Read the Report

Total Page:16

File Type:pdf, Size:1020Kb

Read the Report MULTIPLE EVIDENCE BASE APPROACH Stockholm Resilience Centre Report November 2016 Mobilizing Traditional Knowledge, Innovations and Practices in rotational farming for sustainable development A contribution to the Piloting of the Multiple Evidence Base Approach From the community of Hin Lad Nai, Chiang Rai, Thailand. CO-PRODUCED BY: The Community of Hin Lad Nai, Thailand MULTIPLE EVIDENCE BASE APPROACH Foreword about the background to the collaborative partnership: Piloting the Multiple Evidence Base approach: Connecting across knowledge systems for enhanced ecosystem governance This report is part of the outcomes of a collaborative partner­ back with the founding plenary of the IPBES. One of the ship for piloting a Multiple Evidence Base approach1 to outcomes of the ongoing dialogue has been the envisioning co­generate knowledge and methods for mutual learning of The Multiple Evidence Base (MEB) approach that sees across knowledge systems. +The project partners are: African indigenous, local and scientific knowledge systems as different Biodiversity Network2 with Institute for Cultural Ecology manifestations of valid and useful knowledge that generates (ICE)3, Kenya and MELCA, Ethiopia4; Forest Peoples complementary evidence for sustainable use of biodiversity. Programme (FPP)5 with Fundación para la Promoción de MEB emphasizes the importance of equitable and transparent Conocimiento Indígena (FPCI); Pgakenyaw Association processes for mobilizing knowledge and connecting across for Sustainable Development (PASD)6, Thailand; Tebtebba knowledge systems, and of maintaining the integrity of each Foundation, Philippines7; and SwedBio8 at Stockholm knowledge system throughout the process. This means that Resilience Centre, Sweden9. evaluations of knowledge occur within, rather than across, The collaborative partnership emerged from an ongoing the contributing knowledge systems when mobilizing and dialogue across knowledge systems, involving SwedBio and synthesizing knowledge, for example, in an ecosystem partners among indigenous peoples and local community assessment process. organisations (e.g. International Indigenous Forum on One of the objectives of the piloting of MEB has been to Bio diversity10, IIFB) and networks of experts from different develop methods, procedures and good examples for how knowledge systems. All participants are committed to valuing evidence can be mobilized for multiple needs, at local to global diversity and are engaged in biodiversity management and its levels, and across knowledge systems. For example, knowledge links to policy processes from local to global, such as in the that is relevant for feeding into local and national policymaking, Conventions on Biological Diversity (CBD) and the Inter­ as well as in processes such as assessments for the CBD and governmental Panel for Biodiversity and Ecosystem Services the IPBES, and other fora where working with synergies across (IPBES). The starting point was the window of opportunity knowledge systems are essential. Additional objectives have emerging from the possible inclusion of indigenous and local included: contributing to changing the views that governments knowledge in IPBES, during the years before IPBES was hold about indigenous governance and management systems, established. See for example the Guna Yala Dialogue from towards respect and benefit for indigenous peoples and local 2012 at www.dialogueseminars.net/Panama, held back to communities; strengthening livelihoods and well­being within the communities, based on their indigenous governance systems, and finally, promoting joint learning around this across the 1 http://swed.bio/focal-areas/themes/biocultural-diversity/a-multiple- participating communities and other partners. evidence-base-approach-for-equity-across-knowledge-systems/ 2 http://africanbiodiversity.org/ The community research that is part of the piloting has 3 http://www.icekenya.org/ been initiated and conducted by the communities themselves, 4 http://www.melcaethiopia.org/ 5 http://www.forestpeoples.org/ based on their own needs and priorities. Biodiversity, food and 6 http://www.pasdthailand.org/ culture were the unifying topics. Most of them have earlier 7 http://www.tebtebba.org/ 8 http://swed.bio/ experiences of mobilizing knowledge e.g. to recover lost seeds 9 http://www.stockholmresilience.org or to protect and revitalize sacred natural sites and rituals 10 The International Indigenous Forum on Biodiversity is the Caucus for connected to them. Past experiences encourage communities Indigenous peoples and local communities and their organisations actively engaging in the CBD. See: http://iifb.indigenousportal.com/ to continue such work. Some communities are mobilizing Documentation by: Prasert Trakansuphakon and research Team in the Hin Lad Nai community. Cover photo: Pernilla Malmer 2 MULTIPLE EVIDENCE BASE APPROACH Photo credit: Pernilla Malmer knowledge as part of efforts to demonstrate the sustainability for interactions with other knowledge systems, including of their traditional management and governance systems, as a authorities. Another insight is the relevance for co­production way of creating an evidence base for policies and decisions at of knowledge across knowledge systems to connect with scales beyond the local, that protects rather that counteracts interests and needs of all actors involved, including at the local their rights and capacities to manage their ecosystems and level. For all the communities, mobilisation of knowledge was resources. part of securing territory, authority and rights to govern their A number of insights have emerged across the five piloting ecosystems in a sustainable way. In several communities, the projects. One is the importance and role of mobilizing outcomes were well received by local and regional authorities knowledge before engaging with other knowledge systems. and collaboration has improved. The communities engaged in methods and approaches to mobilizing knowledge that were well suited to the local The project was financed by support from the Swedish context and engaged with multiple facets of knowledge, Development Cooperation Agency (Sida) through SwedBio at including cultural and spiritual dimensions. How knowledge Stockholm Resilience Centre. was mobilized was an important part of building confidence 3 MULTIPLE EVIDENCE BASE APPROACH Content Foreword about the background to the collaborative partnership: Piloting the Multiple Evidence Base approach: Connecting across knowledge systems for enhanced ecosystem governance ........................ 2 1 Introduction to the Hin Lad Nai Community and the project. ............................................................ 6 1.2. Successful collective action for regeneration of the Hin Lad Nai forest ............................................. 7 2 A case story on Rotation Farmers’ innovations to improve soil quality in fallow land through reviving the use of P’dav trees in Hin Lad Nai. ................................................................................ 9 2.1 What is P’dav? ................................................................................................................... 9 2.2 Comparison between farming a P’dav field and a normal fallow field .............................................10 2.3 Benefits of the use of P’dav trees ...........................................................................................11 2.4 Analysis of the P’Dav trees potential for soil and forest recovery, and for biodiversity .........................11 3 The cycle of the fallows in the rotational farming system in Hin Lad Nai ............................................12 3.1 Grasses and trees in the 1st and 2nd periods of the fallow .............................................................12 3.1.1. Community food areas and herbal medicine areas ...........................................................12 3.1.2. Foraging areas for domestic and wild animals .................................................................12 3.2 The 3rd year fallow, named by Karen communities “Hsgif loovhtauf” .............................................13 3.2.1. The 4th year, called “doo yauv ploj” ................................................................................13 3.2.2. Food and herbal medicines in the 3rd and 4th year fallow. .13 3.2.3. Wild animals in the 3rd and 4th year fallow ......................................................................13 3.3 The 5th and 6th fallow periods – “doo lax” .................................................................................13 3.4 The 7th fallow and beyond ....................................................................................................14 3.5 Summary of the benefits of fallow land ..................................................................................14 4 A study of the Hin Lad Nai fallows and its benefits for people and biodiversity ....................................15 4.1. Background and objective of the study ...................................................................................15 4.2 Research Methodology ........................................................................................................15 4.2.1. Preparation: Select theme or topic, select research team, orientation of the project, training for researchers on methodology, etc. ..................................................................15 4.2.2. Review the literature related to the topic, design the matrix forms and questionnaire
Recommended publications
  • PUBLISHER S Candolle Herbarium
    Guide ERBARIUM H Candolle Herbarium Pamela Burns-Balogh ANDOLLE C Jardin Botanique, Geneva AIDC PUBLISHERP U R L 1 5H E R S S BRILLB RI LL Candolle Herbarium Jardin Botanique, Geneva Pamela Burns-Balogh Guide to the microform collection IDC number 800/2 M IDC1993 Compiler's Note The microfiche address, e.g. 120/13, refers to the fiche number and secondly to the individual photograph on each fiche arranged from left to right and from the top to the bottom row. Pamela Burns-Balogh Publisher's Note The microfiche publication of the Candolle Herbarium serves a dual purpose: the unique original plants are preserved for the future, and copies can be made available easily and cheaply for distribution to scholars and scientific institutes all over the world. The complete collection is available on 2842 microfiche (positive silver halide). The order number is 800/2. For prices of the complete collection or individual parts, please write to IDC Microform Publishers, P.O. Box 11205, 2301 EE Leiden, The Netherlands. THE DECANDOLLEPRODROMI HERBARIUM ALPHABETICAL INDEX Taxon Fiche Taxon Fiche Number Number -A- Acacia floribunda 421/2-3 Acacia glauca 424/14-15 Abatia sp. 213/18 Acacia guadalupensis 423/23 Abelia triflora 679/4 Acacia guianensis 422/5 Ablania guianensis 218/5 Acacia guilandinae 424/4 Abronia arenaria 2215/6-7 Acacia gummifera 421/15 Abroniamellifera 2215/5 Acacia haematomma 421/23 Abronia umbellata 221.5/3-4 Acacia haematoxylon 423/11 Abrotanella emarginata 1035/2 Acaciahastulata 418/5 Abrus precatorius 403/14 Acacia hebeclada 423/2-3 Acacia abietina 420/16 Acacia heterophylla 419/17-19 Acacia acanthocarpa 423/16-17 Acaciahispidissima 421/22 Acacia alata 418/3 Acacia hispidula 419/2 Acacia albida 422/17 Acacia horrida 422/18-20 Acacia amara 425/11 Acacia in....? 423/24 Acacia amoena 419/20 Acacia intertexta 421/9 Acacia anceps 419/5 Acacia julibross.
    [Show full text]
  • The Use of Barcoding Sequences for the Construction of Phylogenetic Relationships in the Euphorbiaceae
    University of Padova Department of Land, Environment Agriculture and Forestry MSc in Mediterranean Forestry and Natural Resources Management The use of barcoding sequences for the construction of phylogenetic relationships in the Euphorbiaceae Supervisor: Alessandro Vannozzi Co-supervisor: Prof. Dr. Oliver Gailing Submitted by: Bikash Kharel Matriculation No. 1177536 ACADEMIC YEAR 2017/2018 Acknowledgments This dissertation has come to this positive end through the collective efforts of several people and organizations: from rural peasants to highly academic personnel and institutions around the world. Without their mental, physical and financial support this research would not have been possible. I would like to express my gratitude to all of them who were involved directly or indirectly in this endeavor. To all of them, I express my deep appreciation. Firstly, I am thankful to Prof. Dr. Oliver Gailing for providing me the opportunity to conduct my thesis on this topic. I greatly appreciate my supervisor Alessandro Vannozzi for providing the vision regarding Forest Genetics and DNA barcoding. My cordial thanks and heartfelt gratitude goes to him whose encouragements, suggestions and comments made this research possible to shape in this form. I am also thankful to Prof. Dr. Konstantin V. Krutovsky for his guidance in each and every step of this research especially helping me with the CodonCode software and reviewing the thesis. I also want to thank Erasmus Mundus Programme for providing me with a scholarship for pursuing Master’s degree in Mediterranean Forestry and Natural Resources Management (MEDFOR) course. Besides this, I would like to thank all my professors who broadened my knowledge during the period of my study in University of Lisbon and University of Padova.
    [Show full text]
  • Ecology and Ex Situ Conservation of Vanilla Siamensis (Rolfe Ex Downie) in Thailand
    Kent Academic Repository Full text document (pdf) Citation for published version Chaipanich, Vinan Vince (2020) Ecology and Ex Situ Conservation of Vanilla siamensis (Rolfe ex Downie) in Thailand. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/85312/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Ecology and Ex Situ Conservation of Vanilla siamensis (Rolfe ex Downie) in Thailand By Vinan Vince Chaipanich November 2020 A thesis submitted to the University of Kent in the School of Anthropology and Conservation, Faculty of Social Sciences for the degree of Doctor of Philosophy Abstract A loss of habitat and climate change raises concerns about change in biodiversity, in particular the sensitive species such as narrowly endemic species. Vanilla siamensis is one such endemic species.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Threatenedtaxa.Org Journal Ofthreatened 26 June 2020 (Online & Print) Vol
    10.11609/jot.2020.12.9.15967-16194 www.threatenedtaxa.org Journal ofThreatened 26 June 2020 (Online & Print) Vol. 12 | No. 9 | Pages: 15967–16194 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) JoTT PLATINUM OPEN ACCESS TaxaBuilding evidence for conservaton globally ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Informaton Liaison Development Society Zoo Outreach Organizaton www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampat - Kalapat Road, Saravanampat, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Informaton Liaison Development (WILD) Society & Zoo Outreach Organizaton (ZOO), 12 Thiruvannamalai Nagar, Saravanampat, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetng Dr. Neelesh Dahanukar Indian Insttute of Science Educaton and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communicatons Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms. Sally Walker Dr. B.
    [Show full text]
  • Systematic Conservation Planning in Thailand
    SYSTEMATIC CONSERVATION PLANNING IN THAILAND DARAPORN CHAIRAT Thesis submitted in total fulfilment for the degree of Doctor of Philosophy BOURNEMOUTH UNIVERSITY 2015 This copy of the thesis has been supplied on condition that, anyone who consults it, is understood to recognize that its copyright rests with its author. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i ii Systematic Conservation Planning in Thailand Daraporn Chairat Abstract Thailand supports a variety of tropical ecosystems and biodiversity. The country has approximately 12,050 species of plants, which account for 8% of estimated plant species found globally. However, the forest cover of Thailand is under threats: habitat degradation, illegal logging, shifting cultivation and human settlement are the main causes of the reduction in forest area. As a result, rates of biodiversity loss have been high for some decades. The most effective tool to conserve biodiversity is the designation of protected areas (PA). The effective and most scientifically robust approach for designing networks of reserve systems is systematic conservation planning, which is designed to identify conservation priorities on the basis of analysing spatial patterns in species distributions and associated threats. The designation of PAs of Thailand were initially based on expert consultations selecting the areas that are suitable for conserving forest resources, not systematically selected. Consequently, the PA management was based on individual management plans for each PA. The previous work has also identified that no previous attempt has been made to apply the principles and methods of systematic conservation planning. Additionally, tree species have been neglected in previous analyses of the coverage of PAs in Thailand.
    [Show full text]
  • Comparative Study on Structural Composition and Community Association of Nambor Wildlife Sanctuary and Its South- Westward Extended Bornewria Forest, Assam, India
    ISSN (Online): 2349 -1183; ISSN (Print): 2349 -9265 TROPICAL PLANT RESEARCH 5(2): 233–242, 2018 The Journal of the Society for Tropical Plant Research DOI: 10.22271/tpr.2018.v5.i2.030 Research article Comparative study on structural composition and community association of Nambor Wildlife Sanctuary and its South- Westward extended Bornewria forest, Assam, India Kuntala N. Barua*, Girish Gogoi and Protul Hazarika Ecology and Biodiversity Division, Rain Forest Research Institute, Post Box No. 136, Sotai, Jorhat-785001, Assam, India *Corresponding Author: [email protected] [Accepted: 27 August 2018] Abstract: Knowledge of species composition and diversity are of utmost importance, not only to understand the structure of a forest community but also for planning and implementation of conservation strategy of the community. An extensive field study was undertaken to ascertain the structural composition, species diversity and community association of two forest sites i.e. Nambor Wildlife Sanctuary (NWLS) and its South-Westward extended Bornewria forest of Assam, India. The forests represent Tropical moist semi-evergreen and moist mixed deciduous type. The entire area was embraced with a fragmented block of Gondowana formation. A total of 261 plant species were observed from the two forests sites in floristic assessment. Out of which 247 species were recorded from NWLS and in Bornewria forest 136 were enumerated. The overexploitation and shifting cultivation adversely affected the total forested area and species composition of Bornewria forest. Phytosociological studies showed that Vatica lanceaefolia (15.47) followed by Magnolia hodgsonii (10.97), Castanopsis hystrix (10.02) and Mesua ferrea (9.56) were dominated in NWLS. However, in case of Bornewria forest, Hydnocarpus kurzii expressed its dominance with highest IVI values (15.98), followed by Dysoxylum excelsum (13.52), Mesua ferrea (12.37) and Stereospermum tetragonum (11.87).
    [Show full text]
  • An Examination of Medicinal Ethnobotany and Biomedicine Use in Two Villages on the Phnom Kulen Plateau Taylor Walker Hollins University, [email protected]
    Hollins University Hollins Digital Commons Undergraduate Research Awards Student Scholarship and Creative Works 4-26-2017 An examination of medicinal ethnobotany and biomedicine use in two villages on the Phnom Kulen plateau Taylor Walker Hollins University, [email protected] Follow this and additional works at: https://digitalcommons.hollins.edu/researchawards Part of the Medicine and Health Sciences Commons Recommended Citation Walker, Taylor, "An examination of medicinal ethnobotany and biomedicine use in two villages on the Phnom Kulen plateau" (2017). Undergraduate Research Awards. 36. https://digitalcommons.hollins.edu/researchawards/36 This Article is brought to you for free and open access by the Student Scholarship and Creative Works at Hollins Digital Commons. It has been accepted for inclusion in Undergraduate Research Awards by an authorized administrator of Hollins Digital Commons. For more information, please contact [email protected], [email protected]. An examination of medicinal ethnobotany and biomedicine use in two villages on the Phnom Kulen plateau Taylor J. Walker Hollins University Roanoke, VA, United States Center for Mekong Studies, The School for Field Studies Siem Reap, Cambodia Research Advisor: Lisa Arensen, Ph.D. 5 May 2016 Contents Figures...................................................................................................................................... iii Tables ......................................................................................................................................
    [Show full text]
  • A Contribution to the Ethnomedicinal Plants of Gautam Buddha Wildlife Sanctuary, Bihar & Jharkhand
    Int. J. Adv. Res. Biol. Sci. (2020). 7(11): 108-115 International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com DOI: 10.22192/ijarbs Coden: IJARQG (USA) Volume 7, Issue 11 -2020 Research Article DOI: http://dx.doi.org/10.22192/ijarbs.2020.07.11.014 A contribution to the Ethnomedicinal plants of Gautam Buddha Wildlife Sanctuary, Bihar & Jharkhand Anand Kumar Central National Herbarium, Botanical Survey of India, P.O. Botanic Garden, Howrah – 711 103, West Bengal, India. Email: [email protected] Abstract Gautam Buddha Wildlife Sanctuary (GBWLS) is situated in Gaya district of Bihar and Hazaribagh & Chatra districts of Jharkhand. Field tours were conducted from 2012 to 2015 to document raw information on ethnomedicinal plants of GBWLS. In the present study, 48 species with 35 remedies were recorded with the help of key informants in the study area. The most dominant families were Asteraceae and Leguminosae, followed by Asclepiadaceae, Combretaceae, Acanthaceae, Amaranthaceae, Apocynaceae, Euphorbiaceae, Pteridaceae, Scrophulariaceae and Sterculiaceae. The leaves were the most frequently used plant part. Herbs were major sources of remedy followed by tree, climbers and shrubs. Decoction were the most dominantly used as mode of remedy preparation, followed by crushed/paste, juice/extract, raw, both crushed/paste form & juice/extract, decoction & crushed/paste form, juice/extract & decoction and raw & decoction. Keywords: GBWLS, ethnomedicinal plants, herbs, remedy preparation Introduction concerned with gathering information on plants and their use (Rao & Henry, 1997). Many living groups of People uses wild plants in many types of different way people, having diversified ethnic history of rituals and to meet his basic needs such as food, shelter and performance, who are more of less isolated form clothing, this is the basic need of human.
    [Show full text]
  • Euphorbiaceae
    EUPHORBIACEAE 大戟科 da ji ke Li Bingtao (李秉滔 Li Ping-tao)1, Qiu Huaxing (丘华兴 Chiu Hua-hsing, Kiu Hua-shing, Kiu Hua-xing)2, Ma Jinshuang (马金双)3, Zhu Hua (朱华)4; Michael G. Gilbert5, Hans-Joachim Esser6, Stefan Dressler7, Petra Hoffmann8, Lynn J. Gillespie9, Maria Vorontsova10, Gordon D. McPherson11 Trees, shrubs, or herbs, rarely woody or herbaceous lianas, monoecious or dioecious, indumentum of simple, branched, stellate, or gland-tipped hairs, peltate or glandular scales or stinging hairs, latex often present, clear, white, or colored; roots woody, rarely roots tuberous and stems succulent, sometimes spiny. Leaves alternate or opposite, rarely whorled; stipules usually present, often free, sometimes modified into spines or glands, deciduous or persistent; petioles long to short, sometimes with glands at apex or base; leaf blade simple, sometimes palmately lobed, rarely compound, or reduced to scales, margins entire or toothed, sometimes with distinct glands along margin and/or on surface, venation pinnate or palmate. Inflorescences axillary or terminal, flowers in cymes or fascicles, these often arranged along an elongated axis, branched or unbranched, forming a thyrse, in congested heads, or in a flowerlike cyathium with very reduced flowers enclosed within a ± cupular involucre; bracts sometimes petaloid. Flowers unisexual, within same inflorescence or in separate inflorescences, actinomorphic. Sepals (1–)3–6(–8), free or connate into calyx tube, valvate or imbricate, rarely absent (Euphorbia). Petals free, often reduced or absent. Disk present or absent. Male flowers with disk intrastaminal or extrastaminal, entire to dissected. Stamens one to very many, hypogynous; filaments free or connate; anthers 2(–4)-locular, mostly dehiscing longitudinally, rarely transversely or by pores, introrse or extrorse; rudimentary ovary sometimes present.
    [Show full text]
  • Phytogeographical Affinities of Tree Species of Similipal Biosphere Reserve, Odisha, India Manas R. MOHANTA, Anil K. BISWAL, Su
    Available online: www.notulaebiologicae.ro Print ISSN 2067-3205; Electronic 2067-3264 AcademicPres Not Sci Biol, 2018, 10(3):354-362. DOI: 10.15835/nsb10310216 Notulae Scientia Biologicae Original Article Phytogeographical Affinities of Tree Species of Similipal Biosphere Reserve, Odisha, India Manas R. MOHANTA, Anil K. BISWAL, Sudam C. SAHU* North Orissa University, Department of Botany, Baripada 757003 , India ; [email protected] (*corresponding author) Abstract The phytogeography of Similipal Biosphere Reserve (SBR), Odisha, India, reveals very interesting information on distribution of tree species. Phytogeographical affinities of tree species of SBR has been analysed by obtaining the information about the species distribution at local and global scale. A total of 240 tree species were recorded and their phytogeographical affinities were compiled with different countries of the globe. An analysis of the affinities revealed that SBR has strong affinity with Sri-Lanka (46.66%) and Myanmar (45.83%) followed by China, Malaysia, Thailand, Australia and Africa. SBR has also affinity with Himalayan vegetation possessing several trees and orchids find distribution in both the areas. The phytogeographical affinity of SBR supports the migration, establishment and naturalization of flora from/to SBR. This hypothesis needs further study for biogeographical mapping of Indian sub-continent. Keywords: Biogeographical mapping; conservation of species; distribution of trees; ecological implications; Indian sub- continent Abbreviations: SBR - Similipal Biosphere Reserve Introduction parts of the world. The fl oristic elements of India share the predominant affinities with the Indo -Malayan elements. It In recent time, remarkable changes have been observed has also affinities with Afro-Tropical and Tropical- Asian in the environment due to both man-made and natural elements (Daniel and Nair, 1986).
    [Show full text]
  • Tree Types of the World Map
    Abarema abbottii-Abarema acreana-Abarema adenophora-Abarema alexandri-Abarema asplenifolia-Abarema auriculata-Abarema barbouriana-Abarema barnebyana-Abarema brachystachya-Abarema callejasii-Abarema campestris-Abarema centiflora-Abarema cochleata-Abarema cochliocarpos-Abarema commutata-Abarema curvicarpa-Abarema ferruginea-Abarema filamentosa-Abarema floribunda-Abarema gallorum-Abarema ganymedea-Abarema glauca-Abarema idiopoda-Abarema josephi-Abarema jupunba-Abarema killipii-Abarema laeta-Abarema langsdorffii-Abarema lehmannii-Abarema leucophylla-Abarema levelii-Abarema limae-Abarema longipedunculata-Abarema macradenia-Abarema maestrensis-Abarema mataybifolia-Abarema microcalyx-Abarema nipensis-Abarema obovalis-Abarema obovata-Abarema oppositifolia-Abarema oxyphyllidia-Abarema piresii-Abarema racemiflora-Abarema turbinata-Abarema villifera-Abarema villosa-Abarema zolleriana-Abatia mexicana-Abatia parviflora-Abatia rugosa-Abatia spicata-Abelia corymbosa-Abeliophyllum distichum-Abies alba-Abies amabilis-Abies balsamea-Abies beshanzuensis-Abies bracteata-Abies cephalonica-Abies chensiensis-Abies cilicica-Abies concolor-Abies delavayi-Abies densa-Abies durangensis-Abies fabri-Abies fanjingshanensis-Abies fargesii-Abies firma-Abies forrestii-Abies fraseri-Abies grandis-Abies guatemalensis-Abies hickelii-Abies hidalgensis-Abies holophylla-Abies homolepis-Abies jaliscana-Abies kawakamii-Abies koreana-Abies lasiocarpa-Abies magnifica-Abies mariesii-Abies nebrodensis-Abies nephrolepis-Abies nordmanniana-Abies numidica-Abies pindrow-Abies pinsapo-Abies
    [Show full text]