<<

, -- .V

NBS CIRCULAR

Thermal Conductivity of Metals and Alloys at Low Temperatures

A Review of the Literature

UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS PERIODICALS OF THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is engaged in fundamental and applied research in physics, chemistry, mathematics, and engineering. Projects are conducted in thirteen fields: electricity, optics and metrology, heat and power, atomic and radiation physics, chemistry, mechanics, organic and fibrous materials, metallurgy, mineral products, building technology, applied mathematics, electronics,'and radio propagation. The Bureau has custody of the national standards of measure¬ ment and conducts research leading to the improvement of scientific and engineering standards and of techniques and methods of measurement. Testing methods and instruments are developed; phys¬ ical constants and properties of materials are determined; and technical processes are investigated.

JOURNAL OF RESEARCH

The Journal presents research papers by authorities in the specialized fields of physics, mathe¬ matics, chemistry, and engineering. Complete details of the work are presented, including labora¬ tory data, experimental procedures, and theoretical and mathematical analysis. Annual subscrip¬ tion: domestic, $5.50; foreign, $6.75.

TECHNICAL NEWS BULLETIN

Summaries of current research at the National Bureau of Standards are published each month in the Technical News Bulletin. The articles are brief, with emphasis on the results of research, chosen on the basis of their scientific or technologic importance. Lists of all Bureau publications during the preceding month are given, including Research Papers, Handbooks, Applied Mathematics Series, Applied Mathematics Series, Building Materials and Structures Reports, Miscellaneous Publica¬ tions, and Circulars. Each issue contains 12 or more two-column pages; illustrated. Annual sub¬ scription: domestic, $1.00; foreign, $1.35.

BASIC RADIO PROPAGATION PREDICTIONS

The Predictions provide the information necessary for calculating the best frequencies for commu¬ nication between any two points in the world at any time during the given month. The data are important to all users of long-range radio communications and navigation, including broadcasting, airline, steamship, and wireless services, as well as to investigators of radio propagration and iono¬ sphere. Each issue, covering a period of one month, is released three months in advance and con¬ tains 16 large pages, including pertinent charts, drawings, and tables. Annual subscription: domes¬ tic, $1.00; foreign, $1.25.

Order all publications from the Superintendent of Documents U. S. Government Printing Office, Washington 25, D. C. UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secre^ari/ NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

Thermal Oanductivity of Metals and Alloys at Low Temperatures

A Review of the Literature

Robert L. Powell and William A. Blanpied

National Bureau of Standards Circular 556

Issued September 1, 1954

For aale by the Superintendent of Documenta, U. S. Government Printing Office, Washington 25. D. C.

Price 50 cents

Preface

Accurate data on the thermal conductivity of materials of construction at low temperatures are essential in the design of cyrogenic equipment. Such data on pure metals also have important applications in basic physics. This Circular is issued to satisfy the need for a complete and authori¬ tative compilation of the useful data on thermal conductivity at low tem¬ peratures given in the widely scattered and extensive literature on the subject. Although the Circular is not primarily a critical compilation, the text indicates a method that might be used in choosing between conflict¬ ing data.

It will be noted that there are wide unexplored regions; much experi¬ mental work remains to be done. It is hoped, therefore, that this Circular will stimulate additional measurements and indicate the areas in which data are most needed. A. V. Astin, Director. Contents

Preface ...... m 1. Introduction ...... 1 1.1. Scope and arrangement...... 1 2. Figures and tables...... 2 2.1. List ...... 2 2.2. Metallic elements ...... 3 2.3. Alloys and commercial metals...... 38 2.4. Dielectric crystals ...... 56 3. Bibliography ...... 64

IV Thermal Conductivity of Metals and Alloys at Low Temperatures

A Review of the Literature^

Robert L. Powell and William A. Blanpied*

An extensive compilation is given of the measured values of thermal conduc¬ tivity for metals and alloys from room temperature down to approximately 0° K. The more extensive and important data are plotted in 48 graphs. The tables and graphs for the metallic elements and alloys are essentially complete for literature reference from 1900 to early 1954. For comparison, several graphs and tables are given for some representative dielectrics.

1. Introduction

1.1. Scope and Arrangement

The thermal conductivity values of three per centimeter degree Kelvin (except for a types of solids are presented: (1) metallic ele¬ few, which are in milliwatts per centimeter ments, (2) alloys, and (3) dielectrics. Very degree Kelvin). A table of conversion factors little discussion is presented on the qualitative is given. Arrows on the bottom of the graphs theories or significance of the various experi¬ indicate the normal boiling points of helium, ments. Recent articles, as indicated under each hydrogen, and nitrogen, and the melting point material, usually will contain comments on of ice, respectively. A bibliography (nearly all these aspects of conductivity. Under “metallic dated after 1900) is included at the end of the elements,” the materials are arranged by peri¬ Circular. It is shown in the tables when other odic groups, beginning with the alkali metals. properties of the samples have been measured, Under “alloys,” the materials are arranged in such as electrical resistance, thermal electro¬ this same manner by major component. In motive force, and specific heat, which are sym¬ group 3, several dielectrics are included for bolized by R, emf, and Cp, respectively. comparison. A list of the figures and tables is The units in the tables and graphs are usually given in section 2.1. watts per centimeter degree Kelvin. These The professional abstract and leading re¬ may be converted to other systems of units by search journals were searched for references use of the following factors: dating from 1900 to the spring of 1954. It is felt that the compilation is complete for the metals and essentially complete for the alloys, but only ' To convert to— Multiply by— a few representative references are given for the dielectrics. Conductivity values were col¬ Cal/cm deg K 0.239 lected for the temperature range approximately Btu/ft hr deg F 57.8 0° to 300° K. Many of the references contain Btu in/ft- hr deg F 693 information for room temperature only, and conductivity values from these are given in the tables only. The letters at the left end of the curves are The preparation of this Circular required the a code to the names of the authors. The sym¬ assistance and cooperation of many. Foremost bols at the right end of the curves indicate the among them was Charles A. Meizner, who material tested. Conductivity values in the plotted most of the graphs and analyzed some graphs and tables are given in units of watts of the original research papers. The coopera¬ tion of the many authors and manufacturers Energy who supplied reprints of their articles and man¬ Present address; Yale University, New Haven, Conn. uals for use in this study is acknowledged.

1 2. Figures and Tables

2.1. List ALLOYS METALLIC ELEMENTS Figures Tables Material (page) Figures Tables Number Page Material Number Page (page) Alkali metal_ 38 Aluminum 22 Aluminum 3, 3a 8, 9 8 40 39, 40, 41 Antimony 20 36 36 Antimony 29 54 55 Beryllium 2 6 6 Beryllium_ 38 Bismuth 20 36 36, 37 Bismuth 29, 29a 54, 55 55 Cadmium 15, 14a 27, 26 26 Cadmium 29 54 53 Carbon (graphite) 17 30 30 Chromium 42 Cerium 21 37 37 Copper 27, 29a 49, 55 48, 49, Cobalt 8, 9 16, 17 17 50, 51 Copper 11, 11a 20, 21 20, 21 Copper-nickel 28, 29a 51, 55 51, 52 Gallium 16 29 29 Gold 26 47 52, 53 Germanium 18, 19a 31, 35 31 Indium 29, 29a 54, 55 53 Gold 13, 12a 24, 23 24 : Indium 16 29 29 Carbon steel 23, 24 43, 44 42 Iridium 10, 10a 18, 19 19 Deoxidized steels__ 24 44 45 Iron 8, 9 16, 17 16 steels_ 43 Lanthanum 9 Corrosion resisting Lead 19, 19a 34, 35 34 steels 23, 24 43, 44 43, 44, Lithium 1 6 5 45 Lead 29, 29a 54, 55 54 2, 2a 6, 7 6,7 Magnesium 2a 7 14 15 7 38, 39 Mercury Mercury 15,15a 27, 28 27 __ __ 53 Nickel 25 46 Molybdenum 6, 6a 12, 13 12 45, 46 Palladium 26 47 47 Nickel 8, 9 16, 17 17 Pla.t.inum 26 47 47, 48 Niobium 5 11 11 Silver 26 47 52 Paladium 10, 10a 18, 19 18 Thallium 29, 29a 54, 55 53 Platinum 10, 10a 18,19 19 Tin 18a, b 32, 33 53 Pota.ssium 1 5 5 29 54 41 Rhodium 10,10a 18, 19 18 Tungsten_ 41 Silicon 30 -- — 53 Silver 12,12a 22, 23 22 Sodium 1 5 5 Tantalum 5 11 11 DIELECTRICS Tellurium 21 37 37 Thallium 16 29 29 Bervllia, 32 60 60 Tin 18, 18a, 18b 31, 32, 33 32 Diamond 30, 30a 57, 58 57 Titanium 4 10 10 Disordered di¬ Tungsten 6, 6a 12, 13 12, 13 electrics 33,33a 62, 63 62 Uranium 21 37 37 Ionic crystals 32, 32a 60, 61 60 5 11 11 Miscellaneous_ 56 Zinc 14,14a 25, 26 25 Quartz 31, 30a 59, 58 59 Zirconium 4 10 10 Sapphire 30, 30a, 32 57, 58, 60 57

2 2.2. Metallic Elements

The variations of the thermal conductivities by the lattice vibrations. However, the relative of metallic elements with temperature are given contribution of this latter mechanism is insig¬ in figures 1 to 21. The main figures (those nificant except for alloys, impure metals, and without a or b) have the higher temperature the semimetals like bismuth. The transfer of curves; usually the temperature range 4° to energy by electrons is impeded by several scat¬ 300° K. When there is sufficient data in the tering mechanisms. At temperatures above liquid-helium range, there is a supplementary about 20° K the main scattering agent is the graph for the range from approximately 0° to metallic lattice itself. Below that temperature 5° or 10° K. The graphs are arranged by peri¬ the scattering due to impurity centers and lat¬ odic groups, beginning with the alkali metals. tice defects becomes increasingly more impor¬ A summary table is included for each graph, tant. In the temperature range from several giving for each element a list of references to degrees to about 40° K, the conductivity of a research papers on the thermal conductivity of pure metal may be expressed closely by the the element. The first column contains the equation chemical symbol and the property or composi¬ 1/k = aT2 + ^T-1. tion identification on the curves if the data for The term «T2 is characteristic of the lattice of the author reference are plotted on the graph. the metal being investigated; the term /3T—i Not all the available data are plotted on represents the scattering due to impurities. The graphs. If measurements were made at only latter term is related to the residual electrical 1 or 2 temperatures, representative conductivity resistance. Experimental values for a and (3 values are usually given in the “Remarks” col¬ are given in the tables when the authors in¬ umn in the corresponding table. When several clude these values in their research reports. authors report values that are nearly identical, Several physical and chemical properties of the report that was published first is usually the sample affect the conductivity directly. As represented on the graph. There are exceptions the purity of the material is increased, the con¬ to this when the results of a later author are ductivity maximum rises and is shifted toward more accurate or more extensive. In most lower temperatures. The thermal resistance graphs, where there are more than one curve for caused by impurities is not additive—small a given element, the graph showing the highest changes in purity can cause very large changes conductivity is considered most likely to be rep¬ in the conductivity near the maximum. At resentative of that of the pure material. The higher temperatures, however, the effect is not higher values are associated with the more pure as important. Cold-working and hardening re¬ material, adequate annealing, and large crystal duce the conductivity and for that reason, other size. things being equal, the annealed samples will In the commonly accepted theory for the have a higher conductivity. For some single conductivity of metals, there are two mechan¬ crystals the conductivity depends upon the isms for the conduction of heat. In pure metals direction of heat flow. For several metals that nearly all of the energy transfer is by electrons. are anisotropic, curves are given for various In dielectrics, there is also a transport of energy crystal orientations.

3

LirmuM SODIUM

Curve Sample source Remarks Reference Curve Sample source Remarks Reference and analysis and analysis

Me. Ka!ilbaum;“very Cold-worked: handled in CO2 at¬ W. Meissner Eimer and Am- J. W. Hornbeck pure”. mosphere; R. (1920). end; “very under vacuum; obtained Ar=”l.34 (1913). pure" free of at 5.7°C, 1.33 at 21.0'’C: R. Bi.. Extruded and mounted in glass C. C. Bidwell Fe, Ca, Mg, tubes: cycled thermally; R. (1926b, 1925, AI, and K by 1926a). chemical an¬ alysis.

POTASSIUM Bi. C. C. BidweU tubes; cycled thermally; R. (1926b, 1925, 1926a). Ho. Eimer and Am- Melted in vacuum; cast in glass J. W. Hornbeck end; “very under vacuum; R. (1913). B.McD. 2. British Thom- Melted, cast in vacuum; cast into R. Berman and pure”, free of son-Houston; soft glass; R. D. K. C. Mac¬ Fe, Ca, Mg, 0.01 to 0.1% Donald (1951). Al, trace of Ca and Al. Na, by chemi¬ cal analysis. B.McD. 2 Philips; trace of Melted, cast in vacuum; cast into R. Berman and Ag. soft glass; R. D. K. C. Mac¬ Donald (1951).

5 MAGNESIUM

Curve Sample source Remarks Reference Curve Sample source Remarks Reference and analysis and analysis

Le. Beryllium Co. Physical imperfections noted; R, “Pare”. *=1.57atO°C: R. L. Lorenz Am.; comm, Cp, and emf. (1929). (1881a). pure; traces of Al. Mn, Cr, _do. *=1.72 at 0°C. 2.0 at 80°K; R.... J. Staebler Fe, Si, and (1929). Mg: total im¬ purity H%- .do. * = 1.72 at 0°C, 1.87 at 80°K; R.. . W. Mannchen (1931). G. Ad. Degussa Co.; Residual resistance 1% of R273; E. Gruneisen and “high purity”. single crystal with heat flow H. Adenstedt .do. * = 1.60at 18°C; R. R. Kikuehi parallel to hexagonal axis; (1938). (1932). studied effect of magnetic field on R and k. M. R. Johnson, Mat- Equation q> = 10.6 X10"®, = 1.25. K. Mendelssohn they; 99.95% and H. M. G. Er. Same; except rod axis perpendicu¬ pure. Rraenberg. lar to hexagonal axis; binary lat¬ H.-D, Erfling (1952a). eral axis inclined to rod axis by (1940). 2®, 12® and 30®; showed anisot¬ do. Equation a=8.6X10 /3 = 1.05. H. M. Rosenberg ropy. (1954a).

Er. G. H.-D. Erfiing and S. Dow; manga¬ R E. G. SharkoS E. Gruneisen nese imprui- (1952,1963ab). (1942). ties as marked on graph.

6 CONDUCTIVITY, w/cm deg K R. K. S.W.3 K. S.W.2 K. S.W.1 Curve ....do. ....do. Johnson, Mat- Johnson, Mat- Sample source and analysis Fe, .004%Al. pure; .03% they; 99.95% Mn, .0075% Ca, Na. Si, Cu,Ag, Pb, traceof Mn, .0013% purity;.013% Fe, .0023% they; 99.98% MAGNESIUM (Cont’d) TEMPERATURE, °K Annealed 6hrinvacuumat500®C; Same treatmentasnumber2. Annealed invacuum3hrat350°C. Cold-drawn. equation cc=8.5X10”6^qi.05. Remarks H. M.Rosenberg W. R.Ct.Kemp andG.K. White (1954b). A.K.Sreedhar, (1953). Reference Do. Do. 7 L.. N. 8 CONDUCTIVITY Curve 5 samplesrang¬ 0.5% Fe,0.4% Approx. 99.7% "Pure”. Sample source and analysis to technical. ing frompure they; 99% pure. ally pure. pure; technic¬ Cu. *=2.26 at0°C,2.56SO^K;also * =1.93at0°C,1.9085°K.1.59 *=2.01 at18°C;R,Cp. *=2.26 at0°C.2.5589°K;R... Measured at20°and80°K;results Measured theeffectoftorsionon Lathe turnedfromlargersample, Low valueofA=1.43at0®C;R... Two samplesgavevaluesat0°Cof ALUMINUM aries. curve ofP.S.J.;studiedeffect A:=2.26. of grainsizeandcrystalbound¬ for purestsamplesliejustbelow ductivity. the thermalandelectricalcon¬ at 21.4‘’K. density of2.70. measured R. Kemarks J. E.Calthrop W. Jaegerand L. Lorenz J. Staebler E. Griineisenand R. Schott(1916). C. H.Lees A. Euckenand H. Diesselhorst E. Griineisen E. Goens (1900). (1881a). H. Warrentrup (1908). (1929). (1927). (1927); (1926). (1951). (1935). (1931). Reference A. W.S.2 A. W.S.1 P. S.J. A. W.S.3. M. R. R.. Curve .do. Johnson, Mat- Alcoa; 99.996% Johnson, Mat- Alcoa; 99.99% Sample source and analysis they; 99.995% Mg. .001%Si, .004% Na. .0004% Cu, .0006% Fe, pure, .001% trace ofNa. Si, .0005%Fe, Mg, .001% pure; .002% they; 99.994% pure. .0005% Cu, pure. ALUMINUM (Cont’d) Single crystal;residualelectrical Single crystal,R=1.48X10“® Polycrystalline rod;residualre¬ Poly crystalline;superconducting Annealed polycrystal;(k=2.2X a =3.2X10-5,fl=0.23. resistance of1.19X10“3R273; Ran: a=2.72X10-‘,/J=6.06. sistance of2.14X10“^R273; at 0.37°K. state; representativevalueswere .07 at0.8°K,.0150.65°K..007 a=2.72X10-^ ^=4.05. a=2.7X10-6. ^=7.04. 10-5, j8=2.3. Remarks R. A.Andrews, R. W.Powers, K. Mendelssohn K. Mendelssohn H. M.Rosenberg and D.A. R. T.Webber, Spohr (1951). Johnston and H.L. D. Schwartz, and H.M. Reference ton (1953). and C.A.Ren¬ Rosenberg (1951). (1952a). (1954a). Do. Do. CONDUCTIVITY, w/cm deg K Curve Sample source and analysis LANTHANUM ;t=T/740 betweenabout2®and 20°K. Remarks H. M.Rosenberg (1954a). Reference 9 M. R.1.. M.R.2... R.. 10 CONDUCTIVITY Curve Comm, pure.... Sample source and analysis Bes.Lab.,Eng- pure. land; 99.9% 99.99% pure. Abstract only,A:=0.20at273°K, TITANrDM 0.21 at195”K.0.1890“K.0.12 at 20°K. stant from50^to100*^;a~ 454X10-5, 8=82. Remarks C. J.Rigneyand H. M.Rosenberg ler (1951). L. I.Boc^tah' and H.M. Rosenberg (1952b). (1954a). Reference Do. M.R.. R.. Curve Johnson, Mat- Sample source and analysis pure. they; 98% Annealed; q:=130X19”®,jS=76.. a=125X10“5, 8=34... ZIRCONIUM Remarks H. M.Rosenberg K. Mendelssohn and H.M. (1954a). Rosenberg (1952b). Reference 1 2 4 6 8 80 100

TEMf

VANADIUM TANTALUM

Curve Sample source Remarks Reference Curve Sample source Remarks Reference aud analysis and analysis

R.. In both normal and superconduct¬ H. M. Rosenberg A=0.54 at irc T. Barratt and ing states. (1954a). R. M. Winter (1925).

Fansteek 99.9% A:=0.36 8t0°C... M. Cox (1943). pure.

Measured ratio of conductivity in C. V. Heer and superconducting and normal J. G. Daunt states. (1949).

(1949). NIOBIUM M. 0. 99.95% pure_ Measured in both normal and su¬ E. Mendelssohn perconducting states. and J. L. Olsen Curve Sample source Remarks Reference (1950a). and analysis Hu. Hilger; 0.1% Polycr3r5talline; impurities in solid J. E. Hulm impurities. solution; measured effect of mag¬ (1950). M. 0. Hilger; “high In both normal and superconduct¬ K. Mendelssohn netic field; both normal and su¬ purity”. ing states: studied effect of mag¬ and J. L. Olsen perconducting states. netic field. (19S0a). M.R.. Johnson, Mat- Measured both normal and super¬ K. Mendelssohn M. R.. Johnson, Mat- In both normal and superconduct¬ K. Mendelssohn they; 99.98% conducting states; i3=27. and H. M. they; 99.99% ing states; up to 22°E. and H. M. purity. Rosenberg pure. Rosenberg (1952b). (1952b). E. Mendelssohn R.. Continuation to temperatures H. M. Rosenberg below 1°K. and C. A. Ren¬ above 2^K. (1954a). ton (1953).

Same as M.R. Superconducting state below 1°K.. E. Mendelssohn R.. H. M. Rosenberg and C. A. Ren¬ temperatures; a=79X10~*, R (1954a). ton (1953). =25.

11 TD -N. Ka M T? R. o E (U CJi 5 12

Curve CONDUCTIVITY, Philips; “very Johnson, Mat- .05% Bi,Cd; Sample source and analysis pure”. Sn, Ti,V,W; .001%Co,Cu. .01% Al,Ge, pure. they; 99.95% of C. Pt, Rh;trace MOLYBDENUM A-1.45 at17°C. Annealed at220“C:A=1.32O^C; Annealed at900®C:A=1.44O^C; R . Continued aboveworkto100®K... o;-7.5X10“5, ^=6.7. R. R. Remarks T. Barrattand W. G.Kannaluik W. G.Kannaluik H. M.Rosenberg K. Mendelssohn R. M.Winter (1925). and H.M. (1931). Rosenberg (1933). (1952b). (1954a). Reference Do. TEMPERATURE, °K G. Go. Br. H. Ka. Curve Osram; impure.. Philips; “very Sample source and analysis pure”. *=2 at17°C. * =1.6atO°C. Single crystal;A=1.83at83®K, Single crystal. One sampleannealedat220*C, Single crystals,onlyhighervalues TUNGSTEN A=1.64 at08®C;anothersample annealed at1300''C,A—1.66 1.80 at21°K. plotted. 18“C. Remarks T. Barrattand S. Weber(1917). E. Griineisenand W. G.Kannaluik H. Bremmerand W. G.Kannaluik E. Goens R. M.Winter W. J.deHaas (1931). (1927). (1925). (1936). (1933). Reference Do. CONDUCTIVITY, w/cm deg K H. N. G. A. G. A. R. M. R. Curve Johnson, Mat- Same asG.Go... Same asG.Go. Sample source and analysis above. above. pure. they; 99.99% TUNGSTEN (Cont’d) A =1.93at7rK,1.8790°K,and A=1.66 at0°C. Extended themeasurementsto At 78®,194®,273°K,approx,same Annealed; a=10.2X10“®, Single crystals;graphresultsare SiEgle crystal;residualresistance Studied effectofmagneticfieldand a=9.3X10-5, a=5.8. 21®K: R. allel to[100]axis,k=22.2at allel to[010]crj^talaxis;foran¬ fi=5.9. higher magneticfields. other crystalwithrodaxispar¬ for asamplewithrodaxispar¬ of 4X10“4R273;measuredeffect anisotropy. 1.69 at0°C. of magneticfieldonkandR. results asEannaluik(1933). Remarks H. M.Rosenberg J. deNobel K. Mendelssohn M. Cox(1943) E. Griineisenand W.J.de Haasand E. Griineisenand I. Langmuirand W. C.Michels Rosenberg and H.M. (1954a). (1952b). H. Adenstedt J. deNobel J. B.Taylor (1949). (1938). (1938). H. Adenstedt and M.Cox (1937). (1936). (1936). Reference 13

14 CONDUCTIVITY, mw/cm deg K I MANGANESE

Curve Sample source Remarks Reference and analysis

A:=0.05 at 83®K for the Q phase.. H. Reddemann (1935).

M. R. Johnson, Mat* E. Mendelssohn they; 99.99% and H. M. pure. Rosenberg (1952b).

SUPPLEMENTARY DATA

Curre Sample source Remarks Reference sod analysis 4 6 8 10 20 40 60 80 100 200 300

TEMPERATURE, °K

IRON IRON (Cont’d)

Reference Curve Sainplo flouroo Remarks Roferonco Curve Sample source Remarks »iul aiuilysiB and analysis

*-0.70 at 0"C. L. Lonnia ‘Teolinicnlly Two samples untempered; olectro- E. Oruneisen and (1881a). puni". lytio; A = 1.36 and 0.91 at 83°K, E. Goens 3.01 and 0.5 at 21°K. (1927). ■T’uni”, .1% C, *=0.72 at 18"C. E. Griineisen R. Kikuehi .06% Mn, (1900). “Pure". Eleotrolytio; A:=0.77 at 16°C.... .02% Si, .06% (1932). Cu, .03'){, P, .03% P, .02% Armco; .01% C, *=0.7 at 0°C, 0.72 at 196°K, 0.94 W. G. Kannoluik .02% S. .02% Mn. at 90”K (1933). .006% P, 0.1% C-f metals Also iiu'nsvin'd ll, Cp, cmf; A »0.C7 W. Jaeger and .020% S, .00% at 18“C. H. Diesselhorst Cn, .02% Si. (1900). "Pure”. Between 3° and 20°K, the values J. Karweil and K. Sohdfer Krupp; .1% C, Also inciusunHl 11, CpjOinfiA^O.OO Do. fall just below the curve marked (1939). .2% Si, .1% at 18“C. M.R. Mn. lladficid; 99.- Forged; *=0.9 at 90°K, maximum J. do Nobel (1961). 1. 99.42%, pure; C. n. IsHW 93% pure. of 1.3 at 62'’K, 0.6 at 16°K. .1%,C, .15%, (1908). R. W. Powers, Mn, .13%, Si. P. Z. J. Johnson, Mat- they; 99.99% J. B. Ziegler, lOlootrolytic; two rmla with aver- A. Kucken and pure. and H. L. aRO grain siiioi? of IXU) * and K. Dittrich Johnston 6X10 > cm; k 0,91 and O.IKK (1927). (1961a). res|H'ctivoly, at 0*^0; A* = 1.81 and K. Mendelssohn 1.83 at m'K. M.R.. Johnson, Mat- a = 18X10-M?=9.6. tlu'y; 99.99% and H. M. Rosenberg Ucracua. Klertrolytic; avenige grain sirc 2X Do. pure. 10 5 em; *=0.82 at 0'’C and (1962b). 1.17 at SO'K. a = 10.2X10-5, 5=9.6. H. M. Rosenberg (1964a). G. Go. “Doiiblo rc- E. Orunoiaen and fiiuxi. E. (locns (1927).

16 P.S.J. L. M.R. R.

Curve CONDUCTIVITY Johnson, Mat* 99.4% pure. Heracus. Johnson, Mat- Int. Nickel; Sample source and analysis they; 99.997%, comm. pure. pure. they; 99% impure. pure. *=0.60 at18°C:R,Cp,emf... Annealed; ^=10.4X10"^ Annealed; a=22X10“^,Q\A\ Forged; approx,samecurveas Drawn rod;*=0.84at0°C,l.ll measured upto22°K. at 80°K. 4.6; measuredupto40°K. K, A:=0.18. P. S.J.from93®to25®K;at15" NICKEI^ Remarks J. deNobel R. W.Powers, 11. M.Rosenberg K. Mcndclsvsohn A. Euckenand W. Jaegerand and 11.M. Johnston and 11.L. K. Dittrich lI.Diessclhorst (1962b). Rosenberg (1951). (1927). (1954a). (1951). D. Schwartz, (1908). (1900). Reference R. Curve Sample source and analysis a■«10.6X10“^ /?=7.9. (JOBAET Remarks 11. M.Rosenberg (1964a). Reference 17 a. Re. G. Re. M. R. 18 CONDUCTIVITY, w/cm deg K Curve Ileracus; "pure". "Chem. pure”... Johnson, Mat- Sample source and analysis pure. thoy; 99.96% *=0.7 at18°C;R,Cp,omf. *=0.42 at17°Cforcommercial PALLADIUM Annealed; a=64X10“*,^8=11.. Cold-drawn; annealedat360°C Unannealed; plottedwithopen a=41X10-‘ 8=11.7. ened circles;R. circles; R. for twohours;plottedwithdark¬ "pure”. palladium, 0.60atfor Remarks E. Griincisenand T. Rarrattand K. Mendelssohn W. Jaegerand H. M.Rosenberg and H.M. 11. Reddcmaiin R. M.Winter H.Dicsselhorst Rosenberg (1926). (1900). (1934). (1952b). (1954a). Reference Do. M R Curve Johnson Mat- Hcraeus; "pure". Sample source and analysis pure. they; 99.96% *=0.88 atI7'C. Annealed: *=2.15at83°K,23.8 a =10.7X10-‘.81-38. a:-22X10-‘, 8=1-4. at 2rK,R. RHODIUM Remarks H. M.Rosenberg E. Mendelssohn T. Ban-attand E. Grtineisenand Rosenberg and H.M. (1954a). (1952b). (1927). E. Goens R. M.Winter (1925). Reference PLATINUM IRIDIUM

Curve Sample source Remarks Reference Curve Sample source Remarks Reference and analysis ana analysis

"Pure” A-=0.78atl8°C.. J. H. Gray *=0.69 at irC. (1896). R. M. Winter (1925). .. .do. Ar=0.7 at 18°C: R, Cp, emf. W. Jaeger and H. Dicsselhorst M. R. Johnson, Mat* Annealed; a=3.6Xl(r‘,3 =0.77. K. Mendelssohn (1900). they; 99.96% and Jf. M. pure. Itosenlierg Me.. Heraeus; “very Drawn; electrically annealed. W. Meissner (1962b). pure”. (1916). R.. a=4,6X10'», ^=0.76. 11. M. lioseoberK .do. Drawn; electrically annealed; ob¬ E. Griineisen and (1954a). tained same results as Meissner E. Goens (1915) at 21“ and 8.2“K; R. (1927).

Heraeus; “less Ar=2.96at21°K. Do. pure".

Heraeus. A=4.25 at 21“K; measured effect E. Griineisen and of magnetic field on k, R. U. Adenstedt (1938).

M.R.. Johnson, Mat- a=43Xl(>-‘, fl=0.40 K. Mendelssohn they;99.9 and H. M. pure. Rosenberg (1952b).

a=43X10-», 3=0.36. H. M. Rosenberg (1954a).

19 100

30 40 50 60 70 80 !00 200 300 TEMPERATURE. °K

COPPER COPPER (Cont’d)

C!iF?e Sample Bouroe Kemarto Heferenee Curve Sample source Remarks Reference and airalysia and acalyeis

“Pme”, k=3 at 0°C, L. Leraas Measured 18 amples of varioiB E. Gruneisen and (1881a). crystal structure, purity, and E. Goens annealing at 21° and 83°K: R. (1927). One iample had A=3.6 at 10“C; J. H. Gray the sesoad, 1.3 at 10°C. (1895). Single crystal; between 95® and SOO^Ks the results are close to and T.H.Laby “Pure". A=3.9 at irC. E. Griaeiseo curve W-L (1928), (1900). Measured 14 different copper am- .do. *=3.73 at 18°C; R, Cp W. Ja^er and pte at 20° and 90°K; R. H. Reddemann H.Diesselhorst (1934)„ (1900). H. Bz. *=3.9S at 20°C, W. Scfcaufel- T- Biermass berger (1902). (1936).

“Soft drawn, high condnetivity”; C. H. Lees Studied effect of magnetic field on *=3.8 at 27“C; results at lOO’K (1908). H, Adenstedt are close to the P.S.J. carve. (1938).

Electrolytic copper wires; values W. Meissner Johnson, Mat- at 21°, 91° and 273° are ctee to (1915). they; free of E. Mendoza the W.-l carve. O2;.003% each (1947). Ag, Ni, and “Very pure”_ Natural single crystal; results un¬ R. Schott Pb. certain due to very small sise of (1916). P.S.J. a4m. Brass; “0. Oxygen-free, high conductivity.,.. R. W. Powers, sample. F. H. CJ’ D. Schwartz, and H. L. “Tech, pure"_ Approximately on curve of W.-3 Do. JohiBton down to 22°K. (1961).

20 CONDUCTIVITY, w/cm deg K M.R. Ni. Ts. B. McD... W.-l. W.-2. R. W.-3_ Curve Johnson, Mat- Johnson, Mat- Johnson, Mat- Sample source aud analysis pure. they; 99.999% Pb. Ni, .00047o kg, .0003% they; .0005% B. MacD. pure; sameas purity”. “comm, high they; 99.999% COPPER (Cont’d) Cold-drawn, thenannealed6hr As cold-drawn;a=2.55X10“5, Annealed; a=3.2X10-5,S=0.35. a=2,5X10~^ j3=Q.35 at 450*^0inheliumgas. for 3hours;q;=2.55X10“®, fl=0.21. 8 =1-15. Remarks H. M.Rosenberg G. K.White K. Mendelssohn R. Bermanand (1954a). T. P.Tseng Rosenberg and H.M. (1953c). D. K.C.Mac¬ (1953). (1952a). Donald (1952). Reference Do Do. 21 200

100

80

60

40

is; 20 o> O) "O

o 10

5 80

>- I-

O 3 Q

O 2.0 O

1.0 .8

.6

.4

.3

.2 4 6 8 10 20 40 60 80 100 200 300 TEMPERATURE, “K

SILVER SILVER (Cont’d)

Curve Sample source Remarks Referenqe Curve Sample source Bemarks Reference and analysis and analysis

Silver wire; A:=4.02 at 18°C. J. H. Gray Honlg-schmid... Annealed; electrolytic; A:=31.4 at E. Gruneisen and (i895). 21®K; measured effect of mag¬ H. Adenstedt netic field on k and R. (1938). 99.98% pure_ A:=4.21 at 18°C; also measured R, W. Jaeger and Cp, and emf. H.Diesseihorst M. R. Johnson, Mat- ££=9.0X10-5, 3 = 1.6.'.. (1900). they; 99.99% and H. M. pure. Rosenberg L. Johnson, Mat- Lathe-turned from a larger rod_ C. H. Lees (1952a). they; 99.9% (1908). pure. E. Mendelssohn and H. M. Two silver wires had A:=4.11 and W. G. Kannaluik Rosenberg 4.04 at 0°C. (1931). (1953).

Hilger; trace of At 90°, 195°, and 273°K values are W. G. Kannaluik W. 1-5.... Johnson, Mat- No. 1 was unannealed; #2, an¬ G. K. White Cu, Pb, Bi, somewhat higher than th^e of (1933). they;99.999% nealed at 650°C, grain size 0.1 (1953b). Mg, Ca, Na, Lees (1908). pure. mm; #3, cold-drawn; #4, the Si. previous one annealed; #5, a re¬ run of # 4. Five rods of silver, varied in com- E. Gruneisen and position, annealing, crystal H. Reddemann R. Johnson, Mat- a~5X10“5, j3=0.3. H. M. Rosenberg structure. At 20® and 90®K pure (1934). they. (1954a). rods had values close to curve W.-3: R.

22 CONDUCTIViTY, w/cm deg K 23 TEMPERATURE, °K

GOLD GOLD (Cont’d)

Curve Sample source Remarks Reference Curve Sample source Remarks Reference and analysis and analysis

A=3.14 at 18°C. J. H. Gray M.R. Johnson, Mat- q: = 18X10-5. /3 = I.15. K. Mendelssohn (1895). they; 99.999% and H. M. pure. Rosenberg /c=2.93 at 18®C; a less pure sam¬ W. Jaeger and (1952a). ple had /c = 1.79 at 18°C; R, Cp, H.Diesselhorst emf. (1900). W. 1, 2.... Garrett, David¬ No. 1 sample unannealed; #2, an¬ G. K. White W. Meissner son, Matthey; nealed. (1953a). pure. (1915), 99.9% pure (comm.); Ag, *=2.95 at 17°C. T. Barratt and trace of Pt, R. M. Winter Fe, Pb, Cu. (1925). Sn.

*=2.98 at 24°C. H. Masumoto W.3,4,5.. Johnson, Mat¬ No. 3 sample cold-drawn; #4, an¬ Do. (1927). they; 99.999% nealed in vacuum at 700®C for 3 pure; trace of hours; #5 was the fourth re¬ Six samples of various composi¬ E. Griineisen and Ag, Cu; faint drawn. tion, annealing; R. Results for E. Goens trace of Cd, “very pure” gold at 21® and 83® (1927). Fe, Mg, Na, K fall close to curve W.-4. Ca, Zn,

A:=3.O0 atO®C. W. G. Kannaluik q;-19X10-5, fi = 1.13. H. M. Rosenberg (1931). (1954a).

24 TEMPERATURE,‘‘K

ZINC ZINC (Oont’d)

Sample source Remarks Reference Curve Sample source Remarks Reference and analysis and analysis

“Pure”. *=l.latl8°C; R. Cp. emf. W. Jaeger and M. R. 1. .. Hilger; 99.995% Polycrystalline; a= 21 X 10'®, K. Mendelssohn H. Diesselhorst pure. B = 0.4. and H. M. (1900). Rosenberg (1952a). “Pure redis¬ Lathe-turned from a cast stick_ C. H. Lees tilled'’. (1908). M. R. 2, 3. Imperial Smelt¬ No. 2 had rod axis inclined 80° to Do. ing: 99.997%. hexagonal crystal axis, a=34X 99.993% pure... Single crystal; also measured poly- C. C. Bidwell and 10'®, j8=0.7; #3, incUned 13°, crystaUine samples. E. J. Lewis a=31X10-®, fi=0.6. (1929); also E. J. Lewis and Measured effect of magnetic held.. K. Mendelssohn C. C. Bidwell 1, 2. 3. and H. M. (1928). Rosenberg (1953). Kahibaum. ^=1.26 at 83°K and 1.25 at 0®C... J. Staebler (1929). a=30X10'®, B=0.6. H. M. Rosenberg (1954a). Kahlbaum; Single crystals each with rod axis E. Goens and “pure”. parallel to main crystal axis. An¬ E. Gruneisen other sample with axes perpen¬ (1932). dicular had a conductivity 10% lower.

25 (See previous page for the table on ZINC.) CADMIUM (Cont’d)

Curve Sample source Remarks Reference and analysis

Go. G. Kahlbaum; Two single crystals, each with £. Goens and II “pure”. main crystal and rod axes par¬ £. Gruneisen CADMIUM allel. (1932).

Go. G. Single crystal with main crystal Do. Sample source Remarks Reference i and rod axes perpendicular. and analysis Hilger; 99.999% Measured effect of magnetic field.. pure. and H. M. *‘Piire A:-0.92 atOT Rosenberg (1881). (1951).

*=0.93 at IS-C; R, Cp, emf. W. Jaeger and M. R. Hilger; Cast in glass; a = 140 X 10”®, K. Mendelssohn H.Diesselhorst 99.9999% B = 0.5. and H. M. (1900). pure. Rosenberg (1952a). “Pure redis- Lathe-turned from a cast stick.... C. H. Lees tiiled”. (1908). Measured effect of magnetic field.. and H. M. Kahlbaum; *=1.02 at 273*'and 194°K. 1.23 at A. Eucken and Rosenberg “pure”. OS^K. G. Gehlhoff (1953). (1912). R. Maximum conductivity of 88 be¬ H. M. Rosenberg Kahlbaum; At 20'* and 273°K values fall just R. Schott tween 4® and 5®K; a: = 122X (1954a). “chem.pure”. below upper curve of Go. G. (1916). 10-5, ^=0.02.

26 CONDUCTIVITY, w/cm deg K On. Ht. H. Br. Hu, 1-5... Curve Basic rod(#1) Sample source and analysis #3, .007% from Johnson, Matthey;#2, In. In; #5,.397o Cd;#4..10% .002% Cd; Cp. Measured tensinglecrystalrods; Measured intheliquidstateand Homogeneous solidsolutions;poly- MERCURY solid statenearmelting. axes inclined25®;#3,in¬ axis paralleltocrystalaxis;#2, fall intofourgroups.No.1,rod superconducting state. dicular. clined 45®;#4,axesperpen¬ perconducting states. measured inbothnormaland near 4®K. crystalline, butlargecrystals; Remarks J. K.Hulm G. Gehlhoffand H. Kamerlingh R. T.Webber H. Rcddemann W. J.deHaasand Omnes (1914). and D.A. H. Bremmer F. Neumeier Spohr (1953). (1932). (1919). (1950). (1936). Reference 27 28 CONDUCTIVITY,w/cm deg K (See previouspageforthetaMeonMERCURY.) a>

5

>-"

> I- O 3 Q 2 O O

TEMPERATURE,°K

GALLTOM INDIUM

Curve Sample source Remarlm Reference Carve Sample source Remarks Reference and analysis and analysis

R. Three single crystals of different H. M. Rosenberg Absolute values were not deter¬ W. J. de Haas and orientation; No. 1 ff = 160X (1954a). mined. H. Bremmer 10-5, g=4.7; #2. a=23X10-5, (1932a). fl =0.165; #3, a=87X10-5, S=2.22. Hu. Johnson, h4at- a;=189X10-5, fi = 1.38.. J. K. Hulm they; 0.1% (1950). impurity.

Johnson, Mat- Single crystal; measured conduct¬ D. P. Detwiler THALLIUM they. ivity in intermediate state. and H. A. Fairbank (1952a, b). Drawn; Ar=0.51 at 0°C and 0.64 A. Eucken and atSO^K. M. R. Johnson, Mat- (X=I90X10~®, jS=0-4: measured K. Mendelssohn (1927). they; 99.993% in both normal and supercon¬ and H. M. pure. ducting state. Rosenberg Johnson, Mat- Annealed; polycrystalline; meas¬ K. Mendelssohn (1952a). they; 99.99% ured effect of magnetic field. and H. M. Measured effect of m^netic field.. K. Mendelssohn pure. Rosenberg and H. M. (1953). Rosenberg (1953). Annealed; polycrystalline; meas¬ K. Mendelssohn ured conductivity below 1®K; and C. A. Measured conductivity below TK; K. Mendelssohn between 0.3® and 0.65®K, con¬ Renton between 0.2° and 0.7°K, con¬ and C. A. ductivity was of form In A:=aT; (1953). ductivity equation was A:=2.5 Renton (1953). A: = 0.2 at 0.62®K, 0.0015 at XlO-2 T»; *=.019 at 0.8°K, 0.3®K. .003 at 0.46°K. R.

29 40 60 300 TEMPERATURE, “K

CARBON (Graphite) CARBON (Graphite) (Cont’d)

Carve Sample source Remarks Reference Curve Sample source Remarks Reference and analysis and analysis

Pencil lead; density of 2.11 g/cm*; B. 1-3, 1'- Atomic Energy Artificial graphite rods; very ani¬ R. Berman (1952). A=0.15 at 18“C. R. M. Winter 3'. Res. Estab¬ sotropic; unprimed numbers re¬ lish. fer to rods with axes parallel to (1925). direction of extrusion; primed numbers refer to ro^ with axes Acheson graph¬ *=1.78 at 122°K, 1.72 at 300°K... A. P. Crary perpendicular to the extrusion; ite. (1933). densities were respectively 1.79, Carbon; 80% *=0.016 at 0°C. R. W. Powell, 1.60, and 1.77 g/cm*; crystal sizes 2000, 1000, and 300 A. petroleum F. H. Schofield coke, 20% (1939). B. 4,4'.... Natural graph¬ Density 2.25 g/cm*; crystal size, Do. lampblack. ite. 2000 A; unprimed number re¬ fers to sample with its rod axis Acheson graph¬ Two rods gave *=1.21 and 1.67 Do. parallel to preferred c-axis; ite. at 0°C. primed number, perpendicular.

For a sample with rod axis parallel R.A.Buerschaper T. W. 1, 2. National Car- Densities were 1.70 g/cm*; rod W. W. Tyler and bon; Acheson to extrusion direction, *=1.76 (1944). bon;graphite. axes were respectively perpen¬ A. C. Wilson graphite. at 0°C, 2.5 at 82°K; for a second dicular and parallel to the pre¬ (1953). sample with rod axis perpendic¬ ferred c-axes. ular to extrusion, *=1.13 at O-C; 1.76 at 82°K. T. W. 3... Natural graph¬ Molded; density of 1.80; rod axis Do. ite. perpendicular to preferred c- *=0.06 at 0°C, 0.01 at 82°K. . Do. axis. bon; carbon T. W. 4... Lampblack. Molded; density of 1.65; rod axis Do. electrode. parallel to preferred c-axis.

Measured conductivities of graph¬ A. W. Smith ite and amorphous carbon. and J. Okada (1954). (1951).

Measured effect of crystal size.... SILICON (1952). Impurities of 1 “Filament cut from a crystal pulled G. W. Hull and XIO^ percent in (1001 direction;” *=1.48 at T. H. Geballe as shown by 0°C, 9 at 80°K, 19.5 at 30°K. (1954). Hall effect.

30 CONDUCTIVITY,w/cm deg K Es. Zi. Ss. Zi. Curve 0.006 atomic% “High purity”.. Sample source and analysis of Al. (See nextpagefortableonTIN.) TEMPERATURE, °K GERMANIUM Cast; loweroftwoGecurveson Cast; higheroftwoGecurveson figures 18and19a. figures 18and19a. Remarks 1. Estermannand J. E.Zimmer¬ man (1951). Reference Do. 31 2 3 TEMPERATURE °K

TIN TIN (Oont’d)

Curve Sample source Remarks Reference Curve Sample source Remarks Reference aud analysis and analysis

Ar=0.64at0°C. Measured relative change upon be¬ C. V. Heer and (1881). coming superconducting. J. G. Daunt (1949). “Pure” .03% *=0.61 at 18°C. W. Jaeger and Pb. H.Diesselhorst Ra. 1,2... Chempur; 99.- Single crystals with tetragonal axis A. Rademakers (1900). 992% pure. inciin^ 85® to rod axis. (1949).

L. Johnson, Mat- Measured conductivity in the in- D. P. Detwiler “pure”. (1908). they;99.996% termed iate state. H. A. Fairbank pure. (1952a,b). W. J. de Haas, conductivity at low tempera¬ S. Aoyama, Johnson, Mat- Single crystal; measured the effect K. Mendelssohn tures, absolute values not given. and H. Brem- they; of a magnetic held; for zero held, H. M. Rosen¬ mer (1931) and 99.997%. A:=25.1 at 4.4®K, 19.6 at 3.0®K, berg (1953). W. J. de Haas 18.0 at 2.4®K, in normal state. and H. Brem- mer (1931a). M. Rn. ... Single crystal; upper curve in fig¬ K. Mendelssohn ure 18b; superconducting state. C. A. Renton Hu. 1-4... Johnson, Mat- Samples 1-3 were homogeneous J. K. Hulm (1953). they; No. 1, solid solutions; #4 was two- (1949, 1950). 99.996% pure; phase; both normal and super¬ M. Rn. Polycrystalline;.lower curve on fig¬ Do. #2, .03% Hg conducting state measured. ure 18b; superconducting state. added; #3, R. a=60X10-5, H=0.12. H. M. Rosenberg .3% Hg ad- (1954a). ded;#4,4.1% Hg added. Gd. 1-5.... No. 1 and 2, Polycrystalline; crystal sizes about B. B. Goodman “spect.pure”: 1 to 3 mm; cast in glass. (1953). #3, 0.3% In; #4 and 5,3% In.

32 CONDUCTIVITY,mw/cm deg K 33 TEMPERATURE ,°K

LEAD LEAD (Cont’d)

Curve Sample source Remarks Reference Curve Sample source Remarks Reference and analysis and analysis

A:=0.35at0°C. L. Lorenz H. Ra. Melted under vacuum; single crys¬ (1881). tal; in both normal and super¬ and H. Rade- conducting states. makers (1940). *=0.35 at I8°C. W. Jaeger and H. Diesselhorst Ra. (1900). (1949).

A-0.35 at 25‘*C, 0.45 at 90®K F. Macchia M. 0. 0.02% Bi ... . In both normal and superconduct¬ (1907). ing states. and J. L. Olsen (1950c). L. Baxendale; C. H. Lees “pure”. (1908). Studied conductivity in intermedi¬ ate state. and D. A. Spohr Me. Kahlbaum; 99.- W. Meissner (1951). 998% pure. (1915). M. R. Tadenac, 99.- Single crystal; measured in both K. Mendelssohn Kahlbaum; Results agree with Meissner (1915). R. Sehott (1916). 998% pure. normal and superconducting and H. M. “pure”. states; normal curve gives Rosenberg a=325X10-5, H=0.10; same (1952b). A:-0.38 at 12°C, 0.36 at 23®C T. Peczalski curve on graph as H. Ra.; ex¬ (1917). perimental points marked by Bi. Le. C. C. BidweU filled circles. and E. J. Lewis (1929). C. A. Renton Measured relative temperature W. J. de Haas (1952). variation. and H. Brem- mer (1931). Measured effect of magnetic field.. and H. M. Br. H. Measured in both normal and su¬ H. Bremmer and Rosenberg perconducting states. W. J. de Haas (1963). (1936). *=25 at 3.1°K, 28 at 2.7°K; con¬ H. M. Rosenberg Hiller; 99.999% Measured changes in conductivity K. Mendelssohn tinuation of work of Mendels¬ (1954a). pure. during superconducting transi¬ and R. B. sohn, Rosenberg (1952b); tion. Pontius (1937). a=290X10-5, fi=0.10.

34 CONDUCTIVITY, w/cm deg K 0123456789 !0 (For GEIRAIAJNTUM,seethetableunderfigure18,page31.) TEMPERATURE ,°K 35 ZO 40 60 80 100 200 300 TEMPERATURE . °K

ANTEWONY BISmJTH

Curve Sample source Remarks Reference Curve Sample source Remarks Reference and analysis and analysis

*=0.19 atO°C. L. Lorenz . *=0.074 atO°C. (1881). (1881).

E. Gh. . *=0.081 at 18°C: R. Cp, emf. W. Jaeger and G. Gehlhoff H. Diesselhorst (1912). (1900).

Gh. Ne.. .. R. At 87®, 194®, and 291°K results are E. Giebe (1903). “pure”. F. Neumeier cl(Ke to Rodine s upper curve. (1913a). Drawn; at 83®, 194®, and 273®K re¬ Eablbaum; Measured effect of grain size; sam¬ A. Eucken and “pure”. sults are close to Rodine's upper “chem. pure”. ple with largest grains had a 0. Neumann curve. (1913a). conductivity close to the Gh. (1924). Measured pressed powders; k— 0.21 at 83®K, 0.08 at 0®C. F. Neumeier Measured effect of magnetic field K. Rausch (1913b). “pure”. on k and R for single and poly¬ (1947). crystalline rods; at 80® and 90®K 0.02% Pb, trace Single crystals, measured anistropy. G. W. C. Kaye results agree with those of Gh. Fe. and J. K. Ne. curve. Roberts (1923). R. H. M. Rosenberg (1954a). . 0. Neumann (1924).

Measured effect of magnetic field G.W.C. Kaye and on conductivity in single crystals. W. F. Higgins (1929).

36 BISMUTH (Cont’d) TELLURIUM

Curve Sample source Remarks Reference Curve Sample source Remarks Reference and analysis and analysis

Re. Rod axis inclined 80'’ to crystal H. Reddemann Ca. . . 99.999% pure... No. 1, a single crystal with rod C. H. Cartwright “pure”. axis; studied effect of magnetic (1934). axis parallel to main crystal axis; (1933). field; R. #2 and #3 are polycrystalline; also measured R, emf. Measured two single crystals, one M. T. Rodine with rod axis parallel to trigonal (1934). crystal axis, one perpendicular. CERIUM H.C. 1,2, Hilger;99.995% Single crystals; No. 1, rod axis par¬ W. J. de Haas and 3. pure, trace of allel to main crystal axis; #2, W. H. Capel silver. rod axis parallel to binary axis; (1934a, b). R. A—T/900 from 4® to 20®K. H. M. Rosenberg #3, rod axis parallel to bissect- (1954a). rix of binary axes.

At 83® and 90°K results are close to E. Gruneisen and the ones above; measured effect J. Gielessen of magnetic field on k and R. (1936). URANIUM

H.Ge.C... Hilger; .002% Single crystal; rod axis parallel to W. J. de Haas, silver, trace of main crystal axis; measured ef¬ A. N. Gerrit- T.W. W... Quenched; also measured R, emf.. W. W. Tyler, Pb. fect of magnetic field. sen, and A. C. Wilson, W. H. Capel and G. J. (1936). Wolga (1952).

S. Shalyt (1947). M. R. Assoc. Elec. Ind q;-750X10-5, S=95. K. Mendelssohn TT.rK. Res. Lab. and H. M. Rosenberg Measured effect of magnetic field.. E. Gruneisen, (1952b). K. Rausch, and K. Weiss R. 01-790X10-5, 6=93. H. M. Rosenberg (1950). (1954a).

37 2.3 Alloys and Commercial Metals The values for conductivities of experimental bols and manufacturing tempers. The names or and commercial alloys are given in figures 22 numbers and the arrangement within a group through 29a and in the following tables, arranged are based upon the corresponding arrangements according to periodic group of the major com¬ in Metals Handbook.i The composition limits ponent. In several instances a particularly large for many of the alloys are also taken from the class of alloys has been separately presented, Metals Handbook. ThPe tables listed below, i. e., copper-nickel alloys. Many of the experi¬ which quote “company or trade manuals”, are mental results are for a limited temperature all based on room-temperature values. range, so more of the data are presented in In pure metals the greater part of the energy tables than in section 2.2 on metals. This sec¬ transfer is by electrons, whereas in alloys the tion is also not as complete as section 2.2 be¬ transfer by the lattice vibration is very signifi¬ cause many of the data were published in now cant and may be the predominant mode. For unavailable journals or institute reports. As for that reason the conductivity is not as sensitive the preceding tables the following tables con¬ to small differences in composition as it is in tain columns indicating the curve identifying nearly pure metals. It will be noted in the fol¬ marks, composition, conductivity, remarks, and lowing graphs that the conductivity curves of reference. In addition, they occasionally con¬ alloys with similar compositions are usually tain information on trade designation or sym¬ parallel to each other and seldom intersect.

iMetals Handbook, 1948 ed., Am. Soc. for Metals, Cleveland, Ohio.

ALKALI METAL ALLOYS MAGNESIUM ALLOYS (Cont’d)

Nominal Nominal Composition Conductivity and remarks Reference Composition Conductivity and Remarks Reference (%) (%)

w/cm deg K w/cm deg K

Sodium-potassium; ^=0.29 at -8.9’C, 0.30 at -IC.b^C. J. W. Hornbeck 15 Cu. * = 1.54 at 273% 1.51 at 87°K; chill-cast... W. Mannchen 60-50 by atomic (1913). (1931). percent. 20 Cu, 3 Si. * = 1.08 at 273% 0.89 at 87”K; chill-cast... Do.

2.2 Ag . *-1.31 at 25°C 2. BERYLLIUM (1932).

6.0 Ag. * = 1.16at27°C2. Do. Commercially pure; See figure 2, under “Metallic Elements".... E. J. Lewis Beryllium Co. of (1929). 2.1 A1. *=0.88 at27°C2. Do. America. 4.2 A1. *=0.69at22°C *. Do. Copper-beryllium See “Copper Alloys". 6.2 A1. *=0.56at22°C2. Do.

MAGNESIUM ALIXIYS 8.2 Al. *-0.51 at 18°C 2. Do. 10.3 Al_ *-0.45 at 19°C 2. Do. 0.5 Mn. * = 1.60 at 273°K, 1.34 at 87°K >. (1929). 12,2 Al_ *=0.39 at 23°C ^. Do.

0.8 Mn. * = 1.68 at 273% 1.22 at 87°K '. Do. 2.4 Cu. *=1.39 at20°C‘’ 2. Do.

2 Mn. * = 1.18 at 273°K, 0.67 at 87°K '. Do. 6.3 Cu. * = 1.31 at 24‘’C 2. Do.

3.54 Mn. *=1.02 at 273°K, 0.57 at 87°K >... Do. 1.9 Ni . *-1.36 at20°C 2. Do.

6 A1. *=0.80 at 273°K, 0.59 at 87°K >. Do. 5.8 Ni.. *-1.26 at 24’C 2. Do.

8 A1. *=0.65 at 273°K, 0.42 at 87°K ‘. Do. 2.2 Sn. *=1.06 at 2rC 2. Do.

12 A1. *=0.59 at 273‘’K, 0.33 at 87°K ». Do. 6.4 Sn. *=0.74 at 22''C 2. Do.

0.7 Si. * = 1.48 at 273% 1.10 at 87°K >. Do. 2,1 Zn... *-1.26 at 26° 2. Do.

1.5 Si. * = 1.40 at 273% 0.95 at 87°K >. Do. 6.1 Zn.. *-1.09 at 26°C 2. Do.

8 Ce. *=1.25 at 27S°K, 1.06 at 87°K *. Do. "Elektron” *= 1.14 at 26° C°2. Do.

12 Ce. *=1.03 at 273% 0.81 at 87°K i. Do. 4A1, IZn, ICd, ISn. *=0.56 at 22°C2... Do.

8 Cu. * = 1.25 at 273°K, 0.88 at 87°K >. Do. 6 Al, 3 Zn, 0.4 Cu "Dow metal” *=0.61 at 29°C 2. Do.

8 Zn. * = 1.19 at 273% 0.89 at 87°K > . . Do. 4 Al, 0.5 Zn, 2 Cd, *=0.63 at 22°C 2. Do. 1 Sn. 8 Cd. *=1.42 at 273% 1.30 at 87°K ‘. Do. 4 Al, 3 Cd, 1 Sn.... *=0.69 at 22°C «. Do. 2 Si, 6 A1. *=0.69 at 273°K, 0.48 at 87°K >. Do. 4 Al, 2 Cd, 2 Sn.... *-0.56 at 30°C° 2. Do. 2Si, 8A1. *=0.61 at 273°K, 0.38 at 87°K '. Do. * Vacuum-annealed. 2Si, lOAl. *=0.55 at 273°K. 0.29 at 87°K '. Do.

2Si, 12A1. *=0.54 at 273% 0.28 at 87°K *. Do.

' Chill-cast; also measured R. 38 MAGNESIUM AELOYS (Cont’d) ALUMINUM ALLOYS (Cont’d) CX>MPANY AND TRADE MANUALS Composition (%) ' Conductivity * State *

ASTM Nominal designation Trade designations composition Conductivity w/cm deg K (%) 5.3 Cu, 0.5 Si, 0.8 Fe, 0.5 Mn, 1.18. Cast. 1.2 Mg.2 1.52. Annealed. w/cm deg K 4.3 Cu, 0.4 Si, 0,9 Fe, 0.6 Mn, 1.22. Cast. A 8. Dowmetal A; Mazlo AM 241; Brit- 8A1, 0.2 Mn... 0.75 0.4 Mg.2 1.52. Annealed. ish DTD 59A, DTD 289, Elek- tron A8, Elektron ASK. 2.5 Cu, 0.4 Si, 0.9 Fe, 1.8 Ni, 1.44. Cast. 0.9 Mg.2 1.63. Annealed. A 10. Dowmetal G; Mazlo AM 240; AM- 10 Al, 0.1 Mn.. .71 C59S; British DTD 259; Elek¬ 4.4 Cu, 0.5 Si, 0.7 Fe, 2.1 Ni, 1.30. Cast. tron VI. 0.9 Mg.2 1.47. Annealed.

AM 80 A .. See A 8. 3.8 Cu, 6.1 Si, 0.9 Fe, 0.6 Mn, 1.00. Cast. 1.6 Mg.2 1.36. Annealed. AM 100 A 2.7 Cu, 0.4 Si, 0.6 Fe, 12.0 Zn 2. 1.32. Cast. AZ31X, A,B. Dowmetal FS-1; Mazlo AM-C52S; 3 Al, 1 Zn, 0.3 .96 1.33. Annealed. Whitelight FS-1; British DTD Mn. 120A; Elektron AZ 31. 2.6 Cu, 0.4 Si, 0.6 Fe, 20.3 Zn 2. 1.07. Cast. 1.08. Annealed. AZ 51 X 5 Al, 1 Zn, 0.25 .88 Mn. 2.5 Cu, 0.3 Si, 0.8 Fe, 0.5 Mn, 1.26. Cast. 2.6 Zn.2 1.45. Annealed. AZ61 X. A,B. Dowmetal J-1; Mazlo AM-C57S; 6 Al, 1 Zn, 0.2 .80 Whitelight J-1; British DTD 88B, Mn. 1.9 Cu, 0.1 Si, 1 Fe, 1.5 Mg 2., 1.57. Cast. DTD 120A, DTD 259; Elektron 1.65. Annealed. AZM. 1.8 Cu, 0.4 Si, 0.9 Fe, 0.9 Cr 2.. 1.05. Cast. AZ63, A. Dowmetal H; Mazlo AM 265; Brit¬ 6 Al, 3 Zn, 0.2 .75 1.09. Annealed. ish DTD 59A, DTD 289; Elek¬ Mn. tron AZG. 1.8 Cu, 0.3 Si, 0.6 Fe, 1 Ni, 1.6 1.48. Cast. Mg.2 1.65. Annealed. AZ80X, A... Dowmetal 0-1; Mazlo AM-C58S: 8.5 Al, 0.5 Zn, .75 Whitelight 0-1; British DTD 88B; .15 Mn. 11.9 Si, 0.8 Fe 2. 1.31. Elektron AZ 855. 1.78. Annealed.

AZ91 A,B, C. Dowmetal R, RCjMazlo AM 263; 9 Al, 0.7 Zn, 0.2 .71 0.1 Si, 0.6 Fe 2. 1.86. British DTD 136A; Elektron AZ Mn. 2.00. Annealed. 91. 8.1 Cu, 0.4 Si, 0.6 Fe ®. 1.33. Quenched. AZ 92, A.. 9 Al 2 Zn, 0.1 .71 1.32. Aged. Mn. 5.3 Cu, 0.5 Si, 0.8 Fe, 0.5 Mn, 1.23. Quenched. M I A, B . Dowmetal M; Mazlo AM403, AM 1.26 1.2 Mg.3 1.23. Aged. 3S; Whitelight M; British DTD 142,118,140A; Elektron AM 503. 2.5 Cu, 0.4 Si, 0.9 Fe, 1.8 Ni, 1.38. Quenched. 0.9 Mg.» 1.33. Aged. 4 Al, 0.2 Mn... 0.96 3.8 Cu, 6.1 Si, 0.9 Fe, 0.6 Mn, 1.16. Quenched. 3 rare earths, .27 1.6 Mg.* 1.14. Aged. 0.35 Zr, 0.3 Zn. 2.6 Cu, 0.4 Si, 0.6 Fe, 20.3 Zn». 0.98. Quenched. 0.98. Aged.

2.5 Cu, 0.3 Si, 0.9 Fe, 0.5 Mn, 1.32. Quenched. ALUMINUM ALLOYS 2.6 Zn.2 1.9 Cu, 0.1 Si, 1 Fe, 1.5 Mg»... 1.59. Quenched. Composition (%) Conductivity and remarks Reference 1.8 Cu, 0.3 Si, 0.6 Fe, 1.0 Ni, 1.45. Quenched. 1.6 Mg.* w/cm deg K 5.3 Cu. 0.5 Si, 0.8 Fe, 0.5 Mn, 1.36. Drawn. 0.5 Fe, 0.4 Cu. A=2.01 at 18® C. W. Jaeger and 1.2 Mg.< 1.60. Annealed. H. Diesselhorst Drawn. (1900). 4.3 Cu, 0.4 Si, 0.9 Fe, 0.4 Mn, 1.48. 0.6 Mg.'* 1.73. Annealed. A=1.93 at 0°C, 1.90 at 85°K, 1.59 R. Schott (1916). at 21.4°K. 11.9 Si, 0.8 Fe 4. 1.73. 1.81. Annealed.

Composition (%) i Conductivity > State * 0.1 Si, 0.5 Fe 4. 2.06. 2.07. Annealed.

w/cm deg K ^ Results by H. Masumoto (1925) at 27®C, 2 The samples were chill cast in an iron mold, then annealed for 30 minutes at 450'’C. 12.2 Cu, 0.3 Si, 0.6 Fe 2. 1.24. Cast. ® Chill-cast in an iron moM, annealed, then heated for 30 minutes at about 500®C, 1.48. Annealed. quenched in water, and later aged two weeks. 4 Chill-cast in an iron mold, forged, then cold-drawn to 60% of original diameter, 12.2 Cu, 0.2 Si, 0.6 Fe, 1 Mn 2.. 0.93. Cast. and later annealed for 30 minutes at 500*^C. 1.33. Annealed.

10.5 Cu, 0.3 Si, 0.8 Fe, 1 Ni, 1.35. Cast. 3 Sn 2. 1.59. Annealed.

8.4 Cu, 0.3 Si, 0.7 Fe, 0.7 Mn 2,, 1.02. Cast. 1.35. Annealed.

8.1 Cu, 0.4 Si, 0.6 Fe 2.,. . 1.39. Cast, 1.67. Annealed.

6.9 Cu, 0.3 Si, 0.7 Fe, 1.2 Sn 2.. 1.47. Cast. 1.66. Annealed.

39 ALUMINUM ALLOYS (CJont’d) ALUMINUM ALLOYS (Cont’d)

Nominal composition (%) Conductivity and remarks Reference Curve Composition (%) Remarks Reference

w/cm deg K N.-'Dural”... 0.57 Mg, 0.42 Fe, 4.10 Cu, As stamped; “Dur¬ J. de Nobel 94.0 Al. **. (1951). 8Cu. A = 1.32 at 273°K; 0.88 at 87°K... W. Mannchen (1931). P. Z.J.-J61... 0.29 Cu, 0.56 Mg, 0.02 Mn, R. W. Powers, 0.56 Fe, 0.30 Si, 0.01 Cr, J. B. Ziegler, Do. A=1.31 at 273°K: 0.90 at 87”K... Do. 0.01 Ti. and H. L. Johnston 15 Cu. A = 1.48 at 273°K: .90 at 8rK.... Do. (1951). 8 Mg. A = 1.00 at 273°K: .73 at 8rK.... Do. P. Z. J.-4S. 0.16 Cu, 1.02 Mg, 1.20 Mn, Do. Do. A=1.0S at 273”K; 77 at 8rK; Do. 0.52 Fe, 0.13 Si, 0.02 Cr, thermally treated. 0.02 Ti. 12 Mg. A:=0.77 at 273°K: .56 at 87°K.... Do. P.Z.J.-75S... 1.5 Cu, 5.5 Zn, 2.5 Mg, 0.2 Do. 14 Mg. A=0.69 at 273°K; .44 at 8rK; Do. Mn, 0.3 O. thermally treated. P. Z.J.-24S... 4.49 Cu, 0.01 Zn, 1.47 Mg, Do. 20 Si. A=1.59 at 273°; 1.21 at 87°K; Do. 0.66 Mn, 0.34 Fe, 0.13 “”. Si, 0.01 Cr, 0.02 Ti. 4 Cu, 2 Ni, 1.5 Mg; “Y" ”. *=1.62 at 273“K: 1.12 at 87‘’K... Do.

Do. A=1.53 at 273°K; 1.38 at 87°K; Do. thermally treated.

Mg. Mn, Sb:K-S Alloy 245.... *=1.07 at 273°K; 1.00 at 87‘’K... Do.

Mn, Mg, Sb; K-S Alloy 280..,. A=1.00 at 273°K: 0.80 at 87°K... Do.

Mn, Mg, Sb; K-S AUoy Special. A=1.39 at 273°K: 1-14 at 87°K... Do.

Cu, Mn, Mg; Nelson-Kolben A=1.60 at 273°K: 1.32 at 87°K... Do. 10. Cu; Nelson-Kolben Vn 1. k= 1.43 at 273°K: 1.18 at 87°K... Do.

Cu; Nelson-Kolben. A=1.59 at 273°K; 1.30 at 87°K... Do.

3-5 Cu. 0.5 Mg. A=1.60 at 273°K: 0.89 at 8rK... Do.

40 ALUMINUM AULOYS (Cont’d) ALUMINUM ALLOYS (Cont’d) COMPANY AND TRADE MANUALS COMPANY AND TRADE MANUALS

ASTM Nominal ASTM Nominal designa¬ Trade designation compositions (%) Conductivity State designa¬ Trade designation compositions (%) Conductivity State tion tion

w/cm deg K w/cm deg K

EC. 99.45 AI. 2.34 Annealed. SC 41.... A 132. 12Si, 2.5Ni, 1.2Mg, 1.17 T551 A2 2S; British BS 2L. ... 99 AI. 2.22 0.8 Cu. 2.18 H 18 D 132. 9 Si, 3.5 Cu, 0.8 Mg, 1.09 T 5 0.'8 Ni. 138. 10 Cu, 4 Si, 0.3 Mg . 1.05 WROUGHT ALLOYS CN 21.... 142. 4 Cu, 2 Ni, l.S Mg'.. 1.67 T 21 1.34 T 571 1.51 T 77 1.30 T 61 3S. 1.93 0 MI.... Cl. 195. 4.5 Cu. 1.38 T 4 1.63 H 12 1.47 T 62 1.59 H 14 CS 4. B 195. 4.5 Cu, 2.5 Si. 1.38 T 4 1.55 H 18 1.42 to 1.88 T 6 1.2 Mn, 1 Mg. 1.63 0 4S. 212. 8 Cu, 1.2 Si. 1.17 1.63 H 38 G 1. 214; British DTD 165. 1.38 CP 21.... IIB; British BH 6L1... 5.5 Cu, 0.5 Pb, 0.5 Bi. 1.55 T 3 1.38 Annealed. 14S; British DTD 364. 4.4Cu,0.8Si,0.8Mn, 1.93 0 CS 41.... A 214. 3.8 Mg, 1.8 Zn. 1.34 0.4 Mg. 1.55 T 6 B 214. 3.8 Mg, 1.8 Si. 1.47 1.21 T4 F 214. 3.8 Mg, 0.5 Si. 1.42 17S; British BS 6L1... 4 Cu, 0.5 Mg, 0.5 Mn. 1.72 0 CM 21... 218. 1.21 T 4 8 Mg . 0.96 220. .88 T 4 A 17S. 2.5 Cu, 0.3 Mg. 1.55 T 4 sc 8. 319. 6 Si, l5 Cu. 1.13 18S; British BS 4L25, 4 Cu, 2 Ni, 0.5 Mg. . 1.93 0 333. 9 Sii 3.8 Cu. 1.05 F BS 2L42. 1.55 T 61 1.21 T5 B18S. 4 Cu, 1.5 Mg, 2.0 Ni. 1.93 0 1.72 T72 1.17 T 6 1.42 T 7 CG 21.... 248; British BS2L40, 4.5 Cu, 1.5 Mg, 0.6 1.88 0 SC 21.... 355. 5 Si, 1.3 Cu, 0.5 Mg.. 1.67 T 51 DTD 273. Mn. 1.21 T 4 1.42 T6 25S. 4.5 Cu, 0.8 Mn, 0.8 1.55 T 6 1.47 T 61 Si. 1.93 0 1.63 T 7 32S. 12.5 Si, 1.0 Mg, 0.9 1.55 0 1.51 Chill T 6. Cu, 0.9 Ni. 1.38 T 6 SG 1. 356. 7 Si, 0.3 Mg. 1.67 T 51 SOS. 1.2 Mg. 1.93 0 1.55 T 6 1.93 H 38 1.59 T 7 C50S. 1.55 1.63 ChiU T6. A 51 S. 1.0 Si, 0.6 Mg, 0.25 2.09 0 360, A360. 9.5 Si. 1.13 to 1.47 Cr. 1.72 T 4 380, A380. 9 Si, 3.5 Cu. 0.96 to 1.09 GR 1. 52S. 2.5 Mg, 0.25 Cr. 1.38 0 384. 12 Si, 3.8 Cu. 0.96 1.38 H 38 A612. 6.5 Zn, 0.7 Mg, 0.5 .96 53S. 1.3 Mg, 0.7 Si, 0.25 1.72 0 Cu. Cr. 1.55 T 4 C 612. 6.5 Zn, 0.5 Cu, 0.4 1.59 56S; British DTD 303. 5.2 Mg, 0.1 Mn, 0.1 1.17 0 Mg. Cr. 1.09 H 18 750. 6.5 Sn, 1 Cu, 1.0 Ni.. 1.80 GS 21.... 61S. 1 Mg, 0.6 Si, 0.25 Cu, 1.72 lQ 0.25 Cr. 1.55 T 4 62S. 0.25 Cu, 0.6 Si, 1 Mg. 1.72 0 1.55 T 4 63S. 0.4 Cu, 0.7 Mg. 1.93 T 42 TITANIUM ALLOYS 2.09 T 5 ZG 42.... 75S. 5.5 Zn, 2.5 Mg, 1.5 1.21 T 6 Cu,0.3Cr,0.2Mn. Curve Composition (%) Conductivity and Remarks Reference R 301. IMg, 0.7 Si, 0.5 Mn.. 1.93 0 1.21 T4 1.55 T 6 w/cm deg K R 317. 1.72 0 Pb, 0.5 Bi. 1.21 T 4 2.8 Cr, 1 Fe. Abstract only; A: = 0.13 at C. J. Rigney and 273‘’K, 0.10 at 195°K, 0.06 L. I. Bockstahler at 80°K. (1951). CASTING ALLOYS Fig. 29; Rem-Cru Titanium, RC R, emf. W. W. Tyler and T.W.- 130-B; 4.7 Mn, 3.99 A. C. Wilson Ti. AI, 0.14 C. (1952). 85. 13. 12 Si. 1.55 to 1.21 S4. 43. 5 Si. 1.47 1.67 Annealed. SC 2. 85. 1.17 108. 4 Cu, 3 Si. 1.21 TUNOSTEN 1.47 Annealed.

SC 8. 5 Si, 3 Cu. 1.05 Composition Conductivity and remarks Reference 1.17 Relieved. 1.13 Aged. 1.38 T7 w/cm deg K

SC 1. A108. 1.42 “Impure”. Single crystal; /i:=1.83 at 83°K, 1.80 at 21“K.. E. Griineisen and 112. 7 Cu,'l.7 Zn. 1.17 E. Goens 1.47 Annealed. (1927). CS 22.... 113. 7Cu,2Si, 1.7 Zn.... 1.17 1.47 Annealed. CS22.... C113. 7 Cu, 3.5 Si. 1.09 CG 1. 122. 1.59 T2 1.30 T61 1.34

41 CHROMIUM CARBON STEELS (Cont’d) COMPANY AND TRADE MANUALS Composition (%) * Conductivity * State* Composition Conductivity w/om deg K w/cm deg K 2.53 C, 0.05 Si. 0.02 Mn. 0.01 P. 0.03 S.... Commercial. A=0.67 at 20°C. .31 As cast. 2.67 C, 0.11 Si. 0.02 Mn, 0.03 P, 0.05 S..., .30 Do. .32 l,000°(i annealed, 2 hr. .32 6 hr. .32 8 hr. 3.12 C, 0.06 Si, 0.05 Mn, 0.02 P. 0.06 S.... .26 As cast. 3.14 C, 0.01 Si, 0.03 Mn. 0.02 P, 0.03 S.... .26 Do. IRON 3.17 C, 0.21 Si, 0.08 Mn, 0.04 P, 0.06 S. .. .25 Do. .26 Annealed 1,000°C, 2 hr. See figures 8 and 9 under “METALLIC ELEMENTS” .26 6 hr. .27 8 hr. 3.53 C, 0.04 Si, 0.05 Mn, 0.01 P. 0.05 S.... .23 As cast. 3.64 C, 0.16 Si, 0.04 Mn, 0.02 P, 0.02 S.... .21 Do. .23 Annealed 1,000°C, 2 hr. STEELS .23 6 hr. .23 8 hr. The tables for steels are arranged into groups where 3.93 C, 0.15 Si, 0.04 Mn, 0.02 P. 0.05 S.... .20 As cast. 3.96 C, 0.2 Si, 0.06 Mn, 0.01 P, 0.02 S. .19 As cast. the principal alloying metals are as follows: carbon; .21 Annealed 1,000°C, 2 hr. silicon; copper, chromium, cobalt, manganese, molyb¬ .26 6 hr. denum, nickel, tungsten, vanadium; and aluminum. .50 8 hr. 4.13 C, 0.10 Si, 0.03 Mn, 0.02 P, 0.02 S.... .18 As cast. .20 Annealed 1,000®C, 2 hr. 4.26 C, 0.10 Si, 0.03 Mn, 0.02 P, 0.02 S.... .17 As cast. .19 Annealed RGOO'C, 2 hr. CARBON STEELS 4.35 C, 0.35 Si, 0.08 Mn, 0.02 P, 0.02 S.... .15 As cast. .57 Annealed 1,000'’C, 2 hr. 4.40 C, 0.34 Si, 0.03 Mn, 0.02 P, 0.08 S.... .15 As cast. Composition (%) Conductivity and remarks Reference .17 Annealed 1,000°C, 2 hr. 4.61 C, 0.37 Si, 0.03 Mn, 0.02 P, 0.04 S.... .13 As cast. .15 Annealed 1»000®C, 2 hr w/cm deg K 4.63 C, 0.54 Si, 0.08 Mn, 0.02 P, 0.07 S.... .13 As cast. .56 Annealed 1,000°C, 2 hr. W. Jaeger and 0.1 C. 3.82 C, 1.24 Si, 0.09 Mn, 0.01 P, 0.06 S.... .13 As cast. H.Diesselhorst Annealed 800®C, 1 hr. (1900). .20 3.81 C, 1.96 Si, 0.05 Mn, 0.05 S'.. .13 As cast. .35 Annealed 800®C, 1 hr. Do. 1C. .40 Add. annealed 1,000®C 1 hr. A:=0.72 at 18°C. E. Griineisen 0.1 C, 0.06 Mn, 0.05 3.84 C, 1.98 Si, 0.06 Mn, 0.01 S. .43 As cast. Cu, 0.02 Si, S, (1900). .52 Annealed 800®C, 1 hr. 0.03 P.

Do. 0.57 C, 0.2 Si, 0.1 *=0.52 at lO^C. ' Results by H. Masuraoto (1927) at 25°C. Mn, 0.04 S, 0.03 Cu, 0.01 P.

0.99 C, 0.1 Mn, 0.06 *=0.S1 at 18°C. Do. Si, 0.03 S, Cu. CARBON STEELS (Cont’d)

1.5 C, 0.2 Mn, 0.05 *=0.50 at 18°C. Do. Curve Composition (%) Remarks Reference Si, 0.03 Cu, S, 0.01 P. Fig. 24; Mild.. 0.14 C, 0.08 Si, 0.07 Mn... “Mild steel’*; heated J. de Nobel 1 C; “silver steel”.. See figure 23, curve with initial L. C. H. Lees to 800®C and fur¬ (1908). (1951). nace-cooled.

Fig. 23; 0.33 Mn, 0.18 C, 0.014 Si.. R, W, Powers, P. Z.J.- J. B. Ziegler, SAE 1020. H. L. Johnston CARBON STEELS (Cont’d) (1951a).

Fig. 23; 0.93 C, 0.34 Mn, 0.26 Si, Do. Composition (%) Conductivity' State' P. Z.J.- 0.1 Ni, Cr, 0.05 Mo. SAE1095.

w/cm deg K

0.1 C, 0.4 Mn, 0.02 P, 0.02 S. 0.60 0.4 C, 0.3 Si, 0.4 Mn. 0.02 P, 0.02 S. .44 0.7 C, 0.3 Si, 0.2 Mn, 0.03 P, 0.02 S. .45 CARBON STEELS (Cont’d) 0.9 C, 0.3 Si, 0.2 Mn, 0.03 P, 0.02 S. .42 COMPANY AND TRADE MANUALS 1.0 C, 0.3 Si, 0.2 Mn, 0.03 P, 0.02 S. .42 1.2 C, 0.3 Si, 0.2 Mn, 0.03 P, 0.02 S. .40 1.5 C, 0.2 Si, 0.2 Mn, 0.03 P, 0.02 S. .39 Composition (%) Conductivity 2.41 C, 0.12 Si, 0.05 Mn, 0.04 P, 0.09 S.... .32 .33 ^^led 1,000°C, 2 hr. .33 6 hr. w/cm deg K .33 8 hr. 0.08 C, 0.045 O, 0.07 Ni, 0.31 Mn, 0.02 Mo. 0.59 0.23 C; trace Cr,' 0.074 Ni, 0.635 Mn, 0.13 Cu. .52 .52 0.80 C, 0.11 O, ().13 Ni, 0.32 Mn, 0.07 Cu, 0.01 Mo. .49 1.22 Ci 0.11 Cr', 0.13 Nii 0.35 Mn^ 0.01 Mo, 0.08 Cu. .45

42 TEMPERATURE

Specific references can be found under the type of steel.

SILICON STEELS CORROSION RESISTING STEELS (Cont’d)

Composition (%) Conductivity and remarks Reference Curve Composition (%) Remarks Reference

w/cm deg K Fig. 24; 2% 1.92 Ni, 0.72 Mn, 0.21 Si, Heated to SOC^C and J. de Nobel Ni. 0.14 C. furnace-cooled. (1951). 0.2 Si, 0.1 C, 0.1 *=0.60 at 18°C. W. Jaeger and Md, trace of P, S, H.Diesselhorst 24% Ni. 24.30 Ni, 6.05 Mn, 1.18 C.. Heated to 1,050®C and Do. and Cu. (1900). water-quenched.

27% Ni. 27.30 Ni, 14.6 Cr, 3.5 W, Heated to 1,000°C and Do. 1.62 Si, 1.34 Mn, 0.44 C. water-quenched, “era/ATV". CORROSION RESISTING STEELS 31% Ni. 31.4 Ni. 0.82 Mn, 0.7 C... Heated to SIW^C and Do. (Copper, chromium, cobalt, manganese, molybed- furnace-cooled. Do. num, nickel, tungsten, and vanadium) 36% Ni. 36.17 Ni, 0.92 Mn, 0.16 C, Heated to ^OSO^C and Do. 0.09 Si. water-quenched. Curve Composition (%) Remarks Reference 57% Ni. 57.5 Ni, 1.31 Mn, 0.34 C, As forged; “A.M.F.”. Do. 0.14 Si. Fig. 23; Kr. 0.6 Mn, 0.4 C, 0.3 Si, 0.03 J. Karweil and Sc. S, 0.3 P. K. Schafer 2%Mn. 2.23 Mn. 0.41 C, 0.07 Si... Heated to SlKl^C and Do. (1939). furnace-cooled.

A=7 mw/cm deg K K. R. Wilkinson 13% Mn. 1% 12.69 Mn, 1.27 C, 0.12 Si.. Heated to 2,()(X)'’C and Do. at 10°K, 11 at 15° and J. Wilks C. water-quenched, Do. K, 15 at 20°K. (1949). **manganese steel”. 13% Me. 12.95 Mn, 0.10 S, 0.12 Si, Heated to ,(XX)“C and Do. 0.09 C, 0.05 P. water-quenched.

39% Mn. 38.9 Mn, 0.7 Si, 0.2 C. 0.06 Do. S, 0.04 P.

43 Specific references can be found under the type of steel.

CORROSION RESISTINO STEELS (Cont’d) CORROSION RESISTING STEELS (Cont’d)

Curve Composition (%) Remarks Reference Curve Composition (%) Remarks Reference

13% Cr. 13.5 Cr. 0.36 C, 0.22 Si, Heated to 800‘"C and J. de Nobel P.Z.J.-347.... 17.88 Cr, 10.28 Ni, 1.24 R. W. Powers, 0.13 Md. furnace-cooled. (1951). Mn, 0.85 Nb, 0.57 Si, J. B. Ziegler, 0.26 Cu, 0.06 C, 0.03 N, and H. L. 13% Cr, .do. Heated to OSO^C, oil Do. 0.02 P. Johnston quenched. quenched, reheated Do. (1951a). to 450°C, air¬ cooled. P. Z. J.-304.., 18.68 Cr,8.84 Ni, 1.12Mn, Do. 0.43 Si, 0.06 Cu, 0.05 C, 19% Cr. 18.8 Cr. 8.1 Ni, 0.43 Si, Heated to 1,150°C and Do. 0.03 N, 0.02 P. 0.24 Mn, 9.12 C. water-quenched. Fig. 23; B.- 7.9 Ni, 18.9 Cr, 1 Ti, 0.7 Austenite grains R. Berman 3%Ni. 2.61 Ni. 0.75 Mo. 0.49 Cr, Heated to 850°C, oil- Do. Stainleas. Si, 0.1 C. about 0.01 mm (1951b). 0.45 Mn. 0.27 C, 0.11 Si, quenched, reheated across. 0.03 P, 0.01 S. to 650°C, water- quenched. Fig. 23; Es. 18 Cr, 9 Ni, 0.15 C. Zi.-303. J. E. Zimmer¬ Fig. 23; 0.99 Cr, 0.52 Mn, 0.33 C, R. W. Powers, man (1952). P.Z.J.-SAE 0.2 Si, Ni, and Mo each. J. B. Ziegler, 4130. and H. L. Es. Zi.-347 . 18 Cr, 10 Ni, 0.5 Nb, 0.08 C. Johnston (1951a). T.W.-316. 17Cr, 12 Ni,2.5Mo, 0.1 C. 25% cold reduction.. W. W. Tyler and A. C. Wilson P. Z. J.-410... 12.6 Cr, 0.36 Si, 0.32 Mn, Do. (1952). 0.12 Ni, 0.09 C, 0.06 Cu. 0.03 N. 0.01 P.

44 CORROSION RESISTING STEELS (Cont’d) NICKEL ALLOYS COMPANY AND TRADE MANUALS COMPANY AND TRADE MANUALS

AISI No. Nominal composition (%) Conductivity Trade Nominal composition (%) Conductivity Designation

w/cm deg K w/cm deg K 0.08 C. .045 Cr. .07 Ni, .31 Mn, .02 Mo. 0.59 0.23 C, trace Cr, .074 Ni. .635 Mn, .13 Cu. .52 0.61 0.415 C, trace Cr, .063 Ni, .643 Mn, .12 Cu. .52 .48 0.325 C. .17 Cr, 3.47 Ni, 0.55 Mn, .09 Cu. .04 Mo. .37 Monel. 67 Ni, 30 Cu, 1.4 Fe, 1 Mn, 0.15 C, .1 Si. .26 0.34 C, 0.78 Cr, 3,53 Ni. 0.55 Mn, .39 Mo, .05 Cu.... .33 K Monel. 66 Ni, 29 Cu, 2.75 Al, 0.9 Fe, .75 Mn, .5 Si, .15 C. .19 0.315 C, 1.09 Cr, 0.073 Ni, .69 Mn, .012 Mo, .07 Cu. .48 57 Ni, 20 Mo, 20 Fe. .17 0.35 C, .88 Cr, .26 Ni, .59 Mn, .2 Mo, .12 Cu. .43 62 Ni! 30 Mo, 5 Fe. .11 5 Cr. 0.5 Mo... .37 58 Ni, 17 Mo, 15 Cr, 5 W, 5 Fe. .13 1.22 C, 0.03 Cr, .07 Ni, 13.0 Mn, 0.22 Si, .07 Cu. ... .13 85 Ni, 10 Si, 3 Cu. .21 0.28 C, trace Cr, 28.37 Ni, 0.89 Mn,.15 Si, .03 Cu.... .13 .15 0.08 C, 19.11 Cr, 8.14 Ni, 0.37 Mn, .68 Si, .6 W, .16 Illium G. .12 .03 Cu. 80 Ni, 20 Cr'..'. .56 0.13 C, 12.95 Cr, 0.14 Ni, .25 Mn, .17 Si, .06 Cu, .27 60 Ni, 24 Fe, 16 Cr. .14 .01 V. 35 Ni, 50 Fe, 15 Cr. .13 0.27 C, 13.69 Cr, 0.21 Ni, .28 Mn, .25 W, .02 V. .26 .23 0.715 C, 4.26 Cr, 0.067 Ni, .25 Mn, 18.45 W, 1.08 V... .25 302 0.14 C, 18 Cr, 9 Ni, 2 Mn. .22 303 0,15 C, 18 Cr, 9 Ni, 0.07 P, S, Se each, .6 Zr, Mo each.. .22 309 0.20 C, 23 Cr, 13 Ni, 2 Mn. .19 410 0.15 C, 12.5 Cr. .40 416 0.15 C, 13 Cr, 0.07 P, S, Se each, .6 Zr, Mo each.... .40 420 0.15 C or more, 13 Cr. .33 430 0.12 C, 16 Cr. .30 440 0.7 C, 17 Cr, 0.75 Mo. .25 15 Cr, 35 Ni. .13

DEOXIDIZED STEELS (Aluminum)

Curve Composition (%) Remarks Reference

Fig. 24; 4% Al. 4.11 Al, 0.13 Si, 0.08 Mn, Heated to 800“C and J. de Nobel 0.03 C, 0.01 S. furnace-cooled. (1951).

45 NICKEL ALLOYS (Cont’d) NICKEL ALLOYS (Cont’d)

Curve Composition (%) Conductivity and Reference Curve Composition (%) Conductivity and Reference remarks remarks

w/cm deg K w/cm deg K

97,0 Ni, 1.4 Co. 1 Mn, 0.4 Ar=0.59 at 18°C. W. Jaeger and See Fig. 8 and Nickel J. de Nobel Fe. H. Diesselhorst Table under “Me¬ (1951). (1900). tallic Elements”.

80 Ni, 20 CrJ “nichrome”.. A:=0.31 above room R. Kikuchi 67 Ni, 30.2 Cu. temperature. (1932). Fig. 24; 57% 57.5 Ni, 1.31 Mn, 0.34 C, Do. 70 Ni, 18 Cr, 12 Fe. /(:=0,28 above room Do. Ni. .14 Si; remainder Fe, ap¬ temperature. prox. 40.

Fig. 25; Kr. 60 Ni, 15Cr. 16Fe. 7Mo,. J. Earweil and Fig. 25; Es. I. Estermann and So.-Contr- K. Schafer Zi.-Inconei J. E. Zimmer¬ acid. (1939). (drawn). man (1952). 80 Ni, 14 Cr, 6 Fe. Do. neL J. B. Ziegler, nel, #1. and H. L. J ohnston Es. Zi.-Inco- Do. (1951c). nel, #2. 60.05 Ni, 14.74 Cr, 15.82 Do. Do. acid. Fe, 7.2 Mo, 2.14 Mn, 0.05 C. Do. (annealed). P. Z.J. Monel. 67 Ni, 30 Cu, 1.4 Fe, 1.0 Hot-roUed. Do. Mn, 0.15 C, .1 Si, .01 S.

P.Z.J.-Monel, Cold-roUed. Do. cold.

46 60 Pd,50Ag. 50 Pd,Au. 70Pd, 30Au. 80 Pd,20Au. 90 Pd,10An. 60 Pd,40Ag. 90 Pd,10Ag. 90 Pd,10Pt. 60 Pd,40Au. 80 Pd,20Pt. 70 Pd,30Ag. 80Pd, 20Ag. 70 Pd,30Pt. and “GOLDALLOYS”. 60 Pd,40Pt. 50 Pd,Pt. Composition (%) CONDUCTIVITY, w/cm deg K See alsothetablesgivenunder“SILVERALLOYS” PRECIOUS METAL,ALLOYS *=0.36at25°C. *=0.40at25°C. *=0.32 at25°C. *=0.27at25°C. *=0.32 at25°C. A=0.48at25°C. *=0.56at25°C. *=0.42at25°C. *=0.38at25°C. *=0.40at25°C. *=0.44at25°C. A=0.37at25°C. *=0.37 at25°C. PALLADIUM ALLOYS Conductivity andremarks w/cm degK (1911). Reference Do. Dn Dn Do Do. Do 50 Pt,Pd. 60 Pt,40Pd. 70 Pt,30Pd. 80 Pt,20Pd. 90 Pt,10Pd. 55 Pd,45Au. 50 Pd,Cu. “Impure”. 85.5 Pd,14.5Cu... Commercial. Composition (%) PALLADIUM ALLOYS(Cont’d) *=0.37 at25°C. *=0.34at25°C. *=0.36 at25°C. *=0.42 at25°C. *=0.43 at25°C. *=0.516 at18°C. Annealed 2hr.at800°C;seeFig.26,“Pd- *=0.42 atirC. Polycrystalline; seeFig.26,*‘Pd-15%Cu”... Annealed: seeFig.26,“Pd-50%Cu”. PLATINUM ALLOYS 45% Au”. Conductivity andremarks w/cm degK W. Jaegerand E. Griineisenand T. Barrattand (1911). H.Diesselhorst (1900). H. Reddemann (1934). R. M.Winter (1925). Reference Do. Do. Do. Do. Do. Do. 47 PLATINUM ALLOYS (Cont’d) COPPER ALLOYS (Cont’d)

Composition (%) Conductivity and remarks Reference Curve Composition (%) Conductivity and remarks Reference

w/cm deg K w/cm deg K

90 Pt, 10 Ir. A=0.31 at 17°C. Eu. Di.-Cu- 70 Cu, 30 Mn. About 48 crystals per cen¬ A. Eucken and R. M. Winter 50% Mn, timeter. K. Dittrich (1925). 1. (1927).

85 Pt, 15 Ir. *=0.23 at 17°C. Do. About 112 crystals per Do. 50% Mn, centimeter. 80 Pt, 20 Ir. *=0.18 at 17°C. Do. 2.

90 Pt, 10 Rh. *=0.30 at 17°C. Do. 3 Ag. Unannealed; A = 3.67 at E. Grilneisen and 83® and 21®K. E. Goens 96 atomic % Pt, 4 *=0.46 at 18'’C. (1927). atomic % Au. and J. 0. Linde (1930). Do. *=4.06at83°K, 6.19 at 90 atomic % Pt, 10 *=0.35 at 18°C. Do. 21°K. atomic % Au. Fig. 27; G. 95.5 Cu, 4.5 Au. Polycrystalline; unan¬ 75 atomic % Pt, 25 *=0.24 at 18°C. Do. Re.-4% nealed. H. Reddemann atomic % Au. , Au. (1934).

55 atomic % Pt, 46 Do. G. Re.-10% 90.3 Cu, 9.7 Au. Polycrystaliine; unan¬ Do. atomic % Au. Au. nealed.

75.1 Cu, 24.9 Au. Quenched from 800®C; Do. A=0.34 at 83°K. COPPER ALLOYS Annealed 20 hr at 400®C: Do. See also the “COPPER-NICKEL ALLOY” graph and A=0.61 at 83®K. and tables. Annealed 32 hr at 360®C; Do. A=0.63 at 83®K. Curve Composition (%) Conductivity and remarks Reference Same as above except later Do. annealed 2 hr at 820®C, w/cm deg K then quenched; A=0.23 af83®K. About 62 Cu, 15 Ni, "Neusilber”; * = 0.29 at L. Lorens (1881). 22 Zn. 0®C. G. Re.-25% Same as above except later Do. Au. annealed 5 months at About 82 Cu, 18 Zn... “Red brass”; A=1.03 at Do. room temperature. o°c. G. Re.-25% Same as above except ad¬ Do. About 65 Cu, 35 Zn.,. “Yellow brass”; * = 0.85 Do. Au, an¬ ditionally annealed 30 at 0®C. nealed. hr at 320°C.

0.34 P. A=0.95 at 15®C. G. Re.-Cu- 49.9 Cu, 50.1 Au. Annealed 30 hr at 320°C... Do. (1900). 50% Au.

0.87 P. *=0.61 at 15°C. Do. G. Re.-Cu- 49.9 Cu, 50.1 Pd. Annealed.. Do. 60% Pd. 1.79 P.,. *=0.53 at 15°C. Do. G. Re.-6% 93.6 Cu, 6.4 Pd. Polycrystaliine; unan¬ Do. 2.08 P. *-0.34 at 15°C. Pd. nealed.

2.35 P. *=0.27 at 15°C. Do. 65 Cu, 45 Pd. Annealed; *=0.67 at 83°K. Do.

5.25 P. *=0.15 at U^C. G. Re.-45% Annealed 2 hr at 800°C.,.. Do. Pd. 1.04 As. * = 1.14 at 15°C. G. Re.-45% Do. 1.80 As. *=0.82 at 15°C. Do. Pd, (an¬ 320°C. nealed). 2.66 As. *=0.64 at 15°C. Do.

3.00 As. *=0.54 at 15°C. Do. COPPER ALLOYS (Cont’d) 5.02 As. *=0.20 at 15°C. Do.

85.7 Cu, 7.15 Zn, 6.39 “Red brass”; *=0.60 at W. Jaeger and Composition (%) i Conductivity > Sn, 0.6 Ni. 18°C. H. Diesselborst (1900). w/cm deg K 84 Cu, 12 Mn, 4 Ni... *=0.22 at 18°C. Do. 99.986 Cu, 0.0016 Fe, .02 O2. 3.93 2 Fig. 27; L.- 70 Cu, 30 Zn. C. H. Lees 99.80 Cu, 0.19 Si, .02 Fe.-. 2.13 2 Brass. (1908). 99.78 Cui 0.23 Si^ .02 Fe. 1.92 2 99.65 Cui 0.32 Sii .032 Fe. 1.65 2 Fig. 27: L.- 62 Cu, 22 Zn, 15 Ni... “German silver”. Do. 1.29 2 Ger. silv. 99.06 Cu’ 1.00 Si| 0.03 Fe.. . 0.82 2 98.09 Cu) 1.98 Sii 0.05 Fe. 0.51 2 L.-Plat. Approx, same as Do. 96.00 Cui 3.91 Sii 0.02 Fe... 0.34 2 above.

L.-Manganin. 84 Cu. 12 Mn,4Ni... “Manganine”. Do. ^ These values were determined by C. S. Smith (1935) at 20®C. Sometimes the com- p<»ition percentages add up to more than 100. 82 Cu, 18 Zn. “Red brass”; “fine” crys¬ A. Eucken and 2 The copper-silieon alloys were hot-rolled, cold-drawn and annealed at 700®C and tals; *=1.27 at 273°K, 0. Neumann were in the homogeneous ct solid solution. 0.66 at 90°E. (1924).

“Red brass”; "large” crys¬ Do. tals; *=1.30 at 273°K, 0.65 at 90°K.

48 95.34 Cu,4.55Mn,0.06Fe,.02Mg. 98.27 Cu,1.77Mn,0.03Fe,.01Mg. 99.55 Cu,0.43Mn,.01Fe,Mg. 99.88 Cu,0.14Mn,.01Fe,Mg. 99.94 Cu,0.07Mn,.01Fe,.02Mg. 89.88 Cu,9.90Al,0.22Fe. 90.56 Cu,9.37Al,0.07Fe. 92.15 Cu,7.72Al,0.13Fe. 98.08 Cu,1.89Al,0.03Fe. 99.20 Cu,0.71Al;.09Fe. 99.47 Cu,0.47Al,.02Fe. solid solution(exceptthe12%Al,whichwas S). 90.25 Cu,9.53Mn,0.18Fe,.02Mg..021C. 99.05 Cu,1.05Mn,0.01Fc,.01Mg. 87.76 Cu,12.15Al,0.09Fe. 95.25 Cu,4.61Al,0.14Fe. 99.77 Cu,0.22Al,.01Fe. 99.95 Cu,0.07Al,.01Fe. nealed at700°C. position percentagesadduptomorethan100. 80.03 Cu,19.82Mn,0.09Fe,.02Mg,.035C. CONDUCTIVITY * Thecopper-manganesealloysweredeoxidized withmagnesium,hot-rolled,andan¬ 2 Thecopper-aluminumalloyswererolledand annealedat700°Candwereinthea ^ ThesevaluesweredeterminedbyC.S.Smith(1935)at20°C.Sometimesthecom¬ 4 6810204080iOO200300 CX)PPER ALLOYS(ConPd) Composition (%)* Conductivity ^ w/cm degK 0.26 2 0.49 2 0.54 2 0.66 2 0.72 2 2.35 2 2.91 2 0.15 2 2.26 2 3.28 2 3.62 2 0.83 2 3.52 2 1.02 2 0.65 2 1.50 2 1.23 2 1.75 2 TEMPERATURE °K except wherenoted. position percentagesadduptomorethan100. 59.76 Cu,29.88Zn,0.15Mn,10.13Ni.0.04 Fe, 56.01 Cu.25.93Zn,0.18mn,17.95Ni,0.08Fe, 60.41 Cu,37.09Zn,1.03Sn,1.12Pb,0.02Fe,.18 99.986 Cu,0.002Fe,.02Oj. 64.04 Cu,30.50Zn,5.41Ni,0.05Fe. 65.51 Cu,23.86Zn,0.18Mn.10.36Ni,0.08Fe, 63.76 Cu,19.79Zn,0.18Mn,16.29Ni,0.14Fe.. 88.08 Cu,4.09Zn,3.76Sn,3.80Pb.0.02Fe,.25P. 88.07 Cu,3.70Zn,3.77Sn,3.83Pb,0.03Fe... 65.99 Cu,29.18Zn,4.02Pb,0.01Fe. 61.85 Cu,34.79Zn,3.29Pb,0.07Fe. 85.10 Cu.12.97Zn,1.88Pb.0.05Fe. 97.49 Cu,0.06Fe,.27Ni,2.24Be. 97.49 Cu,0.06Fe,.27Ni,2.24Be. 97.49 Cu,0.06Fe..27Ni,2.24Be. 97.49 Cu,0.06Fe,.27Ni,2.24Be. 95.21 Cu,4.77Zn.0.02Fe. 96.94 Cu,3.04Zn.0.02Fe. 66.24 Cu,33.72Zn,0.03Pb,.01Fe..001S. Al, .21Si. 2 Themiscellaneousalloyswereextensively worked,annealed,andslowlycooled .04 Mg. .01 C. .02 C. * ThesevaluesweredeterminedbyC.S.Smith (1935)at20°C.Sometimesthecom¬ Composition (%)^ COPPER ALLOYS(Cont'd) Conductivity ^ w/cm degK 2.68 2 0.30 2 0.56 2 0.90 2 0.82 2 0.74 2 0.86 2 2.42 2 3.94 2 1.00 2 1.11 2 1.08 2 1.60 2 1.03 2 1.20 2 .59 2 .42 2 .46 2 .34 2 Reheated. Quenched. Reheated. Quenched, cold- Chill-cast. drawn. State ' 49 COPPER ALLOYS (Cont’d) COPPER ALLOYS (Cont’d) COMPAJSY AND TRADE MANUALS Composition (%) ' Conductivity > State ‘ Name Nominal Composition (%) Conductivity w/cm deg K 66^7 Cu, 17.65 Zn, 13.24 Ni, 0.10 Fe, 2.23 Sn, .31 2 Sand-cast. w/cm deg K 10.44 Pb. Leaded Brasses: 89.08 Cu. 4.98 Ni, 0.08 Fe, 5.11 Ai, 0.74 Si. .45 2 Quenched. Leaded commercial bronze 90 Cu, 9.5 Zn, 0.5 Pb. 1.80 89.08 Cu, 4.98 Ni, 0.08 Fe, 5.11 A], 0.74 Si. .57 2 Reheated. Leaded commercial bronze 89 Cu, 0.25 Zn, 1.75 Pb. 1.80 89.08 Cu, 4.98 Ni, 0.08 Fe, 5.11 Al, 0.74 Si. .66 2 Furnace-cooled. Commercial bronze. 90.25 Cu, 6.9 Zn, 1.75Pb, INi. 1.40 56.13 Cu, 42.34 Zn, 1.02 Ni, 0.49 Fe. 1.14 2 Low leaded brass. 64.5 Cu, 35 Zn, 0.5 Pb. 1.17 89.38 Cu, 0.31 Ni. 0.52 Fe, .38 Sn, 9.41 Al. 0.60 2 Low leaded brass.... 67 Cu, 32.5 Zn, 0.5 Pb. 1.16 75.79 Cu, 22.22 Zn, 0.01 Fe, 1.98 Al.... 1.00 2 Medium leaded brass. 64.5 Cu, 34.5 Zn, 1.0 Pb. 1.17 59.35 Cu, 38.36 Zn, 0.12 Mn, 1.06 Fe, 0.98 Sn, 1.01 2 High leaded brass. 62.5 Cu, 35.75 Zn, 1.75 Pb. 1.17 .13 Pb. High leaded brass. 64 Cu, 34 Zn, 2.0 Pb. 1.15 99.654 Cu. 0.03 Fe, .32 Si. 1.65 2 Extra high leaded brass... 62.5 Cu, 35Zn, 2.5Pb. 1.17 95.61 Cu, 4.51 Mn, 0.11 Fe. 0.46 2 Free cutting brass. 61.5 Cu, 35.5 Zn, 3 Pb. 1.17 99.21 Cu, 0.01 Fe, .01 Si. .85 Cd. 3.45 2 Leaded Muntz metal. 60 Cu, 39.5 Zn, 0.5 Pb. 1.21 98.41 Cu. 0.02 Fe, .59 Sn, .02 Si. 1.07 Cd. 2.33 2 Free cuting Muntz metal. 60.5 Cu, 38i4 Zn, 1.1 Pb. 1.17 72.49 Cu, 17.76 Zn, 3.34 Mn, 1.78 Fe, 4,44 Al. . 0.50 2 Forging brass. 60 Cu, 38 Zn, 2 Pb. 1.17 94.00 Cu, 1.03 Mn, 0.08 Fe, 4.68 Si. 0.25 2 Sand-cast. Architectural bronze. 57 Cu, 40 Zn, 3 Pb. 1.21 95.69 Cu, 0.99 Mn, 0.16 Fe, 3.23 Si. 0.33 2 Leaded naval brass. 60 Cu, 37.5 Zn, 0.7 to 1.75 Pb, 1.17 98.10 Cu. 0.30 Mn. 0.06 Fe, 1.50 Si. 0.54 2 0.75 Sn. 81.55 Cu. 14.21 Zn, 0.20 Mn, 0.04 Fe, 4.00 Si... 0.28 2 Chill-cast. Leaded tin bearing bronze. 87 Cu, 4 Zn, 8 Sq, 1 Pb. 0.47 95.83 Cu, 1.12 Zn, 0.02 Fe, 3.11 Si. 0.37 2 High leaded tin bronze (bushing). 80 Cu, 10 Sn, 10 Pb. 0.47 78.30 Cu, 0.20 Ni, 8.04 Sn, 13.32 Pb. 0.1 P. 0.42 2 Sand-cast. Dairy bronze. 64 Cu, 8 Zn, 20 Ni, 4 Pb, 4 Sn.. 0.23 87.86 Cu, 3.05 Zn, 0.03 Fe, 8.87 Sn. 0.54 2 Sand-cast. Leaded nickel brass. 60 Cu, 16 Zn, 16 Ni, 5 Pb, 3 Sn. 0.27 88.36 Cu, 1.90 Zn, 0.07 Fe. 9.55 Sn. 0.50 2 Sand-cast. 60.54 Cu, 36.46 Zn. 0.21 Mn, 0.73 Fe, 1.48 Sn, 0.96 2 Sand-cast. Special Brasses: 0.04 AI. Admiralty metal. 71 Cu, 28 Zn, 1 Sn. 1.09 99.04 Cu. 0.07 Fe, .9 Cd. 2.76 2 Naval brass. 60 Cu, 39.25 Zn, 0.75 Sn. 1.17 50.75 Cu, 0.47 Mn, 48.69 Fe, 0.05 Si, .02 C. 0.99 2 Manganese bronze. 58.5 Cu, 39 Zn, 1.4 Fe, 1 Sn, 1.09 0.1 Mn. Aluminum brass. 76 Cu, 22 Zn, 2 Al. 1.00 * These values were determined by C. S. Smith (1935) at 20°C. Sometimes the com¬ ‘‘Ambronze^74”. 94.97 Cu, 4.0 Zn, 1.0 Sn, 0.03 P. 1.64 position percentages add up to more than 100. “Ambronze-421”. 88.00 Cu, 10.0 Zn, 2.0 Sn. 1.19 2 The miscellaneous alloys were extensively worked, annealed, and slowly cooled Manganese red brass. 85.0 Cu, 14.0 Zn, 1.0 Mn. 0.99 except where noted. Silicon red brass. 82.0 Cu, 17.0 Zn, 1.0 Si. 0.67 Trumpet brass. 81.0 Cu, 18.0 Zn, 1.0 Sn. 1.21 Arsenical admiralty. 71.0 Cu, 28.0 Zn, 1.0 Sn, 0.04 As. 1.11 Manganese brass. 70.0 Cu, 29.0 Zn, 1.0 Mn. 0.74 COPPER ALLOYS (Cont’d) Nickel silver 18%-B. 55 Cu, 27 Zn, 18 Ni. 0.29 Nickel silver 15%. 66 Cu, 19 Zn, 15 Ni. 0.35 Leaded nickel silver 12%.. 65 Cu, 20.7 Zn, 12 Ni, 2 Pb, 0.40 Curve Composition (%) Remarks Reference 0.3 Mn. Phosphor bronze 5%-A... 95 Cu, 5 Sn, trace P. 0.80 Phosphor bronze 8%-C... 92 Cu, 8 Sn, trace P. 0.63 Fig. 27; Kr. 64 Cu,20Zn, 16 Ni... Phosphor bronze 10%-D.. 90 Cu, 10 Sn, trace P. 0.50 S.-Ger. K. Schafer Phosphor bronze 1.25%-E. 98.75 Cu, 1.25 Sn, trace P. 2.05 silv. (1939). Phosphor bronze. 98.7 Cu, 1.25 Sn, 0.05 P. 2.18 98.24 Cu, 1.75 Sn. 0.01 P. 1.47 Fig. 27; Kr. 46 Cu, 41 Zn, 13 Ni... Do. Do!; 95.95 Cu, 4.0 Sn, 0.05 P. 0.81 ^.-bronze. Do. 95.75 Cu, 4.0 Sn, 0.25 P. 0.81 Do. 95.17 Cu, 4.0 Sn. 0.08 P, 0.5 Fe. 0.76 Fig. 29a; Al. 45.9 Cu, 42.1 Zn, 9.8 “German silver”; data fits J. F. Allen and Do. 94.75 Cu, 5.0 Sn, 0.25 P. 0.81 Mn.-Ger. Ni, 2.0 Pb, 0.15 Fe, equation A:=5.3X10“^ E. Mendoza Do. 93.9 Cu, 5.0 Sn, 0.1 P, 1 Pb.... 0.83 silv. 0.05 Mn. T®. (1948). Do. 93.7 Cu, 6.0 Sn, 0.3 P... .•. 0.57 Do. 91.75 Cu, 8.0 Sn, 0.25 P..,.... 0.62 47 Cu, 41 Zn, 9 Ni, 2 Mean diameter of crystals R. Berman Do... 89.75 Cu, 10.0 Sn, 0.25 P. 0.50 Pb. was 0.02 mm. (1951b). Do. 87.90 Cu, 4.0 Sn, 4 Zn, 4 Pb, 0.55 (Jer. silv. 0.1 P.

Special Bronzes: Silicon bronze A. 96Cu,3Si. 0.38 Silicon bronze B. 97 Cu, 1.5 Si. 0.59 CK>PPER ALLOYS (Cont’d) “Everdur-1010”. 95.8 Cu, 3.1 Si, 1.1 Mn. 0.33 COMPANY AND TRADE MANUALS “Everdur-1012”. 95.6 Cu, 3.0 Si, 1.0 Mn, 0.4 Pb. 0.33 “Everdur-1015”. 98.25 Cu, 1.5 Si, 0.25 Mn. 0.54 “Eveidur-1014”. 90.75 Cu, 2.0 Si, 7.25 Al. 0.45 Name Nominal Composition (%) Conductivity 6% Aluminum bronze 95 Cu, 5 Al. 0.83 92 Cu, 8 Al. 0.71 10% Aluminum bronze 88 Cu, 10 Al. 0.60 w/cm deg K 82.5 Cu, 10 AL 5 Ni, 2.S,Fe... 0.38 Aluminum silicon bronze.. 91Cu, 7AL2Si. 0.38 Electrolytic Tough Pitch. 99.92 Cu, 0.04 Os. 3.91 “Calsun". 95.5 Cu, 2.5 AL 2.0 Sn. 0.87 99.94 Cu, 0.02 P. 3.39 Chromium copper. 99.05 Cu, 0.85 Cr. 3.20 99.92 Cu’.. 3.93 “Hitenso-961”. 99.0 Cu, l.OCd. 3.44 Silver bearing. 99.9 Cu, trace Ag. 3.93 “Hitenso-965”. 98.6 Cu, 0.8 Cd, 0.6 Sn. 2.33 Arsenical phosphorized. 99.45 Cu, 0.3 As, 0.03 P. 1.76 Aluminum bronze 89-1-10. 89 Cu, 10 AL 1 Fe. 0.55 Free cutting... 99.4 Cu, 0.6 Te... 3.55 Aluminum bronze 86-4-10, 86 Cu, 10 Al, 4 Fe. 0.59 99.98 Cu, 0.02 B. 3.88 Aluminum bronze. 87.5 Cu, 9 AL 3.5 Fe. 0.59 Selenium copper. 99.4 Cu, 0.6 Se. 3.84 99.0 Cu, 1.0 Pb. 3.84 Chromium copper. 99.05 Cu, 0.85 Cr. 3.24 99.00 Cu, 1.00 Cd. 3.44 Brasses: 2.34 90 Cui 10 Zn .. 1.88 1.73 87.S Cu, 12.5 Zn. 1.73 85 Cu, i5 Zn. 1.59 80 Cui 20 Zn. 1.38 70 Cui 30 Zn. 1.21 65 Cui 35 Zn. 1.17 1.21

50 Beryltium Coppers: CONDUCTIVITY, mw/cm deg K Beryllium alloy165... Beryllium alloy25.... Beryllium alloy275C. Beryllium alloy20C.. Beryllium alloy50.... Beryllium alloy10.... Beryllium alloyIOC.. Name COMPANY ANDTRADEMANUALSSeealsothe“COPPERALLOY”graphandtables. COPPER ALLOYS(Cont’d)COPPER-NICKEL 2 Be,0.3Co,balanceCu... 0.4 Be.1.55Co.1.0Ag.bal- 0.5 Be,2.4Co,balanceCu.. 1.7 Be,0.3Co,balanceCu.. 97 Cu,2Be.0.25Co. 0.6 Be,2.5Co,balanceCu.. 2.7 Be,0.5Co,balanceCu.. 2.1 Be,0.5Co,balanceCu.. Nominal Composition(%) ance Cu. Conductivity w/cm degK 0.75 0.84 2.22 2.26 0.84 0.96 1.21 1.21 2.13 1.05 1.05 Solution Fig.27;L.- quenched, L.-Plat. chemically treated, Ger.silv. cold- rolled. chemically plus cold- plus quenched. treated. hardened. State Curve TEMPERATURE ,°K Fig. 27;Kr. Fig. 28;Eu. stantan. silv. Sc.-Ger. Di.-con- Approx, sameasabove. 62Cu, 22Zn,15Ni... 60 Cu,40Ni. 60 Cu,40Ni. 64 Cu,16Ni,20Zn.. 1 Ni. Composition (%) 15 Ni. /t=0.21 atIS'C. Conductivity andremarks *-1.50 at83°K,0.62 51 crystalspercm;also “Platinoid”. “Neusilber”. “German silver”. 0”C. *=0.21 at17°C. 21°K. measured sampleswith 18°C. other crystalsize. w/cm degK J. Karweiland A. Euckenand C. H.Lees K.. Sch^er E. Goens K. Dittrich R. M.Winter H. Diesselhorst (1881). (1939). (1927). (1927). (1925). (1908). (1900). (1900). Reference Do. 51 COPPER-NICKEL ALLOYS (Cont’d) COPPER-NICKEL ALLOYS (Cont’d) COMPANY AND TRADE MANUALS Curve Composition (%) Conductivity and remarks Reference Name Nominal composition (%) Conductivity w/cm deg K Fig. 29a; Al, 45.9 Cu, 42.1 Zn, 9.8 “German silver"; data fits J. F. Allen and w/cm deg K Mn.-Ger. Ni, 2.0 Pb, 0.15 Fe, equation A = 5.3X10“'* E. Mendoza silv. 0.05 Mn. T®. (1948). Cupro-nickel 30%... 70Cu, 30Ni. 0.29 Cupro-nickel 10%... 88.5 Cu, 10 Ni, 1.5 Fe. 0.47 63 Cu, 20 Ni, 17 Zn... Nickel silver 18%-A. 65 Cu, 18 Ni, 17 Zn. 0.33 mw/cm deg at 10“K, and J. Wilks Nickel siiver 18%-B. 55 Cu, 18 Ni, 27 Zn. 0.25 48.5 at 15°K, 71.1 at (1949). Nickel silver 15%... 66 Cu, 15 Ni, 19 Zn. 0.35 20°K. 0.23 64 Cu^ 20 Ni, 8 Zn, 4 Pb, 4 Sn. 0.23 70 Cu, 30 Ni. “Cupro-nickel"; A=20.9 Do. Leaded nickel brass.. 60 Cu, 16 Ni, 16 Zn, 5 Pb, 3 Sn. 0.27 mw/cm deg at 10°K, Leaded nickel silver 65 Cu, 12 Ni, 20.7 Zn, 2 Pb, 0.3 Mn. 0.40 35.6 at 15“K, 50.2 at 12%. 20“K. Fig. 28; 55 Cu, 45 Ni. R. W. Powers, P.Z.J.- J. B. Ziegler, constan- and H. L. SILVER ALLOYS tan. Johnston (1951c). Curve Composition (%) Conductivity and remarks Reference Fig. 29a: 80 Cu, 20 Ni. Also obtained A=127 mw/ J. K. Hulm Hu. - Cu- cm deg at 21.9®K and (1951). 20% Ni. 79.9 at 16.3“K. w/cm deg K 90 Ag, 10 Pd. A = 1.41 at 25°C. Fig. 28; B.- (1911). Constan- (1951b). tan. 80 Ag, 20 Pd. *=0.84 at 25°C. Do. Mean diameter of crystals Figs. 27,29a; 47 Cu, 41 Zn, 9 Ni, 2 Do. 70 Ag, 30 Pd. *=0.57 at 25‘’C. Do. B.-Ger. Pb. was 0.02 mm. silv. 60 Ag, 40 Pd. *=0.45at25°C. Do. Two samples which were Fig. 27; Es. 90 Cu, 10 Ni. 50 Ag, 50 Pd. *-0.32 at 25°C. Do. Zi.-Cu- annealed, one a single and J. E. crystal. Zimmermann 10% Ni, 90 Ag, 10 Pt. *=0.98 at 25°C. Do. annealed. (1952). 75 Ag, 25 Pt. *=0.38 at 25°C. Do. Es.Zi.-Cu- Two samples which were Do. 10% Ni, cold-worked. 70 Ag, 30 Pt. *=0.31 at 25°C. cold. 67 Ag, 33 Pt. *=0.30 at 25°C. Do.

Fig. 26; 99.63 Ag, 0.37 Au_ COPPER-NICKEL ALLOYS (Cont’d) G. Re.- H. Reddemann Ag-0.4% (1934). Au. Composition (%) Conductivity G. Re-Ag- 75 Ag, 25 Au. Single crystal. Do. 25% Au. w/cm deg K Do. 99.73 Cu. 0.28 Ni, .01 Fe, .03 Mg. 3.22 50% Ag. 99.47 Cu, 0.54 Ni. .02 Fe, .04 Mg. 2.92 J. 97.94 Cu, 1.97 Ni, 0.02 Fe, .04 Mg. 1.72 Po.-Ag 50 Ag, 15.5 Cu, 16.5 “Easy-flo"; flame annealed. R. L. Powell 94.92 Cu. 5.09 Ni, 0.01 Fe, .03 Mg. 1.00 1. Solder. Zn, 18 Cd. (1953). 89.90 Cu, 10.07 Ni. 0.02 Fe, .03 Mg, .02 C.. 0.62 1. 84.85 Cu, 15.07 Ni, 0.05 Fe, .01 Mg, .03 Mn 0.47 79.68 Cu, 19.79 Ni, 0.23 Fe, .30 Mg. 0.36 1. 69.54 Cu, 30.23 Ni, 0.05 Fe, .05 Mg. .13 Mn 0.29 GOLD ALLOYS

Compositiou (%) Conductivity State 90 Au, 10 Pd. *=0.98 at 25°C. F. A. Schulze (1911).

w/cm deg K 80 Au, 20 Pd. *=0.59 at 25°C. Do. 64.14 Cu, 18.38 Ni, 0.19 Fe, 17,06 Zn, 0.3 Mn, 0.33 >. 3 *=0.44 at 25°C. Do. .02 C. 70 Au, 30 Pd. 63.37 Cu, 19.89 Ni, 0.14 Fe, 8.22 Zn, 3.31 Sn. 5.4 0.28 Sand-caat. 60 Au, 40 Pd. *=0.40 at 25°C. Do. Pb, 0.23 Mn. 96,05 Cu, 3.01 Ni, 0.004 Fe, .88 Si. 0.76 1. 3 Quenched. 50 Au, 50 Pd. *=0.36at25°C. Do. 96.05 Cu, 3.01 Ni, 0.04 Fe, .88 Si. 1.58 >. 3 Reheated. 96.05 Cu, 3.01 Ni, 0.04 Fe, .88 Si. 1.69 1. 3 Furnace-cooled. 90 Au, 10 Pt. *=0.76at25°C. Do. 74.07 Cu, 19.96 Ni, 0.09 Fe, 5.31 Zn. 0.39 ■. 3 64.5 Cu, 29.44 Ni, 0.07 Fe, 5.69 Zn. 0.28 >. 3 80 Au, 20 Pt. *=0.41 at 25°C. Do.

> The values were determined by C. S. Smith, E. W. Palmer (1935) at 20°C. Some" 70 Au, 30 Pt. *=0.30 at 25°C. Do. times the composition percentages add up to more than 100. 60 Au, 40 Pt. *=0.26 at 25°C. Do. 3 The copper-nickel alloys were deoxidized with magnesium, cold-rolled, and an¬ nealed at 800°C. 3 The Miscellaneous alloys were extensively worked, annealed, and slowly cooled except where noted.

52 GOLD ALLOYS (Cont’d) ZINC ALLOYS

Curve Composition (%) Conductivity and remarks Reference Trade Nominal composition (%) Conductivity Designation

w/cm deg K w/cm deg K 92 atomic % Au, 8 A=0.80 at 18°C., ... atomic % Ft. and J. 0. Linde 96 Zn, 4 Al, 0.04 Mg. 1.13 (1930). “Zamak-5”. 95 Zn, 4 Al, 1 Cu, 0.04 Mg. 1.09 “Zamak-2”. 93 Zn, 4 Al, 3 Cu, 0.03 Mg. 1.05 84 Au, 16 Pt. A=0.48 at 18°C. . Do. 99.8 Zn, 0.08 Pb. 1.09 Do. 99.8 Zn, 0.06 Pb, 0.06 Cd. 1.09 68 Au, 32 Pt. A-0.23 at 18“C Do. Rolled zinc alloy, 98.7 Zn, 1 Cu, 0.01 Mg. 1.05 “Zilloy-15”. 55 Au, 45 Pt. A-0.21 at 18°C. Do

Fig. 26; 50 Au, 50 Ag. Single crystal. E. Grlineisen and G. Re.- H. Reddemann Au-50% (1934). CADMIUM ALLOYS Ag.

G. Re.-Au- 75 Au, 25 Ag. Single crystal. *. Do. Curve Composition (%) Remarks Reference 25% Ag.

G. Re.-Au- 73.7 Au, 26.4 Cu. Polycrystalline. Do. Fig. 29; 66.7 Cd, 33.3 Sb. 26% Cu. Eu. Gc.- G. Gchlhoff Cd-33% (1912). G. Re.-Au- 91 Au, 9 Cu. Polycrystalline. Do. Sb. 9% Cu. Eu.Ge.-Cd- 50 Cd, 50 Sb. Do. 50.1 Au, 49.9 Cu. Quenched from 800°C; Do. 50% Sb. A = 0.193 at SG^K.

.do. Same as above except an¬ Do. nealed 22 hr at 360°C; A = 1.28 at 85“K. MERCURY ALLOYS

.do. Requenched from 800®C; Do. Composition (%) Remarks Reference A=0.23 at 83°K.

G. Re.-Au- .do. Annealed 30 hr at 320°C... Do. 50% Cu. 98.8 Hg, 1.19 In.... Measured ratio of conductivities in normal J. K. Ilulm and superconducting states. (1950). G. Re.-Au- 91.2 Au, 8.8 Pd. Tempered at 800'’C for 2 Do. See also the graph and table under “Metal¬ 9% Pd. hr. lic Elements”. 83 Au, 17 Pd. Annealed 2 hr at 800°C; Do. approx, same curve as ‘‘Ag-25% Au”. TIN ALLOYS 69 Au, 25 Ag, 6 Pt.... A=0.53 at room tempera¬ Trade Manual. ture. Curve Composition Remarks Reference

Figs. 18a, b. Up to 4% mercury... See table under Figs. 18a, b, J. K. Hulm INDIUM, THALLIUM ALLOYS “Metallic Elements”. (1950).

Do. 66 Tl, 34 Pb For a sample with “large” A. Eucken and (1953). crystals, A=0.22 at 273® K. Dittrich K, 0.13 at 80°K; for a (1927). sample with “small” crystals, A=0.23 at 273° K, 0.14 at 80°K. TIN ALLOYS (Cont’d)

67 Tl, 34 Pb by atomic Measured relative change W. J. de Haas COMPANY AND TRADE MANUALS percent. of thermal conductivity and H. Brem- when the alloy became mer (1932). Name Nominal Composition (%) Conductivity superconductive. w/cm deg K Fig. 29, 29a; 91.4 In, 8.6 Pb by Became superconducting H. Bremmer and Br. H.-In- atomic percent. at 4.2°K. W. J. de Haas Eutectic soft solder.. 63Sn, 37Pb. 0.50 9% Pb. (1936). 92 Sn, 8 Zn. 0.59 Br.H.-Pb- 50 In, 50 Pb by Became superconducting Do. 50% In. atomic percent. at 6.54°K.

Fig. 29a: 90 In, 10 Tl by atomic Single crystal; measured J. K. Hulm Hu-In- percent. both in the normal and (1952b). 10% Tl. superconducting state; transition temperature about 3.4°K.

53 M. O.-Pb- M. O.-Pb- M. O.-Pb- M. O.-Pb- Fig 29’ Fig. 29a; Fig 9.Q-Rr 54 CONDUCTIVITY, mw/cm deg K 0.5% Bi. 0.2% Bi. 0.1% Bi. M. O.-Pb- 30% Sn. Bi. Pb-30% 10% Bi. 44% Sn. H.-Pb- Curve 99.5 Pb,0.5Bi.. 99.8 Pb,0.2Bi. 90Pb, lOBi. 99.9 Pb,0.1Bi. 70 Pb,30Sn. 90Pb, lOBi. 56 Pb44Sn 70 Pb,30Bi.... Composition (%) 6 810 LEAD ALLOYS Measured innormaland Measured conductivityin Measured innormaland Note thatthethermalcon- superconductive states. conductive statewas ductivity inthesuper- netic field. as afunctionofmag- intermediate stateand superconductive states. mal state. higher thaninthenor- Remarks K. Mendelssohn K. Mendelssohn J. L.Olsen K. Mendelssohn 20 and J.L.Olsen Pontius and R.B, W. J.deHaas and J.L.Olsen (1937). (1936). (195Ca). (1952). (1950c). Reference Do. Do. TEMPE Do Name LEAD ALLOYS(Cont’d) 94Pb;6Sb... 96 Pb,4Sb. 99 Pb,1Sb. 99.73 Pb. 75 Pb]15Sb|10Sn. 50 Pb^Sn. 95 Pb,5Sn. 91 Pbi9Sb. 92 Pb,8Sb. 80 Pb]15Sb,5Sn. 80 Pb^20Sn. 80 100 Nominal composition(%) Conductivity w/cm degK 0.35 0.27 0.29 0.31 0.33 0.24 0.24 0.46 0.37 0.36 0.27 300 4 5 6 TEMPERATURE °K

BISMUTH ALLOYS ANTIMONY ALLOYS

Curve Composition (%) Remarks Reference Curve Composition (%) Remarks Re erence

Fig. 29; L.- 50 Bi, 25 Pb, 14Sn,ll “Lipowitz alloy”. C. H. Lees Fig. 29; Eu. 50 Sb 50 Cd . A. Eucken and G. Gehlhoff Lip. Cd. (1908). Ge.-Cd- 50% Sb. (1912). Ge. Ne.-Bi- 50 Bi, 50 Sb. G. Gehlhoff and 50% Sb. F. Neumeier Eu. Ge.-Sb- 51.7 Sb. 48.3 Cd. Do. (1913). 48% Cd.

Ge. Ne.-Bi- 80 Bi, 20 Sb. Do. Eu. Ge.-Sb- 66.7 Sb. 33.3 Cd. “Very hard”. Do. 20% Sb. 33% Cd.

Ge. Ne.-Bi- 87 Bi, 13 Sb. Do. Ge.Ne.-Sb- 70 Sb 30 Bi. G. Gehlhoff and 13% Sb. 30% Bi. F, Neumeier (1913a). 89 Bi, 11 Sb. Do. 11% Sb. Ge.Ne.-Bi- 50Sb, 50Bi. Do. 50% Sb. 91 Bi, 9 Sb. Do. 9% Sb.

Fig. 29. 29a: 50Bi,25Pb,25SE.... H. Bremmer and Br.H.- W. J. de Haas Rose. (1936).

55 2.4. IMelectric Crystals

This section is not comprehensive but is representative of the dielectrics. There have been few measurements on the conductivity of dielectrics at low temperatures. However, three series of experiments especially worth noting in this short summary are A. Eucken and G. Kuhn (1928), W. J. de Haas and T. Biermasz (in late 1930’s), and R. Berman and others of the Clarendon Laboratory at Oxford (1950’s).

The following miscellaneous dielectrics were measured by A. Eucken and G. Kuhn (1928) (all percentages are mole percent):

Conductivity Conductivity mw/cm deg K mw/cm deg K Name • Remarks Name Remarks CO 00 273° K 83° K 273° K

Marble. Small crystals, 99.9% CaCOa.... 42 33 25% KBr, Pressed at 8,000 atm. 46 33 Do. 99.99% CaCOs. 54 38 75% KCl. Do. 50 33 10% KBr, .do. 80 50 Calcite. Main crystal axis perpendicular 180 46 90% KCl. to rod axis. 50% KCl, .do. 188 71 Do. Main crystal axis parallel to rod 293 54 50% NaCl. axis. KNOa. 17 21 159 75 Mercuric .do. 17 13 KCl. 314 88 chloride. KCl. 402 92 NH4CI. 109 25 NaCl. 343 92 NH4Br. 67 25 NaCl. 251 71 BaCN03)2. 33 13 180 63 Copper 29 21 343 84 Sulfate. KCl. Pressed at 1,250 atm. 243 75 Magnesium- 25 25 KCl. 368 92 sulfate. KCl. 402 96 K4(FeCN6) . . . 17 17 KBr. 92 38 13 21 NaBr. 50 25 Potassium 13 21 KI. 121 29 alum. KF. 234 71 Potassium Main crystal axis perpendicular 17 21 NaF. 519 105 bichromate. to rod axis. Rbl. 59 33 Do. Main crystal axis parallel to rod 17 17 RbCl. 29 21 axis. 90% KBr, .do. 50 29 234 10% KCl. 63 264 75% KBr, .do. 29 21 88 84 25% KCl. 38 46 50% KBr, .do. 25 25 50% KCl.

56 B. S.Z.-D.-l. Fig. 30and H.Bz.-D.

30a; CONDUCTIVITY Curve Measured the*'sizeeffect”india¬ In additiontothetwocurves,they They usedatypeIstone.All mm wide,#4was1.1wide. were severalcentimeterslong. section. #1was3.9mmwide, mond crystalsofsquarecross- obtained A:=14.3at89°K. #2 was3.1mmwide,#31.7 DIAMOND SAPPHIRE Remarks R. Berman, W. J.deHaasand and J.M.Ziman T. Biermasz F. E.Simon, (1953). (1938). Reference B.- S-2. Figs. 30,30a; Figs. 30,30a; Figs. 30,32; B.- S-1. "Alumina”. Curve Sintered alumina;density3.70 Same crystalasaboveexcept1.5 Curve S-1;artificialsinglecrystal long, diameterof3mm;atlow¬ to rodaxis. est temperature,/c=2.7xl0“2T3; sapphire (corundum);6mm main crystalaxisinclined36° g/cm^ (95%ofsinglecrystal); mm diameter. grain sizesabout5to30microns. Remarks R. Berman(1951). R. Berman(1952). Do. Reference 57 58

CONDUCTIVITY,w/cm deg K CONDUCTIVITY, w/cm deg K H. B.z-1. Figs. 31,30a; H. Bz.-2. H. BZ.-2A... Fig 31;B.-l, H. Bz. 2, 3,4;HI, 7, 8. 2, 3,4,5,6, Curve Same rodas2,exceptdiameter Single crystal5cmlong;square A singlecrystalwithrodaxisper¬ A singlecrystalwithprincipalaxis Same asabove,exceptdiameter cm. two binaryaxes;diameter0.216 axis andparalleltobisectorof pendicular toprincipalcrystal 0.3 cmdiameter. parallel torodaxis;5cmlong, cross-section, 5mmonaside; ground downto0.359cm. 0.454 cm. hrs.; #7,600°Cfor1hr.;#8, for 60hrs.;#6,540^0677 for 6hrs.;#3,5jOO°C of 16.5units.The'"H”curves ditional irradiationof1.4units; tron irradiation;#2waswith1 cipal axis;#1waswithoutneu¬ rod lengthperpendiculartoprin¬ 700°C for6hrs. were afterheatingasfollows: unit irradiation;#3,secondad¬ #4, thirdadditionalirradiation #4, 565®Cfor6hrs.;#5,540°C #1, 300°Cfor8hrs.;#2,400°C Remarks QUARTZ R. Berman(1951). W. J.deHaasand W. J.deHaasand W. J.deHaasand W. J.deHaasand T. Biermasz T. Biermasz T. Biermasz T. Biermasz (1938b). (1937). (1938a) (1935). Reference 59 Fig. 32;Si.- Fig. 32a;Bj.- H. Bz.-KCl... Fig. 32; GO CONDUCTIVITY CrK Alum. NH4CI. KBr. H. Bz.- Curve Measured theconductivityof Measured thechangeinconduc- Measured alongpotassiumchlor¬ Measured alongpotassiumbro¬ in magneticthermometry.Found on therateofcooling chromium potassiumalumused crystals. ple cooledmostrapidly. that theconductivitydepended cross-section forseveralKCl tivity withchangeincrystal ide crystalofsquarecross-sec¬ tion withasideof0.252cm. per, amalgamcontacts. alum. Curve1wasforthesam¬ with solderedcontacts;theup¬ curve near80°Kisforasample ameter; thelowerbranchof mide crystalofapprox.3cmdi¬ IONIC CRYSTALSBEKYLLIA Remarks C. V.Simson D. Bijl(1949). W. J.deHaasand W. J.deHaasand T. Biermasz T. Biermasz (1951). (1938a). (1937). Reference Do. TEMPERATURE ,°K Fig. 32-B. **Beryllia**- Curve Sintered; density2.94g/cm^(97% of singlecrystal);crystallites 40 microns;k=3.8at90°K. with dimensionsbetween10and Remarks R. Berman(1952).j

Reference

!

1 1 CONDUCTIVITY,w/cm deg K TEMPERATURE ,°K 61 62 CONDUCTIVITY, mw/cm deg K Bj.-T. Fig. 33a; Fig. 33; Fig. 33; Bj.-M. B.-Per. B.-Q. St.-Py. B.-Ph. Bj.-J.G.20. Ph. Wn.Ws.- Curve III. . DISORDERED DIELECTRICS Jena Gerate20glass. "Phoenix”; boro-silicateglass. Jena 16IIIglass. Quartz glass;uppercurveisfora sample rodwithapprox.7.5mm diameter. diameter; lowercurve,6mm Composition R. Bermao(1951). D. Bijl(1949). K. R.Wilkinson and J.Wilks (1948). (1932). Reference Do. Do. Do. Do. Do. CONDUCTIVITY , mw/cm deg K 3. Bibliography*

J. F. Allen and E. Mendoza, Thermal conductivity of H. Bremmer and W. J. de Haas, On the conduction of copper and German silver at liquid helium tempera¬ heat by some metals at low temperatures, Physica tures, Proc. Camb. Phil. Soc. 44, 280-288 (1948). 3, 672-686 (1936). P. A. Andrews, R. T Webber, and D A. Spohr, Ther¬ H. Bremmer and W. J. de Haas, On the heat conduc¬ mal conductivities of pure metals at low tempera¬ tivity of superconductivity alloys, Physica 3, 692- tures, I. Alumium, Phys. Rev. 84, 994-996 (1951). 704 (1936). S. S. Ballard, L. S. Combes, and K. A. McCarthy, A P. W. Bridgman, Thermal conductivity and thermo¬ comparison of the physical properties of barium flu¬ electromotive force of single metal crystals, Proc. oride and calcium fluoride, J. Opt. Soc. Am. 42, Nat. Acad. Sci. 11, 608-612 (1925). 684-685 (1952) L. R. A. Buerschaper, Thermal and electrical conductiv¬ T. Barratt and R. M. Winter, Das thermische Leitver- ity of graphite and carbon at low temperatures, J. mogen von Drahten und Staben, Ann. Physik 77, Appl. Phys. 15, 452-454 (1944). 1-15 (1925). J. E. Calthrop, The effects of torsion on the thermal R. Berman, Thermal conductivity of glasses at low and electrical conductivities of metals, Proc. Phys. temperatures, Phys. Rev. 76, 315-316 (1949) L. Soc. (London) 36, 168-175 (1924). R. Berman, The thermal conductivities of some dielec¬ J. E. Calthrop, The effects of torsion upon the thermal tric solids at low temperatures, Proc. Roy. Soc. and electrical conductivities of aluminum, with spe¬ (London) A208, 90-108 (1951a). cial reference to single crystals, Proc. Phys. Soc. (London) 38, 207-214 (1926). R. Berman, The thermal conductivity of some alloys at low temperatures, Phil. Mag. 42, 642-650 (1951b). C. H. Cartwright, Wiedemann-Franzsche Zahl, War- meleitfahigkeit und thermoelektrische Kraft von R. Berman, The thermal conductivity of some poly- Tellur, Ann. Physik 18, 656-678 (1933). crystalline solids at low temperatures, Proc. Phys. Soc. (London) A65, 1029-1040 (1952a). C. S. Chow, The thermal conductivity of some insulat¬ ing materials at low temperatures, Proc. Phys. Soc. R Berman, The thermal conductivity of disordered (London) 61, 206-216 (1948). solids at low temperatures, Bull. Inst. Int. du Froid, Annexe 1952-1 (1952b). W. F. Chubb, The thermal and electrical conductivities of metals and alloys, Phil. Mag. 30, 323-330 (1940). R. Berman, The thermal conductivity of dielectric solids at low temperatures, Adv. in Physics (Phil. J. R. Clarke, On the thermal conductivity of some Mag. Supp.) 2, 103-140 (1953). solid insulators, Phil. Mag. 40, 502-504 (1920). R. Berman and D. K. C. MacDonald, The thermal and M. Cox, Thermal and electrical conductivities of tung¬ electrical conductivity of sodium at low tempera¬ sten and tantalurti, Phys. Rev. 64, 241-7 (1943). tures, Proc. Roy. Soc. (London) A209, 368-375 A. P. Crary, Thermal conductivity of Acheson graph¬ (1951). ite, Physics 4, 332-333 (1933). R. Berman and D. K. C. MacDonald, The thermal and T. M. Dauphinee, D. G. Ivey, and H. D. Smith, The electrical conductivity of copper at low tempera¬ thermal conductivity of elastomers under stretch tures, Proc. Roy. Soc. (London) A211, 122-128 and at low temperatures. Can. J. Research A28, (1952). 596-615 (1950). R. Berman, F. E. Simon, and J. Wilks, Thermal con¬ D. P. Detwiler and H. A. Fairbank, Thermal conduc¬ ductivity of dielectric crystals; the “Umklapp” proc¬ tivity in the intermediate state of pure supercon¬ ess, Nature 168, 277-280 (1951). ductors, Phys. Rev. 86, 574 (1952a). R. Berman, F. E. Simon, and J. M. Ziman, The ther¬ D. P. Detwiler and H. A. Fairbank, The thermal resis¬ mal conductivity of diamond at low temperatures, tivity of superconductors, Phys. Rev. 88, 1049-1052 Proc. Roy. Soc. (London) A220, 171-183 (1953). (1952b). C. E. Berry, The effect of an electric field on the J. W. Donaldson, Thermal conductivities of industrial thermal conductivity of glass, J. Chem. Phys. 1355- non-ferrous alloys, J. Inst. Metals 34, 43-56 (1925). 1356 (1949). H. -D. Erfling and E. Griineisen, Weitere Untersuchun- C. C. Bidwell, Thermal conductivity and specific heat gen an Berylliumkristallen im transversalem und of lithium, Phys. Rev. 25, 896 (1925A). longitudinalen Magnetfeld, Ann. Physik 41, 89-99 C. C. Bidwell, Thermal conductivity of lithium, sodi¬ (1942). um, and lead to —250° C, Phys. Rev. 27, 819 S. Erk, A. Keller and H. Poltz, tJber die Warmeleit- (1926a) A. fahigkeit von Kunstoffen, Physik. Z. 38, 394-402 C. C. Bidwell, Thermal conductivity of Li and Na by (1937). a modification of the Forbes bar method, Phys. Rev. I. Estermann and J. E. Zimmerman, Heat conduction 28, 584-597 (1926b). in alloys and semi-conductors at low temperatures, C. C. Bidwell, A simple relation between thermal con¬ Tech. Report No. 6 (Carnegie Institute of Technol¬ ductivity, specific heat and absolute temperature, ogy) (June 1951). Phys. Rev. 32, 311-314 (1928). I. Estermann and J. E. Zimmerman, Heat conduction C. C. Bidwell, Thermal conductivity of lead and of in alloys at low temperatures, J. Appl. Phys. 23, single and poly crystal zinc, Phys. Rev. 33, 249-251 578-588 (1952). (1929). A. Eucken, uber die Temperaturabhangigkeit der C. C. Bidwell, Thermal conductivity of metals, Phys. Warmeleitfahigkeit fester Nichtmetalle, Ann. Physik Rev. 58, 561-564 (1940). 34, 185-221 (1911a). D. Bijl, Some experiments on magnetic thermometry A. Eucken, Die Warmeleitfahigkeit einiger Kristalle and heat conductivity of chromium potassium alum bei tiefen Temperaturen, Verhand. Deutsch. Physik. and glass at low temperatures, Physica 4, 684-693 Gesell. 13, 829-835 (1911b). (1949). A. Eucken, Die Warmeleitfahigkeit einiger Kristalle bei tiefen Temperaturen, Physik. Z. 12, 1005-1008 ‘References followed by A are abstracts; by L, Letters to the Editor. (1911c). 64 A Eucken, Zur Kenntnis des Wiedemann-Franzschen E. Griineisen and H. Adenstedt, Anistropie der War- Gesetzes, III, Z. physik. Chem. 134, 220-229 (1928). meleitung und Thermokraft regularer Metalle A. Eucken and K. Dittrich, Zur Kenntnis des Wiede¬ (Wolfram) im transversalen Magnetfeld bei 20° K, mann-Franzschen Gesetzes, II, Z. physik. Chem. 125, Ann. Physik. 29, 597-604 (1937). 211-228 (1927). E. Griineisen and H. Adenstedt. Einfluss transversaler A. Eucken and G. Gehlhoff, Elektrisches, thermisches Magnetfelder auf Elektrizitats- und Warmeleitung Leitvermogen und Wiedemann-Franzsche Zahl der reiner Metalle bei tiefer Temperatur, Ann. Physik. Antimon - cadmiumlegierungen zwischen 0 ° und 31, 714-744 (1938). —190° C, Verhand. Deutsch. Physik. Gesell 14, 169- E. Griineisen and H.-D. Erfling, Elektrischer und 182 (1912). thermischen Widerstand von Berylliumkristallen im A. Eucken and G. Kuhn, Ergebnisse neuer Messungen transversalen Magnetfeld, Ann. Physik. 38, 399-420 der Warmeleitfahigkeit fester krystallisierter Stoffe (1940). bei 0° und —190° C, Z. physik. Chem. 134, 193-219 E. Griineisen and J. Gielessen, Untersuchungen an (1928). Wismutkristallen. I. Warme- und Elektrizitatslei- A. Eucken and O. Neumann, Zur Kenntnis des Wiede¬ tung in transversalen Magnetfeldern, Ann. Physik. mann-Franzschen Gesetzes, I, Z. physik. Chem. Ill, 26, 449-464 (1936). 431-446 (1924). E. Griineisen and E. Goens, Elektrizitats- und War¬ A. Eucken and E. Schroder, Das Warmeleitvermogen meleitung von ein- und viel- kristallinen Metallen einiger verfestigter Fliissigkeiten und Gase (Ben¬ des regularen Systems, Z. Physik 44, 615-642 (1927). zol, Bromwasserstoff, Stickoxydul), Ann. Physik. 36, 609-620 (1939). E. Griineisen, K. Rausch, and K. Weiss, Zur Elektrizi¬ A. Eucken and H. Warrentrup, Eine Apparatur zur tats- und Warmeleitung von Wismut- Einkristallen Messung der Warmeleitfahigkeit von. Metalblechen, im Transversalen Magnetfeld, Ann. Physik. 7, 1-17 Z. tech. Phys. 16, 99-104 (1935). (1950). C. G. B. Garrett, The thermal conductivity of potas¬ E. Griineisen and H. Reddemann, Electronen- und sium chrome alum at temperatures below one de¬ Gitterleitung beim Warmefluss in Metallen, Ann. gree absolute, Phil. Mag. 41, 621-630 (1950). Physik 20, 843-877 (1934). G. Gehlhoff and F. Neumeier, Uber die thermischen W. J. de Haas, S. Aoyama, and H. Bremmer, Thermal und elektrischen Eigenschaften der Wismut-Anti- conductivity of tin at low temperatures, Comm. mom-Legierungen zwischen —190° und -f-100° C, Kamerlingh Onnes Lab., Univ. Leiden 19, #214a Verhand. Deutsch. Physik. Gesell. 15, 876-896 (1931). (1913a). W. J. de Haas and T. Biermasz, The thermal conduc¬ G. Gehlhoff and F. Neumeier, Beitrage zur Kenntnis tivity of quartz at low temperatures, Physica 2, der thermischen und elektrischen Eigenschaften von 673-682 (1935). gepressten , Pulvern aus Antimon, Wismut und W. J. de Haas and T. Biermasz, Sur la conductibilite Bleiglanz, Verhand. Deutsch. Physik. Gesell. 15, thermique aux basses temperatures, Leiden Com¬ 1069-1081 (1913b). munications 22, Supplement No. 82b, 1-13 (1936- G. Gehlhoff and F. Neumeier, Warmeleitvermogen, 1938), reprinted from: Rapports et Communications, elektrisches LfCitvermogen, Thermokraft und Wiede¬ No. 24, 7e Congres International du Froid, la mann-Franzsche Zahl des Quecksilbers zwischen Hague-Amsterdam, juin 1936. —190° und -1-150° C . . .”, Verhand. Deutsch. W. J. de Haas and T. Biermasz, The thermal conduc¬ Physik. Gesell. 21, 201-217 (1919). tivity of KBr, KCl and Si02 at low temperatures, A. N. Gerritsen, A review of the magnetic properties Physica 4, 752-756 (1937). of Bi, Nederland. Tijdschr. Naturkunde 10, 160-170 (1943). W. J. de Haas and T. Biermasz, The thermal conduc¬ tivity of diamond and potassiumchloride, Physica 5, E. Giebe, tiber die Bestimmung des Warmeleitver- 47-53 (1938a). mogens bei tiefen Temperaturen, Verhand. Deutsch. Physik. Gesell. 5, 60-66 (1903). W. J. de Haas and T. Biermasz, Die Warmleitfahig- keit von Kirstallen bei tiefen Temperaturen, Phys¬ E. Goens and E. Griineisen, Elektrizitats und War- ica 5, 320-324 (1938b). meleitung in Zink- und Cadmiumkristallen, Ann. Physik 14, 164-180 (1932). W. J. de Haas and T. Biermasz, The dependence on thickness of the thermal resistance of crystals at B. B. Goodman, The thermal conductivity of super¬ low temperatures, Physica 5, 619-624 (1938c). conducting tin below 1° K, Proc. Phys. Soc. (Lon¬ don) A66, 217-227 (1953). W. J. de Haas and H. Bremmer, Thermal conductivity E. Griffiths and G. W. C. Kaye, The measurement of of lead and tin at low temperatures. Comm. Kam¬ thermal conductivity, Proc. Roy. Soc. (London) erlingh Onnes Lab., Univ. Leiden, 20, #214 d A104, 71-98 (1923). (1931). J. H. Gray, On a method of determining the thermal W. J. de Haas and H. Bremmer, Thermal conductiv¬ conductivity of metals, with application to copper, ity of indium at low temperatures. Comm. Kamer¬ silver, gold, and platinum, Phil. Trans. Roy. Soc. lingh Onnes Lab., Univ. of Leiden, 20, #220 b (London) A186, 165-186 (1895). (1932). G. Groetzinger and R. Frey, Versuche iiber die Ander- W. J. de Haas and H. Bremmer, The conduction of ung des Warmedurchganges durch gase ohne elek¬ heat of lead-thallium at low temperatures. Comm. trisches Moment, durch Flussigkeiten und feste Kamerlingh Onnes Lab., Univ. Leiden, 20, #220 c Korper infolge eines elektricitatischen Feldes, (1932). Physik. Z. 36, 292-297 (1935). W. J. de Haas and H. Bremmer, Determination of the E. Griineisen, Ueber die Bestimmung des metallischen heat resistance of mercu^ at the temperatures Warmeleitvermogens und iiber sein Verhaltnis zur obtainable with liquid helium, Physica 3, 687-691 elektrischen Leitfahigkeit, Ann. Physik. 3, 43-74 (1936). (1900). W. J. de Haas and W. H. Capel, A method for the E. Griineisen, Temperaturgesetz des Warmewider- determination of the thermal resistance of metal standes regularer Metalle, Z. Physik. 46, 151-159 single crystals at low temperatures, Physica 1, (1927). 725-736 (1934a). 65 W. J. de Haas and W. H. Capel, The thermal resist¬ W. R. G. Kemp, A. K. Sreedhar, and G. K. White, ance of bismuth single-crystals at low temperatures, The thermal conductivity of magnesium at low tem¬ Physica 1, 929-934 (1934b). peratures, Proc. Phys. Soc. (London) A66, 1077-1078 W. J. de Haas, A. N. Gerritsen, and W. H. Capel, The (1953). thermal resistance of bismuth single-crystals at low R. Kikuchi, Wamieleitvermogen und elektrisehes Leit- temperatures and in a magnetic field, Physica 3, veimogen einer Anzahl von Magnesium-Legierungen 1143-1158 (1936). und ihr Verhalten zum Wiedemann-Pranzschen W. J. de Haas and J. de Nobel, The thermal and the Gesetz, Sci. Rep. Tohoku Imperial Univ. (1st Series) electrical resistance of a tungsten single-crystal at 21, 585-593 (1932) (Cataloged under Sendai). low temperatures and in magnetic fields, Physica C. Kittel, Interpretation of the thermai conductivity 5, 449-463 (1938) of glasses, Phys. Rev. 75, 972-974, (1949). W. J. de Haas and A. Rademakers, The thermal con¬ M. Kohler, Warmeleitung der Metalle im .starken Mag- ductivity of lead in the superconducting and normal netfeld, Ann. Phy.sik 3, 181-189 (1949). state, Physica 7, 992-1002 (1940). S. Konno, On the variation of thermal conductivity C. V. Heer and J. G. Daunt, Heat flow in metals below during the fusion of metals, Sci. Rep. Tohoku Im¬ 1° K and a new method for magnetic cooling, Phys. perial Univ. (1st Series) 8, 169-179 (1919) (Cata¬ Rev. 76, 854-855 (1949). loged under Sendai). J. W. Honjbeck, Thermal and electrical conductivities S. Konno, On the variation of thermal conductivity of the alkali metals, Phys. Rev. 2, 217-240 (1913). during the fusion of metals, Phil. Mag. 40, 542-552 (1920). G. W. Hull and T. H. Geballe, Thermal conductivity N. Kurti, B. V. Rollin, and F. Simon, Preliminary ex¬ of single crystalline silicon, Bull. Am. Phys. Soc. periments on temperature equilibria at very low 29, 11 (1954) A. temperatures, Physica 3, 266-274 (1936). J. K. Hulm, Thermal conductivity of superconductors. Landolt-Bornstein Physikalisch-chemische Tabellen, Nature 163, 368-369 (1949) L. EMited by W. A. Roth and K. Scheel (Julius Spring¬ J. K. Hulm, The thermal conductivity of tin, mer¬ er, Berlin) 5th ed., vol. 2, 1923; 5th ed., 1st .supple¬ cury, indium, and tantalum at liquid helium tem¬ ment, vol. 1, 1927; 5th ed., 2d supplement, vol. 2, peratures, Proc. Roy. Soc. (London) A2M, 98-123 19S1; 5th ed., 3d supplement, vol. 3, 1936. (1950). I. Langmuir and J. B. Taylor, The heat conductivity J. K. Hulm, The thermal conductivity of a copper- of tungsten and the cooling effects of leads upon nickel alloy at low temperature, Proc. Phys. Soc. filaments at low temperatures, Phys. Rev. SO, 68- (London) A64, 207-211 (1951). 87 (1936). J. K. Hulm, Anomalous thermal conductivity of pure C. H. Lees, Effects of temperature and pressure on metals at low temperatures, Proc. Phys. Soc. (Lon¬ the thermal conductivities of solids—Part 1. The don) A65, 227-228 (1952a) L. effect of temperature on the thermal conductivities J. K. Hulm, Heat transfer in superconducting alloys, of some electrical insulators, Phil. Trans. Roy. Soc. N.B.S. Circular 519, 37-42 (1952b). (London) 433-466 (1905). C. H. Lees, The effects of temperature and pressure J. K. Hulm, Thermal Festivity of mercury in the inter¬ on the thermal conductivities of solids—^Part 2. The mediate state, Phys. Rev. 90, 1116 (1953) L. effects of low temperatures on the thermal and R. B. Jacobs and C. Starr, Thermal conductance of electrical conductivities of certain approximately metallic contacts, Rev. Sci. Inst. 10, 140-141 (1939). pure metals and alloys, Phil. Trans. Roy. Soc. (Lon¬ W. Jaeger and H. Diesselhorst, Warmeleitung, Elek- don) A2fl8, 381-443 (1908). tricitatsleitung, Warmecapacitat und Thermokraft C. H. Lees and J. E. Calthrop, The effect of torsion einiger Metalle, Wiss. Abhandlung Phys. Techn. on the thermal and electrical conductivities of Reichanstalt 3, 269-424 (1900). metals, Proc. Phys. Soc. (London) 3S, 225-234 (Cataloged under Charlottenburg). (1923). C. H. Johansson and J. O. Linde, Kristallstruktur, . . . E. J. Lewis, Some thermal and electrical properties of Warmeletifahigkeit, . . . des Systems AuPt in Ver- beryllium, Phys. Rev. 34, 1575-1587 (1929). bindung, Ann. Physik 5, 762-792 (1930). J. O. Linde, An investigation of the validity of the W. G. Kannaluik, On the thermal conductivity of some Wiedemann-Franz-Lorenz law, Arkiv Fysik 4, 541- metal wires, Proc. Roy. Soc. (London) A131, 320- 554 (1952). 335 (1951). L. Lorenz, Ueber das Leitungsvermogen der Metalle fur Warme und Electiicitat, Ann. Physik 18, 422- W. G. Kannaluik, The thermal and electrical conduc¬ 447 (1881a). tivities of several metals between —183° C and 100° C, Proc. Roy. Soc. (London) A141, 159-168 L. Lorenz, Ueber das Leitungsvermogen der metalle (1933). fiir Warme und Electricitat, Ann. Physik 13, 582- 606 (1881b). W. G. Kannaluik and T. H. Laby, The thermal and P. Macchia, Thermal conductivity at low tempera¬ the electrical conductivity of a copper crystal at various temoeratures, Proc. Roy. Soc. (London) tures, Acead. Lincei. Atti. 16, 507-517 (1907). A121, 640-653 (1928). W. Mannchen, Warmeleitvermogen, elektrisehes Leit- vermogen und Lorenzsche Zahl einiger Leicht- J. Karweil and K. Schafer, Die Warmeleitfahigkeit metall-Legierungen, Z. Metalkunde 23, 193-196 einiger ,schlecht leitender Legierungen zwischen 3 (1931). und 30° K, Ann. Physik 36, 567-577 (1939). Massachusetts Institute of Technology, Quarterly G. W. C. Kaye and W. F. Higgins, The thermal con¬ Progress Reports (October 15, 1952, April 15, 1953, ductivity of a single crystal of bismuth in a trans¬ July 15, 1953). verse magnetic field, Phil. Mag. 8, 1056-1059 (1929)., W. Meissner, tiber die thermische und electrische Leit- G. W. C. Kaye and J. K. Roberts, The thermal con¬ fahigkeit von Kupfer zwischen 20 und 373° abg., ductivities of metal crystals, I. Bismuth, Proc. Roy. Verhand. Deutsch. Physik. GeselL 16, 262-272 (1914). Soc. (London) A104, 98-114 (1923). W. Meissner, Thermische und elektrische Leitfdhig- P. H. Keesom, Heat conductivity of glass at 1.3° K, keit von Platin zwischen 20 und 373° abs., Ann. Physica 11, 339-342 (1945). Physik 47, 1001-1058 (1915). 66 W. Meissner, Thermische und elektrische Leitfahig- J. R. Partington, An advanced treatise on physical keit von Lithium zwischen 20 und 373° abs., Z. chemistry (Longmans, Green & Co., Ltd., London, Physik 2, 373-379 (1920). 1952), first edition, vol. 3, pp. 458-561. H. Masumoto, On the thermal and electrical conduc¬ T. Peczalski, Contribution a I’etude de la conductibilite tivities of some aluminum alloys, Sci. Rep. Tohoku calorifique des solides, Ann. physique 7, 185-224 Imperial Univ. (1st Series) 13, 229-242' (1925) (Cat¬ (1917). aloged imder Sendai). R. L. Powell, The thermal conductivity of “Easy-Flo” H. Masumoto, On the electrical and thermal conduc¬ silver solder from 20° to 200° K, N.B.S. Report tivities of carbon steel and cast iron, Sci. Rep. 2609 (1953, 3 pp. (impublished). Tohoku Imperial Univ. (1st Series) 16, 417-435 R. W. Powell, The electrical resistivity of gallium and (1927) (Cataloged under Sendai). some other anisotropic properties of this metal, K. Mendelssohn, Heat conductivity of metals at low Proc. Roy. Soc. (London) A299, 525-541 (1951). temperatures. Bull. Inst. Int. du Froid, Annexe R. W. Powers, D. Schwartz, and H. £,. Johnston, The 1952-1, 69-79 (1952). thermal conductivity of metals and alloys at low K. Mendelssohn, Thermal' conductivity of supercon¬ temperatures I. Apparatus for measurements be¬ ductors, Physica 19, 775-787 (1953). tween 25° and 300° K. Data on pure aluminum, OFHC copper and “L” nickel, TR 264-5, Cyrogenics K. Mendelssohn and J. L. Olsen, Heat transport in Laboratory, Ohio State University (1951) 22 pp. superconductors, Proc. Phys. Soc. (London) A63, 2-13 (1950a). R. W. Powers, J. B. Ziegler, and H. L. Johnston, The thermal conductivity of metals and alloys at low K. Mendelssohn and J. L. Olsen, Heat flow in super¬ temperatures. II. Data on iron and several steels conductive alloys, Proc. Phys. Soc. (London) A63, between 25° and 300° K Influence of alloying con¬ 1182-1183 (1950b). stituents, TR 264-6, Cyrogenics Laboratory, Ohio K. Mendelssohn and J. L. Olsen, Anomalous heat flow State University (1951a), 17 pp. in superconductors, Phys. Rev. 80, 859-862 (1950c). R. W. Powers, J. B. Ziegler, and H. L. Johnston, The K. Mendelssohn and R. B. Pontius, Thermal conduc¬ thermal conductivity of metals and alloys at low tivity of supraconductors in a magnetic field, Phil. temperatures. III. Data for aluminum alloys be¬ Mag. 24, 777-787 (1937). tween 25° and 300° K, TR 264-7, Cyrogenics Labo¬ K. Mendelssohn and C. A. Renton, Heat conductivities ratory, Ohio State University (1951b), 10 pp. of superconductive Sn, In, Tl, Ta, Cb, and Al below R. 'W. Powers, J. B. Ziegler, and H. L Johnston, The 1° Kelvin, Phil. Mag (7) 44, 776-781 (1953). thermal conductivity of metals and alloys at low K. Mendelssohn and H. M. Rosenberg, The thermal temperatures. IV Data on constantan, monel and conductivity of metals at low temperatures Ir The contracid between 25° and 300° K, TR 264-8, Cyro¬ elements of Groups 1, 2 and 3, Proc. Phys. Soc. genics Laboratory, Ohio State University (1951c), (London) A65, 385-388 (1952a). 11 pp. R. W. Quick, C. D. Child, and B. S. Lamphear, Ther¬ K. Mendelssohn and H. M. Rosenberg, The thermal mal conductivity of copper, Phys. Rev. 3, 1-20 conductivity of metals at low temperatures II: The (1895) transition elements, Proc. Phys. Soc. (London) A65, 388-394 (1952b). A. Rademakers, The thermal conductivity of lead and tin in the superconducting and in the normal state, K. Mendelssohn and H. M. Rosenberg. The thermal Physica 15, 849-859 (1949). conductivity of metals in high magnetic fields at low temperatures, Proc. Roy. Soc. (London) A218, K. Rausch, Untersuchungen an Antimon-Einkristallen 190-205 (1953). im transversalen Magnetfeld, Ann. Physik 1, 190- 206 (1947). W. C. Michels and M. Cox, The thermal conductivity of tungsten. Physics 7, 1953-155 (1936). H. Reddemann, Warmleitvermogen, Wiedemann-Franz- Lorenzsche Zahl imd Thermokraft von Quecksilber- S. Mizushima and J. Okada, Notes on the electrical einkristallen, Ann. Physik. 14, 139-163 (1932). and thermal conductivities of graphite and amor¬ phous carbon, Phys. Rev. 82, 94-95 (1951). H. Reddemann, Anderung der thermischen und elek- trischen, Leitfahigkeit eines Bi-Einkristallen im S. Mrozowski, Thermal conductivity of carbons and Magnetfeld, Ann. Physik 20, 441-448 (1934). graphite, Phys. Rev. 86, 251-252 (1952) L. H. Reddemann, 'Wiedemann-Franzche Zahl von /?- J. Nicol and T. P. Tseng, Thermal conductivity of cop¬ Manganan bei —190° C, Ann. Physik 22, 28-30 per between 0.25° K and 4.2° K, Phys. Rev. 92, (1935). 1062-1063 (1953) L. A. Rietzsch, 'Uber die thermische und elektrische Liet- J. de Nobel, Thermal and electrical resistance of a fahigkeit von Kupfer-Phosphor und Kupfer-Arsen, tungsten single crystal at low temperatures and Ann. Physik 3, 403-427 (1900). in high magnetic fields, Physica 15, 532-540 (1949). C. J. Rigney and L. I. Bockstahler, The thermal con¬ J. de Nobel, Heat conductivity of steels and a few ductivity of titanium between 20 and 273° K, Phys. other metals at low temperatures, 17, 551-562 Rev. 83, 220 (1951) A. (1951). M. T. Rodine, Thermal conductivities of bismuth sin¬ J. L. Olsen, Heat transport in lead-bismuth alloys, gle crystals as influenced by a magnetic field, Phys. Proc. Phys. Soc. A65, 518-532 (1952). Rev. 46, 910-916 (1934). J. L. Olsen and C. A. Renton, Heat conductivity of H. M. Rosenberg, Private Communication (January superconductive lead below 1° K, Phil Mag. 43, 1954a). 946-948 (1952). H. M. Rosenberg, The thermal and electrical conduc¬ J. L. Olsen and H. M. Rosenberg, The thermal con¬ tivity of magnesium at low temperatures, Phil. ductivity of metals at low temperatures, Adv. Mag. 45, 73-79 (1954b). Physics 2, 28-65 (1953). A. Schallmach, Heat conductivity of rubber at low H. K. Onnes and G. Holst, Preliminary determination temperatures. Nature 145, 67 (1940) L. of the specific heat and of the thermal conductivity A. Schallmach, Heat conductivity of rubber at iow of mercury. Comm. Kamerlingh Onnes Lab., Univ. temperatures, Proc. Phys. Soc. (London) 53, 214- of Leiden, No. 142c, 24-33 (1914). 218 (1941). 67 W. Schaufelberger, Warmeleitungsfahigkeit des Kup- R. W. B. Stephens, The temperature variation of the fers, aus dem stationaren und varibeln Tempera- thermal conductivity of Pyrex glass, Phil. Mag. 14, turzustand bestimmt, und Warmeleiters, Ann. 897-914 (1932). Physik 7, 589-630 (1902). W. W. Tyler and A. C. Wilson, Jr., Thermal conduc¬ F. H. Schofield, The thermal and electrical conduc¬ tivity, electrical resistivity, and thermoelectric tivities of some pure metals, Proc. Roy. Soc. (Lon¬ power of titanium alloy RC-130-B, Knolls Atomic don) A107 (1925). Power Laboratory Report 803 (1952) 41 pp. R. Schott, ttber das Warmleitvermogen einigen W. W. Tyler and A. C. Wilson, Jr., Thermal conduc¬ Metalle bei tiefen Temperaturen, Verhand. Deutsch. tivity, electrical resistivity, and thermoelectric Physik. Gesell. 18, 27-34 (1916). power of graphite, Phys. Rev. 89, 870-875 (1953). F. A. Schulze, Die Warmeleitfahigkeit einiger Reihen von Edelmetallegierungen, Verhand. Deutsch. Physik. W. W. Tyler, A. C. Wilson, Jr., and G. J. Wolga, Gesell. 13, 856-856 (1911). Thermal conductivity, electrical resistivity, and thermoelectric power of uranium. Knolls Atomic S. Shalyt, The thermal conductivity of bismuth at Power Laboratory Report 802 (1952) 25 pp. low temperatures, J. Phys. (U.S.S.R.) 8, 315-316 (1944) L. F. J. Webb, K. R. Wilkinson, and J. Wilks, The ther¬ E. G. Sharkoff, Thermal conductivity of magnesium. mal conductivity of solid helium, Proc. Roy. Soc. Quarterly Progress Report (of Research Lab. of (London) A214, 546-563 (1952). Electronics, M.I.T.) (October 15, 1952). F. J. Webb and J. Wilks, The thermal conductivity E. G. Sharkoff, Thermal conductivity of magnesium. of solid helium at high densities, Phil. Mag. 44, Quarterly Progress Report (of Research Lab. of 663-674 (1953). Electronics, M.I.T.) (April 15, 1953a). R. T. Webber and D. A. Spohr, Thermal resistivity of E. G. Sharkoff, Electrical and thermal conductivity of superconducting mercury in the intermediate state, magnesium. Quarterly Progress Report (of Research Phys. Rev. 91, 414-415 (1953) L. Lab. of. Electronics, M.I.T.) (July 15, 1953b). S. Weber, . . . des Verhaltnisses von Warmeleitung C. V. Simson, tJber die Warmeleitfahigkeit des Am- zur Elektrizitatsleitung . . . des Wolframs, Ann. moniumchlorid im Bereiche seiner Il-III-Umwand- Physik 54, 165-181 (1917). lung, Naturwiss. 38, 559 (1951). G. K. White, The thermal conductivity of gold at low A. W. Smith, Thermal conductivity of graphite. North temperatures, Proc. Phys. Soc. (London) A66, 559- American Aviation, Inc., Downey, California (1954) 564 (1953a). (Unpublished). G. K. White, The thermal conductivity of silver at C. S. Smith and E. W. Palmer, Thermal and electrical low temperatures, Proc. Phys. Soc. (London) A66, conductivities of copper alloys. Am. Inst. Mining 844-845 (1953b) L. Metal. Eng. Tech. Publ. No. 648 (1935). E. H. Sondheimer, The thermal conductivity of metals G. K. White, The thermal and electrical conductivity of copper at low temperatures, Aust. J. Physics at low temperatures, Proc. Phys. Soc. (London) A65, 562-564 (1952) L. 6, 397-404 (1953c). J. Staebler, Electriches und thermisches Leitvermogen K. R. Wilkinson and J. Wilks, Some measurements und Wiedemann-Franzche Zahl von Leichtmetallen of heat flow along technical materials in the region und Magnesium-legierungen. Dissertation, April, 4° to 20° K, Phys. in Ind. 26, 19-20 (1949). 1929, Technische HochschUle of Breslau. Published J. Wilks, The thermal conductivity of ideal dielectric by Doktardruck-Graphiches Institut Paul Funk, crystals. Bull. Inst. Int. du Froid, annexe 1952-1 Berlin. (1952).

Boulder, Colorado, July 23,1954

U.S. GOVERNMENT PRINTING OFFICE 68 y*. Vs

'fi ■'ll ••,y;

y.'

, V-

'V

%