18 Potential Invasive Species of Scale Insects for the USA and Caribbean Basin

Total Page:16

File Type:pdf, Size:1020Kb

18 Potential Invasive Species of Scale Insects for the USA and Caribbean Basin 18 Potential Invasive Species of Scale Insects for the USA and Caribbean Basin Gregory A. Evans1 and John W. Dooley2 1USDA/APHIS/PPQ/National Identification Service, 10300 Baltimore Avenue, BARC-West, Bldg. 005, Rm 09A, Beltsville, Maryland 20705, USA; 2USDA/ APHIS/PPQ 389 Oyster Point Blvd, Suite 2A, South San Francisco, California 94080, USA 18.1 Introduction percentage of the total number of species repre- sented in the USA and the respective zoogeo- History has shown that when an exotic pest enters graphic regions indicated beside the number of and establishes in a country outside its native species (Table 18.1). These data were extracted range, it often takes only a little time for the spe- from ScaleNet (2011), an online database that cies to spread to other countries in the region. includes all published information on scale Therefore, it is mutually beneficial for those work- insect species. A few subspecies might be ing in quarantine and crop protection in all regions included as part of the total number of species; of the world to work together to stop, or at least to in addition, the creators of ScaleNet place the slow down, the movement of pests. This chapter northern part of Mexico in the NA, whereas deals with potential invasive scale insect pests for southern Mexico is in the NT region. Northern the USA and the Caribbean Basin. mainland China is included in the PA, whereas There are approximately 7500 known spe- southern China is in the OR region. This differs cies of scale insects (Coccoidea) belonging to 45 from the interception data presented herein, in families (extant and fossil); however, the most that all of Mexico is included in the NT region; common species, and the ones that are usually all of mainland China, Japan and Korea are intercepted at US ports of entry on plant mater- placed in the Eastern PA region; and the records ial, belong to one of the following eight fami- from the AU region are separated into those lies: Asterolecaniidae, Coccidae, Dactylopiidae, from Australia and those from the PI. Diaspididae, Monophlebidae (formerly part of All scale insects are obligate plant feeders, Margardodidae), Ortheziidae, Pseudococcidae and therefore are almost always found closely and Stictococcidae. The number of species in associated with plants, commonly being inter- these families that are known worldwide is cepted on imported plant material. In its native shown in Table 18.1. In addition, the number of area, an ecological balance usually exists between species known to occur in the USA and in the the population of the scale insect and its natural following seven zoogeographic regions: Nearctic enemies, which maintains the population of (NA), Neotropical (NT), Afrotropical (AF), the scale insect below economic injury levels. Palearctic (PA), Oriental (OR), Australasian However, when a species is separated from its nat- (AU) and Antarctica (AN) is provided, with the ural enemies, primarily due to human mediation 320 © CAB International 2013. Potential Invasive Pests of Agricultural Crops (ed. J. Peña) Potential Invasive Species of Scale Insects for the USA and Caribbean Basin 321 Table 18.1. Number of scale insect species of selected families by zoogeographic region, and the percentage of the total number of known species (ScaleNet, 2011). Asterolecaniidae Coccidae Diaspididae Pseudococcidae Total % total Total % total Total % total Total % total Region species species species species species species species species USA 19 7.9 106 9.4 329 13.3 361 15.9 NA 29 12.1 158 14.0 419 17.0 445 19.5 NT 51 21.3 298 26.3 365 14.8 285 12.5 PA 74 30.8 289 25.6 643 26.1 721 31.7 AF 25 10.4 274 24.2 573 23.2 297 13.0 OR 104 43.3 196 17.3 913 37.0 429 18.8 AU 35 14.6 172 15.2 420 17.0 451 19.8 AN 0 0 0 0 1 <1.0 0 0 WW 240 100 1131 100 2465 100 2277 100 Dactylopiidae Monophlebidae Ortheziidae Stictococcidae Total % total Total % total Total % total Total % total Region species species species species species species species species USA 4 40.0 10 4.1 31 15.7 0 0 NA 6 60.0 27 11.0 42 21.2 0 0 NT 9 90.0 42 17.1 64 32.3 0 0 PA 3 30.0 31 12.6 22 11.1 0 0 AF 6 60.0 63 25.6 39 19.7 17 100 OR 2 20.0 73 29.7 27 13.6 0 0 AU 5 50.0 41 16.7 22 11.1 0 0 AN 0 0 0 0 0 0 0 0 WW 10 100 246 100 198 100 17 100 NA, Nearctic; NT, Neotropical; AF, Afrotropical; PA, Palearctic; OR, Oriental; AU, Australasian; AN, Antarctica; WW, Worldwide (transported to a new area or by the non-selective Miller (1990) reported that only about 8% of the use of chemical pesticides), then high infestations known species of armored scales had been of the scale often occur, resulting in economic reported as pests somewhere in the world. damage. Therefore, any scale insect species that Nevertheless, since it is difficult to predict the has been separated from its natural enemies and impact an invasive species might have, all invading survives the environmental conditions in its new scale species are of interest to plant-protection environment, has the potential to become a pest workers. species in its non-native habitat. Virtually all of Regardless of the efforts by plant-protection the major scale insect pests in the USA and officers, discovery of an invasive scale often hap- Caribbean basin are non-native species. pens after the scale population has become esta- The introduction of an exotic species has blished and population outbreaks have occurred; often been followed by large population out- however, some species have been discovered breaks and subsequent economic plant damage. shortly after they entered the country, and meas- The cycad aulacaspis scale, Aulacaspis yasumatsui, ures were taken to eradicate the species before it was an obscure species in South-East Asia until it had a chance to become established. Examples of arrived in Florida in 1996; thereafter, its popula- invasive species of armored scales that have tion exploded and has now spread to many other recently been introduced and have been esta- countries. However, not all invasive species blished in a region include: Aulcaspis yasumatsui become major pest species. In fact, Miller and Takagi and Poliaspis cycadis Comstock on cycads 322 G.A. Evans and J.W. Dooley in Florida, and Parlagena bennetti Williams, a pest the world and their rapid movement on the world of palms that is now known to occur in Trinidad, market has also increased the movement of these St Andres Island (Colombia) and the Bay Islands pests and the likelihood of their introduction and (Honduras). establishment in the region. Plant material is In Table 18.1, the number of potential inva- being imported into the USA from nearly every sive species for a country or region was deter- country in the world. In addition, there is much mined by subtracting the number of species greater diversity and a much higher volume of known to occur in the country or region from the plant species being imported than ever before. total number of species known worldwide. This Exporting countries are bringing new lands into number does not take into account the number of production, which sometimes results in native cryptic and other species that have not been species moving from their usual hosts onto the described. crop (an alternate host). In addition, the manage- For example, currently 329 species of ment of these species is sometimes complicated armored scales are known to occur in the USA, by the lack of taxonomic expertise to identity the representing 13.3% of the total number of spe- species, and insufficient knowledge about the cies (2465) known worldwide. Therefore, 2136 fauna of many regions of the world. (86.7%) species are not known to occur in the The Animal and Plant Health Inspection USA but could potentially invade and establish Service (APHIS/USDA) and the Department of there and perhaps become economic pests. The National Homeland Security, US Customs and potential of an exotic species to enter a region Border Protection (NHS/CBP) are responsible for and become an economic pest is a function of the preventing the introduction of exotic species into characteristics of the species, and the probability the USA. Currently, there are several US inspec- that it will arrive, gain entrance and establish in tion stations distributed throughout the USA and the country and/or region. Some of the impor- its territories at airports, seaports and land bor- tant characteristics of a scale-insect species are: der ports. APHIS has for many years maintained (i) ability to adapt to a new habitat; (ii) reproduc- the AQAS (Agricultural Quarantine Activity tive rate; (iii) life cycle (number of generations Systems) database, which is an internal database per annum); (iv) natural enemies (native and of records of insects, mites, mollusks and other exotics); (v) host plants (economic crops and pests intercepted at US ports of entry (Table alternate hosts); and (vi) the part(s) of the plant 18.2). These data include the pest species, host on which it feeds (fruit, leaves, roots). Information plant, the part of the host plant on which it was on its known plant hosts, distribution and other found and the country from which the shipment information can be gathered quickly from originated. The data are limited, however, because ScaleNet (2011).
Recommended publications
  • Based on Comparative Morphological Data AF Emel'yanov Transactions of T
    The phylogeny of the Cicadina (Homoptera, Cicadina) based on comparative morphological data A.F. Emel’yanov Transactions of the All-Union Entomological Society Morphological principles of insect phylogeny The phylogenetic relationships of the principal groups of cicadine* insects have been considered on more than one occasion, commencing with Osborn (1895). Some phylogenetic schemes have been based only on data relating to contemporary cicadines, i.e. predominantly on comparative morphological data (Kirkaldy, 1910; Pruthi, 1925; Spooner, 1939; Kramer, 1950; Evans, 1963; Qadri, 1967; Hamilton, 1981; Savinov, 1984a), while others have been constructed with consideration given to paleontological material (Handlirsch, 1908; Tillyard, 1919; Shcherbakov, 1984). As the most primitive group of the cicadines have been considered either the Fulgoroidea (Kirkaldy, 1910; Evans, 1963), mainly because they possess a small clypeus, or the cicadas (Osborn, 1895; Savinov, 1984), mainly because they do not jump. In some schemes even the monophyletism of the cicadines has been denied (Handlirsch, 1908; Pruthi, 1925; Spooner, 1939; Hamilton, 1981), or more precisely in these schemes the Sternorrhyncha were entirely or partially depicted between the Fulgoroidea and the other cicadines. In such schemes in which the Fulgoroidea were accepted as an independent group, among the remaining cicadines the cicadas were depicted as branching out first (Kirkaldy, 1910; Hamilton, 1981; Savinov, 1984a), while the Cercopoidea and Cicadelloidea separated out last, and in the most widely acknowledged systematic scheme of Evans (1946b**) the last two superfamilies, as the Cicadellomorpha, were contrasted to the Cicadomorpha and the Fulgoromorpha. At the present time, however, the view affirming the equivalence of the four contemporary superfamilies and the absence of a closer relationship between the Cercopoidea and Cicadelloidea (Evans, 1963; Emel’yanov, 1977) is gaining ground.
    [Show full text]
  • The Mycological Society of San Francisco • Jan. 2016, Vol. 67:05
    The Mycological Society of San Francisco • Jan. 2016, vol. 67:05 Table of Contents JANUARY 19 General Meeting Speaker Mushroom of the Month by K. Litchfield 1 President Post by B. Wenck-Reilly 2 Robert Dale Rogers Schizophyllum by D. Arora & W. So 4 Culinary Corner by H. Lunan 5 Hospitality by E. Multhaup 5 Holiday Dinner 2015 Report by E. Multhaup 6 Bizarre World of Fungi: 1965 by B. Sommer 7 Academic Quadrant by J. Shay 8 Announcements / Events 9 2015 Fungus Fair by J. Shay 10 David Arora’s talk by D. Tighe 11 Cultivation Quarters by K. Litchfield 12 Fungus Fair Species list by D. Nolan 13 Calendar 15 Mushroom of the Month: Chanterelle by Ken Litchfield Twenty-One Myths of Medicinal Mushrooms: Information on the use of medicinal mushrooms for This month’s profiled mushroom is the delectable Chan- preventive and therapeutic modalities has increased terelle, one of the most distinctive and easily recognized mush- on the internet in the past decade. Some is based on rooms in all its many colors and meaty forms. These golden, yellow, science and most on marketing. This talk will look white, rosy, scarlet, purple, blue, and black cornucopias of succu- at 21 common misconceptions, helping separate fact lent brawn belong to the genera Cantharellus, Craterellus, Gomphus, from fiction. Turbinellus, and Polyozellus. Rather than popping up quickly from quiescent primordial buttons that only need enough rain to expand About the speaker: the preformed babies, Robert Dale Rogers has been an herbalist for over forty these mushrooms re- years. He has a Bachelor of Science from the Univer- quire an extended period sity of Alberta, where he is an assistant clinical profes- of slower growth and sor in Family Medicine.
    [Show full text]
  • Diaspididae (Hemiptera: Coccoidea) En Olivo, <I>Olea Europaea</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2014 Diaspididae (Hemiptera: Coccoidea) en olivo, Olea europaea Linnaeus (Oleaceae), en Brasil Vera Regina dos Santos Wolff Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi dos Santos Wolff, Vera Regina, "Diaspididae (Hemiptera: Coccoidea) en olivo, Olea europaea Linnaeus (Oleaceae), en Brasil" (2014). Insecta Mundi. 900. http://digitalcommons.unl.edu/insectamundi/900 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0385 Diaspididae (Hemiptera: Coccoidea) en olivo, Olea europaea Linnaeus (Oleaceae), en Brasil Vera Regina dos Santos Wolff Fundação Estadual de Pesquisa Agropecuária (FEPAGRO) Rua Gonçalves Dias 570. Porto Alegre Rio Grande do Sul, Brasil Date of Issue: September 26, 2014 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Vera Regina dos Santos Wolff Diaspididae (Hemiptera: Coccoidea) en olivo, Olea europaea Linnaeus (Oleaceae), en Brasil Insecta Mundi 0385: 1–6 ZooBank Registered: urn:lsid:zoobank.org:pub:8ED57F9D-E002-4269-88DA-A8DBDB41F57E Published in 2014 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history.
    [Show full text]
  • A New Pupillarial Scale Insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in Coastal New South Wales, Australia
    Zootaxa 4117 (1): 085–100 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4117.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:5C240849-6842-44B0-AD9F-DFB25038B675 A new pupillarial scale insect (Hemiptera: Coccoidea: Eriococcidae) from Angophora in coastal New South Wales, Australia PENNY J. GULLAN1,3 & DOUGLAS J. WILLIAMS2 1Division of Evolution, Ecology & Genetics, Research School of Biology, The Australian National University, Acton, Canberra, A.C.T. 2601, Australia 2The Natural History Museum, Department of Life Sciences (Entomology), London SW7 5BD, UK 3Corresponding author. E-mail: [email protected] Abstract A new scale insect, Aolacoccus angophorae gen. nov. and sp. nov. (Eriococcidae), is described from the bark of Ango- phora (Myrtaceae) growing in the Sydney area of New South Wales, Australia. These insects do not produce honeydew, are not ant-tended and probably feed on cortical parenchyma. The adult female is pupillarial as it is retained within the cuticle of the penultimate (second) instar. The crawlers (mobile first-instar nymphs) emerge via a flap or operculum at the posterior end of the abdomen of the second-instar exuviae. The adult and second-instar females, second-instar male and first-instar nymph, as well as salient features of the apterous adult male, are described and illustrated. The adult female of this new taxon has some morphological similarities to females of the non-pupillarial palm scale Phoenicococcus marlatti Cockerell (Phoenicococcidae), the pupillarial palm scales (Halimococcidae) and some pupillarial genera of armoured scales (Diaspididae), but is related to other Australian Myrtaceae-feeding eriococcids.
    [Show full text]
  • Research Article Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 346508, 12 pages http://dx.doi.org/10.1155/2015/346508 Research Article Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species S. K. Sharma1 and N. Gautam2 1 Department of Plant Pathology, CSK, Himachal Pradesh Agriculture University, Palampur 176 062, India 2Centre for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Bathinda 151 001, India Correspondence should be addressed to N. Gautam; [email protected] Received 8 May 2015; Accepted 11 June 2015 Academic Editor: Miroslav Pohanka Copyright © 2015 S. K. Sharma and N. Gautam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the peopleof northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds.
    [Show full text]
  • HOST PLANTS of SOME STERNORRHYNCHA (Phytophthires) in NETHERLANDS NEW GUINEA (Homoptera)
    Pacific Insects 4 (1) : 119-120 January 31, 1962 HOST PLANTS OF SOME STERNORRHYNCHA (Phytophthires) IN NETHERLANDS NEW GUINEA (Homoptera) By R. T. Simon Thomas DEPARTMENT OF ECONOMIC AFFAIRS, HOLLANDIA In this paper, I list 15 hostplants of some Phytophthires of Netherlands New Guinea. Families, genera within the families and species within the genera are mentioned in alpha­ betical order. The genera and the specific names of the insects are printed in bold-face type, those of the plants are in italics. The locality, where the insects were found, is printed after the host plants. Then follows the date of collection and finally the name of the collector1 in parentheses. I want to acknowledge my great appreciation for the identification of the Aphididae to Mr. D. Hille Ris Lambers and of the Coccoidea to Dr. A. Reyne. Aphididae Cerataphis variabilis Hrl. Cocos nucifera Linn.: Koor, near Sorong, 26-VII-1961 (S. Th.). Longiunguis sacchari Zehntner. Andropogon sorghum Brot.: Kota Nica2 13-V-1959 (S. Th.). Toxoptera aurantii Fonsc. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Theobroma cacao Linn.: Kota Nica, 19-VIII-1959 (S. Th.), Amban-South, near Manokwari, 1-XII- 1960 (J. Schreurs). Toxoptera citricida Kirkaldy. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Schizaphis cyperi v. d. Goot, subsp, hollandiae Hille Ris Lambers (in litt.). Polytrias amaura O. K.: Hollandia, 22-V-1958 (van Leeuwen). COCCOIDEA Aleurodidae Aleurocanthus sp. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Asterolecaniidae Asterolecanium pustulans (Cockerell). Leucaena glauca Bth.: Kota Nica, 8-X-1960 (S. Th.). 1. My name, as collector, is mentioned thus: "S.
    [Show full text]
  • Coccidology. the Study of Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ciencia y Tecnología Agropecuaria (E-Journal) Revista Corpoica – Ciencia y Tecnología Agropecuaria (2008) 9(2), 55-61 RevIEW ARTICLE Coccidology. The study of scale insects (Hemiptera: Takumasa Kondo1, Penny J. Gullan2, Douglas J. Williams3 Sternorrhyncha: Coccoidea) Coccidología. El estudio de insectos ABSTRACT escama (Hemiptera: Sternorrhyncha: A brief introduction to the science of coccidology, and a synopsis of the history, Coccoidea) advances and challenges in this field of study are discussed. The changes in coccidology since the publication of the Systema Naturae by Carolus Linnaeus 250 years ago are RESUMEN Se presenta una breve introducción a la briefly reviewed. The economic importance, the phylogenetic relationships and the ciencia de la coccidología y se discute una application of DNA barcoding to scale insect identification are also considered in the sinopsis de la historia, avances y desafíos de discussion section. este campo de estudio. Se hace una breve revisión de los cambios de la coccidología Keywords: Scale, insects, coccidae, DNA, history. desde la publicación de Systema Naturae por Carolus Linnaeus hace 250 años. También se discuten la importancia económica, las INTRODUCTION Sternorrhyncha (Gullan & Martin, 2003). relaciones filogenéticas y la aplicación de These insects are usually less than 5 mm códigos de barras del ADN en la identificación occidology is the branch of in length. Their taxonomy is based mainly de insectos escama. C entomology that deals with the study of on the microscopic cuticular features of hemipterous insects of the superfamily Palabras clave: insectos, escama, coccidae, the adult female.
    [Show full text]
  • Survey of the Insect Pests from Some Orchards in the Middle of Iraq
    1 Plant Archives Vol. 20, Supplement 2, 2020 pp. 4119-4125 e-ISSN:2581-6063 (online), ISSN:0972-5210 SURVEY OF THE INSECT PESTS FROM SOME ORCHARDS IN THE MIDDLE OF IRAQ Hanaa H. Al-Saffar and Razzaq Shalan Augul Iraq Natural History Research Center & Museum, University of Baghdad, Baghdad, Iraq. E-mails : [email protected], [email protected] Abstract This study designed at identifying insect pests that attack some trees and shrubs grown in the orchards in different regions, middle of Iraq. The investigation included date palm, citrus, pomegranate trees and grape shrubs. During the survey, 10 species were recorded on date palms (the most infested was Ommatissus lybicus de Bergevin, 1930, followed by Oryctes elegans Prell, 1914), four species on citrus (the most infested was Aonidiella orientalis (Newstead, 1894) followed by whitefly Trialeurodes vaporariorum (Westwood, 1856), one species only on pomegranate ( Aphis punicae Passerini, 1863), and one species Arboridia hussaini (Ghauri, 1963) on Grapes. Given the importance of date palm trees in Iraq, the most important insect pests present and recorded in previous studies have been summarized. Also, the synonyms of the species and their geographical distribution are provided. Keywords : Iraq, Orchards, Pests, Shrubs, Survey, Trees. Introduction pomegranates, figs and grapes randomly during the period from 1 st .March to 1 st .November.2019. There are many tools The orchards in the middle of Iraq are one of the most important by farmers due to the important crops they offer in used to collect the specimens that including: nets, aspirators, the local market, such as dates, citrus fruits, pomegranate, light traps, and also by direct method using the forceps.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Sapucaia Nuts (Lecythis Pisonis) Modulate the Hepatic Inflammatory and Antioxidant Metabolism Activity in Rats Fed High-Fat Diets
    Vol. 15(25), pp. 1375-1382, 22 June, 2016 DOI: 10.5897/AJB2016.15377 Article Number: A72D7DA59059 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Sapucaia nuts (Lecythis pisonis) modulate the hepatic inflammatory and antioxidant metabolism activity in rats fed high-fat diets Marcos Vidal Martins1*, Izabela Maria Montezano de Carvalho2, Mônica Maria Magalhães Caetano1, Renata Celi Lopes Toledo1, Antônio Avelar Xavier1 and José Humberto de Queiroz1 1Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Brazil. 2Departamento de Nutrição, Universidade Federal de Sergipe, Brazil. Received 1 April 2016, Accepted 18 May, 2016. Lecythis pisonis Cambess is commonly known as “sapucaia” nut. Previous studies show that it is rich in unsaturated fatty acids and in antioxidant minerals. The aim of the present study was to assess the antioxidant and anti-inflamatory effects of this nut after its introduction into a control (AIN-93G) or high- fat diet in Wistar rats. The animals were divided into four groups: a control diet, the same control diet supplemented with sapucaia nuts, a high-fat diet or the high-fat diet supplemented with sapucaia nuts and were fed with these diets for 14 or 28 days. The gene expression of the markers tumor necrosis factor (TNF)-α NFκB (p65) zinc superoxide dismutase (ZnSOD) and heat shock protein 72 (HSP72) was determined by the chain reaction to the quantitative reverse transcription-polymerase chain reaction (q- PCR). The antioxidant activity was also measured as thiobarbituric acid reactive substances (TBARS) through the activity of the SOD enzyme.
    [Show full text]
  • Federal Register/Vol. 77, No. 163/Wednesday
    50622 Federal Register / Vol. 77, No. 163 / Wednesday, August 22, 2012 / Rules and Regulations CROP GROUP 14–12: TREE NUT GROUP—Continued Bur oak (Quercus macrocarpa Michx.) Butternut (Juglans cinerea L.) Cajou nut (Anacardium giganteum Hance ex Engl.) Candlenut (Aleurites moluccanus (L.) Willd.) Cashew (Anacardium occidentale L.) Chestnut (Castanea crenata Siebold & Zucc.; C. dentata (Marshall) Borkh.; C. mollissima Blume; C. sativa Mill.) Chinquapin (Castaneapumila (L.) Mill.) Coconut (Cocos nucifera L.) Coquito nut (Jubaea chilensis (Molina) Baill.) Dika nut (Irvingia gabonensis (Aubry-Lecomte ex O’Rorke) Baill.) Ginkgo (Ginkgo biloba L.) Guiana chestnut (Pachira aquatica Aubl.) Hazelnut (Filbert) (Corylus americana Marshall; C. avellana L.; C. californica (A. DC.) Rose; C. chinensis Franch.) Heartnut (Juglans ailantifolia Carrie`re var. cordiformis (Makino) Rehder) Hickory nut (Carya cathayensis Sarg.; C. glabra (Mill.) Sweet; C. laciniosa (F. Michx.) W. P. C. Barton; C. myristiciformis (F. Michx.) Elliott; C. ovata (Mill.) K. Koch; C. tomentosa (Lam.) Nutt.) Japanese horse-chestnut (Aesculus turbinate Blume) Macadamia nut (Macadamia integrifolia Maiden & Betche; M. tetraphylla L.A.S. Johnson) Mongongo nut (Schinziophyton rautanenii (Schinz) Radcl.-Sm.) Monkey-pot (Lecythis pisonis Cambess.) Monkey puzzle nut (Araucaria araucana (Molina) K. Koch) Okari nut (Terminalia kaernbachii Warb.) Pachira nut (Pachira insignis (Sw.) Savigny) Peach palm nut (Bactris gasipaes Kunth var. gasipaes) Pecan (Carya illinoinensis (Wangenh.) K. Koch) Pequi (Caryocar brasiliense Cambess.; C. villosum (Aubl.) Pers; C. nuciferum L.) Pili nut (Canarium ovatum Engl.; C. vulgare Leenh.) Pine nut (Pinus edulis Engelm.; P. koraiensis Siebold & Zucc.; P. sibirica Du Tour; P. pumila (Pall.) Regel; P. gerardiana Wall. ex D. Don; P. monophylla Torr. & Fre´m.; P.
    [Show full text]
  • A Case for the Commercial Harvest of Wild Edible Fungi in Northwestern Ontario
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2020 A case for the commercial harvest of wild edible fungi in Northwestern Ontario Campbell, Osa http://knowledgecommons.lakeheadu.ca/handle/2453/4676 Downloaded from Lakehead University, KnowledgeCommons A CASE FOR THE COMMERCIAL HARVEST OF WILD EDIBLE FUNGI IN NORTHWESTERN ONTARIO by Osa Campbell FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO May 2020 i A CASE FOR THE COMMERCIAL HARVEST OF WILD EDIBLE FUNGI IN NORTHWESTERN ONTARIO by Osa Campbell An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University 2020 ------------------------------------------ ----------------------------------- Dr. Leonard Hutchison Dr. Lada Malek Major Advisor Second Reader ii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Signature: _____________________________ Date: _____________________________ iii A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific forestry. The reader should be aware that opinions and conclusions expressed in this document ae those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or of Lakehead University.
    [Show full text]