print), 2327-2929 (online) AN EVOLUTIONARY PERSPECTIVE ON HUMAN CROSS-SENSITIVITY TO TREE NUT AND SEED ALLERGENS AMANDA E. FISHER1-3 AND ANNALISE M. NAWROCKI2 1Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, California 91711 (Current affiliation: Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840); 2Pomona College, 333 North College Way, Claremont, California 91711 (Current affiliation: Amgen Inc., [email protected]) 3Corresponding author ([email protected]) ABSTRACT Tree nut allergies are some of the most common and serious allergies in the United States. Patients who are sensitive to nuts or to seeds commonly called nuts are advised to avoid consuming a variety of different species, even though these may be distantly related in terms of their evolutionary history. This is because studies in the literature report that patients often display sensitivity to multiple nut species (cross- sensitivity) if they have an existing nut allergy.
    [Show full text]
  • 18 Potential Invasive Species of Scale Insects for the USA and Caribbean Basin
    18 Potential Invasive Species of Scale Insects for the USA and Caribbean Basin Gregory A. Evans1 and John W. Dooley2 1USDA/APHIS/PPQ/National Identification Service, 10300 Baltimore Avenue, BARC-West, Bldg. 005, Rm 09A, Beltsville, Maryland 20705, USA; 2USDA/ APHIS/PPQ 389 Oyster Point Blvd, Suite 2A, South San Francisco, California 94080, USA 18.1 Introduction percentage of the total number of species repre- sented in the USA and the respective zoogeo- History has shown that when an exotic pest enters graphic regions indicated beside the number of and establishes in a country outside its native species (Table 18.1). These data were extracted range, it often takes only a little time for the spe- from ScaleNet (2011), an online database that cies to spread to other countries in the region. includes all published information on scale Therefore, it is mutually beneficial for those work- insect species. A few subspecies might be ing in quarantine and crop protection in all regions included as part of the total number of species; of the world to work together to stop, or at least to in addition, the creators of ScaleNet place the slow down, the movement of pests. This chapter northern part of Mexico in the NA, whereas deals with potential invasive scale insect pests for southern Mexico is in the NT region. Northern the USA and the Caribbean Basin. mainland China is included in the PA, whereas There are approximately 7500 known spe- southern China is in the OR region. This differs cies of scale insects (Coccoidea) belonging to 45 from the interception data presented herein, in families (extant and fossil); however, the most that all of Mexico is included in the NT region; common species, and the ones that are usually all of mainland China, Japan and Korea are intercepted at US ports of entry on plant mater- placed in the Eastern PA region; and the records ial, belong to one of the following eight fami- from the AU region are separated into those lies: Asterolecaniidae, Coccidae, Dactylopiidae, from Australia and those from the PI.
    [Show full text]