Aluminium Design and Construction

Total Page:16

File Type:pdf, Size:1020Kb

Aluminium Design and Construction Aluminium Design and Construction Copyright 1999 by Taylor & Francis Group. All Rights Reserved. Aluminium Design and Construction John Dwight MSc, FI Struct E Former Reader in Structural Engineering, University of Cambridge; and Fellow of Magdalene College, Cambridge E & FN SPON An Imprint of Routledge London and New York Copyright 1999 by Taylor & Francis Group. All Rights Reserved. First published 1999 by E & FN Spon, an imprint of Routledge 11 New Fetter Lane, London EC4P 4EE This edition published in the Taylor & Francis e-Library, 2002. Simultaneously published in the USA and Canada by Routledge 29 West 35th Street, New York, NY 10001 © 1999 John Dwight All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data Dwight, J.B. (John B.), 1921– Aluminium design and construction/J.B.Dwight. p. cm. Includes bibliographical references and index. ISBN 0-419-15710-7 (Print Edition) 1. Aluminum construction. 2. Aluminum. 3. Aluminum, Structural. 4. Structural design—Standards—Europe. I. Title TA690.D855 1998 624.1'826–dc21 98–39235 CIP ISBN 0 419 15710 7 (Print Edition) ISBN 0-203-02819-8 Master e-book ISBN ISBN 0-203-13449-4 (Glassbook Format) Copyright 1999 by Taylor & Francis Group. All Rights Reserved. Contents Preface Acknowledgements List of symbols and conversion factors 1 About aluminium 1.1 General description 1.1.1 The element 1.1.2 The name 1.1.3 The industrial metal 1.1.4 Alloys 1.1.5 Castings 1.1.6 Supposed health risk 1.1.7 Supposed fire risk 1.2 Physical properties 1.3 Comparison with steel 1.3.1 The good points about aluminium 1.3.2 The bad points 1.4 History 1.4.1 The precious metal stage 1.4.2 The big breakthrough 1.4.3 Early applications 1.4.4 Establishment of the alloys 1.4.5 The first major market 1.5 Aluminium since 1945 1.5.1 Growth in output 1.5.2 New technology 1.5.3 Structural engineering 1.5.4 Architecture 1.5.5 Land transport 1.5.6 Marine usage 1.6 Sources of information 2 Manufacture 2.1 Production of aluminium metal 2.1.1 Primary production 2.1.2 Secondary metal 2.2 Flat products Copyright 1999 by Taylor & Francis Group. All Rights Reserved. 2.2.1 Rolling mill practice 2.2.2 Plate 2.2.3 Sheet 2.2.4 Tolerance on thickness 2.2.5 Special forms of flat product 2.3 Extruded sections 2.3.1 Extrusion process 2.3.2 Heat-treatment of extrusions 2.3.3 Correction 2.3.4 Dies 2.3.5 Hollow sections 2.3.6 Extrudability of different alloys 2.3.7 Size and thickness limits 2.3.8 Tolerances 2.3.9 Design possibilities with extrusions 2.4 Tubes 2.4.1 Extruded tube 2.4.2 Drawn tube 2.4.3 Welded tube 3 Fabrication 3.1 Preparation of material 3.1.1 Storage 3.1.2 Cutting 3.1.3 Holing 3.1.4 Forming 3.1.5 Machining 3.2 Mechanical joints 3.2.1 Bolting and screwing 3.2.2 Friction-grip bolting 3.2.3 Riveting 3.3 Arc welding 3.3.1 Use of arc welding 3.3.2 MIG welding 3.3.3 TIG welding 3.3.4 Filler metal 3.3.5 Weld inspection 3.4 Friction-stir welding 3.4.1 The process 3.4.2 Features of FS welding 3.4.3 Limitations 3.4.4 Applications 3.5 Other welding processes 3.6 Adhesive bonding 3.6.1 Use of bonding Copyright 1999 by Taylor & Francis Group. All Rights Reserved. 3.6.2 Surface preparation 3.6.3 Two-component adhesives 3.6.4 One-component adhesives 3.6.5 Applying the adhesive 3.6.6 Clamping 3.6.7 Curing 3.7 Protection and finishing 3.7.1 General description 3.7.2 Pretreatment 3.7.3 Anodizing 3.7.4 Painting 3.7.5 Contact with other materials 4 Aluminium alloys and their properties 4.1 Numbering system for wrought alloys 4.1.1 Basic system 4.1.2 Standardization of alloys 4.1.3 Work hardening 4.1.4 The O and F conditions 4.1.5 Relation between temper and tensile strength 4.1.6 Availability of different tempers 4.1.7 Heat-treated material 4.2 Characteristics of the different alloy types 4.2.1 Non-heat-treatable alloys 4.2.2 Heat-treatable alloys 4.3 Data on selected wrought alloys 4.3.1 How mechanical properties are specified 4.3.2 Specific alloys and their properties 4.3.3 Comments on certain alloys 4.3.4 Minimum bend radius 4.3.5 Strength variation with temperature 4.3.6 Properties of forgings 4.4 Stress-strain curves 4.4.1 Empirical stress-strain relation 4.4.2 Stress-strain curve for minimum strength material 4.5 Casting alloys 4.5.1 Numbering system 4.5.2 Three useful casting alloys 4.6 Alloys used in joints 4.6.1 Fastener materials 4.6.2 Weld filler wire 4.7 Corrosion 4.7.1 Corrosion of exposed surfaces 4.7.2 When to protect against corrosion 4.7.3 Bimetallic corrosion Copyright 1999 by Taylor & Francis Group. All Rights Reserved. 5 Limit state design and limiting stresses 5.1 Limit state design 5.1.1 General description 5.1.2 Definitions 5.1.3 Limit state of static strength 5.1.4 Serviceability limit state 5.1.5 Limit state of fatigue 5.2 The use of limiting stresses 5.3 Limiting stresses based on material properties 5.3.1 Derivation 5.3.2 Procedure in absence of specified properties 5.3.3 Listed values 5.4 Limiting stresses based on buckling 5.4.1 General form of buckling curves 5.4.2 Construction of the design curves 5.4.3 The design curves 6 Heat-affected zone softening at welds 6.1 General description 6.2 Thermal control 6.3 Patterns of softening 6.3.1 Heat-treated material 6.3.2 Work-hardened material 6.3.3 Stress-strain curve of HAZ material 6.3.4 Multi-pass welds 6.3.5 Recovery time 6.4 Severity of HAZ softening 6.4.1 Softening factor 6.4.2 Heat-treated material 6.4.3 Work-hardened material 6.5 Extent of the softened zone 6.5.1 General considerations 6.5.2 Nominal HAZ 6.5.3 One-inch rule 6.5.4 RD method 6.5.5 Weld geometry 6.5.6 Single straight MIG weld 6.5.7 Variation of HAZ extent with weld size 6.5.8 Overlapping HAZs 6.5.9 Attachment welds 6.5.10 Definition of an isolated weld (10A-rule) 6.5.11 RD method, summary 6.6 Application of HAZ data to design 6.6.1 Design of members 6.6.2 Design of joints Copyright 1999 by Taylor & Francis Group. All Rights Reserved. 6.7 Comparison with one-inch rule 6.8 HAZ at TIG welds 6.8.1 Difference between TIG and MIG welding 6.8.2 Severity of softening with TIG welding 6.8.3 Extent of softened zone for TIG welding 6.9 HAZ at friction-stir welds 7 Plate elements in compression 7.1 General description 7.1.1 Local buckling 7.1.2 Types of plate element 7.1.3 Plate slenderness parameter 7.1.4 Element classification (compact or slender) 7.1.5 Treatment of slender elements 7.2 Plain flat elements in uniform compression 7.2.1 Local buckling behaviour 7.2.2 Limiting values of plate slenderness 7.2.3 Slender internal elements 7.2.4 Slender outstands 7.2.5 Very slender outstands 7.3 Plain flat elements under strain gradient 7.3.1 Internal elements under strain gradient, general description 7.3.2 Internal elements under strain gradient, classification 7.3.3 Slender internal elements under strain gradient 7.3.4 Outstands under strain gradient, general description 7.3.5 Outstands under strain gradient, case T 7.3.6 Outstands under strain gradient, case R 7.4 Reinforced elements 7.4.1 General description 7.4.2 Limitations on stiffener geometry 7.4.3 ‘Standard’ reinforcement 7.4.4 Location of the stiffener 7.4.5 Modified slenderness parameter 7.4.6 Classification 7.4.7 Slender reinforced elements 8 Beams 8.1 General approach 8.2 Moment resistance of the cross-section 8.2.1 Moment-curvature relation 8.2.2 Section classification 8.2.3 Uniaxial moment, basic formulae 8.2.4 Effective section 8.2.5 Hybrid sections Copyright 1999 by Taylor & Francis Group. All Rights Reserved. 8.2.6 Use of interpolation for semi-compact sections 8.2.7 Semi-compact section with tongue plates 8.2.8 Local buckling in an under-stressed compression flange 8.2.9 Biaxial moment 8.3 Shear force resistance 8.3.1 Necessary checks 8.3.2 Shear yielding of webs, method 1 8.3.3 Shear yielding of webs, method 2 8.3.4 Shear resistance of bars and outstands 8.3.5 Web buckling, simple method, 8.3.6 Web buckling, tension-field action 8.3.7 Inclined webs 8.4 Combined moment and shear 8.4.1 Low shear 8.4.2 High shear, method A 8.4.3 High shear, method B 8.5 Web crushing 8.5.1 Webs with bearing stiffeners 8.5.2 Crushing of unstiffened webs 8.6 Web reinforcement 8.6.1 Types of reinforcement 8.6.2 Tongue plates 8.6.3 Transverse stiffeners 8.6.4 End-posts 8.7 Lateral-torsional buckling 8.7.1 General description 8.7.2 Basic check 8.7.3 Equivalent uniform moment 8.7.4 Limiting stress for LT buckling 8.7.5 Slenderness parameter 8.7.6 Beams with very slender compression flanges 8.7.7 Effective length for LT buckling 8.7.8 Beams of varying cross-section 8.7.9 Effect of simultaneous side moment 8.8 Beam deflection 8.8.1 Basic calculation 8.8.2 Beam of slender section 9 Tension and compression members 9.1 General approach 9.1.1 Modes of failure 9.1.2 Classification of the cross-section (compression members) 9.2 Effective section Copyright 1999 by Taylor & Francis Group.
Recommended publications
  • Aluminium Products Coil
    Helping manufacturers across the globe achieve sustainable leaner manufacturing processes Aluminium Coil, Foil, Products Sheet & Wire Commercially Pure Aluminium Alloys Series 1000 Series 2000 Series 3000 Fast Series 4000 Series 5000 Turnaround Series 6000 Processing Series 7000 Series 8000 Clad Aluminium WIDE STOCK RANGE Low Width Thickness Ratio 3:1 unique to the industry (normal minimum is 8:1) Over 75 years Experience Knight Group Visit our websites: Main: www.knight-group.co.uk Offcuts: www.ksmdirect.co.uk www.pmdirect.be Head Office Linkside, Summit Road Cranborne Industrial Estate Potters Bar, Hertfordshire EN6 3JL United Kingdom Main Office : +44(0)1707 650251 Fax: +44(0)1707 651238 [email protected] Knight Strip Metals Ltd Sales, Processing & Warehouse Saltley Business Park Cumbria Way, Saltley Birmingham B8 1BH United Kingdom Telephone: +44 (0)121 322 8400 Fax: +44 (0)121 322 8401 Sales 08456 447 977 [email protected] Precision Metals EU Industriezone Mechelen-Noord (D) Omega Business Park Wayenborgstraat 25 2800 Mechelen Belgium Telephone: +32 (0) 15 44 89 89 Fax: +32 (0) 15 44 89 90 [email protected] The information contained herein is given in good faith and is based on our present knowledge and experience. However, no liability will be accepted by the Knight Group and its subsidiaries in respect of any action taken by any third party in reliance thereon. Any advice given by the Company to any third party is given for that party’s assistance only and without any liability on the part of the Company. The contents of this brochure are subject to change and the most recent edition of all Knight Group documentation can be found on our website or by written request.
    [Show full text]
  • Welding and Joining Guidelines
    Welding and Joining Guidelines The HASTELLOY® and HAYNES® alloys are known for their good weldability, which is defined as the ability of a material to be welded and to perform satisfactorily in the imposed service environment. The service performance of the welded component should be given the utmost importance when determining a suitable weld process or procedure. If proper welding techniques and procedures are followed, high-quality welds can be produced with conventional arc welding processes. However, please be aware of the proper techniques for welding these types of alloys and the differences compared to the more common carbon and stainless steels. The following information should provide a basis for properly welding the HASTELLOY® and HAYNES® alloys. For further information, please consult the references listed throughout each section. It is also important to review any alloy- specific welding considerations prior to determining a suitable welding procedure. The most common welding processes used to weld the HASTELLOY® and HAYNES® alloys are the gas tungsten arc welding (GTAW / “TIG”), gas metal arc welding (GMAW / “MIG”), and shielded metal arc welding (SMAW / “Stick”) processes. In addition to these common arc welding processes, other welding processes such plasma arc welding (PAW), resistance spot welding (RSW), laser beam welding (LBW), and electron beam welding (EBW) are used. Submerged arc welding (SAW) is generally discouraged as this process is characterized by high heat input to the base metal, which promotes distortion, hot cracking, and precipitation of secondary phases that can be detrimental to material properties and performance. The introduction of flux elements to the weld also makes it difficult to achieve a proper chemical composition in the weld deposit.
    [Show full text]
  • Laser Beams a Novel Tool for Welding: a Review
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 8, Issue 6 Ver. III (Nov. - Dec. 2016), PP 08-26 www.iosrjournals.org Laser Beams A Novel Tool for Welding: A Review A Jayanthia,B, Kvenkataramananc, Ksuresh Kumard Aresearch Scholar, SCSVMV University, Kanchipuram, India Bdepartment Of Physics, Jeppiaar Institute Of Technology, Chennai, India Cdepartment Of Physics, SCSVMV University, Kanchipuram, India Ddepartment Of Physics, P.T. Lee CNCET, Kanchipuram, India Abstract: Welding is an important joining process of industrial fabrication and manufacturing. This review article briefs the materials processing and welding by laser beam with its special characteristics nature. Laser augmented welding process offers main atvantages such as autogenous welding, welding of high thickness, dissimilar welding, hybrid laser welding, optical fibre delivery, remote laser welding, eco-friendly, variety of sources and their wide range of applications are highlighted. Significance of Nd: YAG laser welding and pulsed wave over continuous wave pattern on laser material processesare discussed. Influence of operating parameter of the laser beam for the welding process are briefed including optical fibre delivery and shielding gas during laser welding. Some insight gained in the study of optimization techniques of laser welding parameters to achieve good weld bead geometry and mechanical properties. Significance of laser welding on stainless steels and other materials such as Aluminium, Titanium, Magnesium, copper, etc…are discussed. I. INTRODUCTION Welding is the principal industrial process used for joining metals. As materials continue to be highly engineered in terms of metallic and metallurgical continuity, structural integrity and microstructure, hence, welding processes will become more important and more prominent.
    [Show full text]
  • Review on Multi-Pass Friction Stir Processing of Aluminium Alloys
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 July 2020 doi:10.20944/preprints202007.0514.v1 Review Review on Multi-Pass Friction Stir Processing of Aluminium Alloys Oritonda Muribwathoho1, Sipokazi Mabuwa1* and Velaphi Msomi1 1 Cape Peninsula University of Technology, Mechanical Engineering Department, Bellville, 7535, South Africa; [email protected]; [email protected] * Correspondence: [email protected]; Tel.: 27 21 953 8778 Abstract: Aluminium alloys have evolved as suitable materials for automotive and aircraft industries due to their reduced weight, excellent fatigue properties, high-strength to weight ratio, high workability/formability, and corrosion resistance. Recently, the joining of similar and dissimilar metals have achieved huge success in various sectors. The processing of soft metals like aluminium, copper, iron and nickel have been fabricated using friction stir processing. Friction stir processing (FSP) is a microstructural modifying technique that uses the same principles as the friction stir welding technique. In the majority of studies on FSP, the effect of process parameters on the microstructure was characterized after a single pass. However, multiple passes of FSP is another method to further modify the microstructure in aluminium castings. This study is aimed at reviewing the impact of multi-pass friction stir processed joints of aluminium alloys and to identify a knowledge gap. From the literature that is available on multi-pass FSP, it has been observed that the majority of the literature focused on the processing of plates than the joints. There is limited literature reporting on multi-pass friction stir processed joints. This then creates a need to study further on multi-pass friction stir processing on dissimilar aluminium alloys.
    [Show full text]
  • Metal Casting and Welding (17ME45A)
    [METAL CASTING AND WELDING – 17M45-A] Metal Casting and Welding (17ME45A) Prepared by: Prof. Sachin S Pande Dept of Mechanical Engineering, SECAB I E T-586109 Page 1 [METAL CASTING AND WELDING – 17M35-A] METAL CASTING AND WELDING [AS PER CHOICE ASED CREDIT SYSTEM (CBCS) SCHEME] SEMESTER – III Subject Code 17 ME 35 A IA Marks 20 Number of Lecture Hrs / Week 04 Exam Marks 80 Total Number of Lecture Hrs 50 Exam Hours 03 CREDITS – 04 COURSE OBJECTIVE 1) To provide detailed information about the moulding processes. 2) To provide knowledge of various casting process in manufacturing. 3) To impart knowledge of various joining process used in manufacturing. 4) To provide adequate knowledge of quality test methods conducted on welded and casted components. MODULE -1 INTRODUCTION & BASIC MATERIALS USED IN FOUNDRY Introduction: Definition, Classification of manufacturing processes. Metals cast in the foundry-classification, factors that determine the selection of a casting alloy. Introduction to casting process & steps involved. Patterns: Definition, classification, materials used for pattern, various pattern allowances and their importance. Sand molding: Types of base sand, requirement of base sand. Binder, Additives definition, need and types Preparation of sand molds: Molding machines- Jolt type, squeeze type and Sand slinger. Study of important molding process: Green sand, core sand, dry sand, sweep mold, CO2 mold, shell mold, investment mold, plaster mold, cement bonded mold.Cores: Definition, need, types. Method of making cores, concept of gating (top, bottom, parting line, horn gate) and risering (open, blind) Functions and types. 10 hours MODULE -2 MELTING & METAL MOLD CASTING METHODS Melting furnaces: Classification of furnaces, Gas fired pit furnace, Resistance furnace, Coreless induction furnace, electric arc furnace, constructional features & working principle of cupola furnace.
    [Show full text]
  • Ch7 Welding Processes.Pdf
    ME 410: Casting and Welding Engineering Welding processes Faculty of Engineering Mechanical Dept. Importance of joining Wide use in manufacture Occurs late in manufacturing process Large number of practitioners Cost is high proportion of manufactured item Risk and cost of defective welds is high Science is complex Overview of joining methods Mechanical methods Screwed fasteners, rivets, crimp or snap locks Adhesive bonding Brazing and Soldering Base metal does not fuse. Molten filler drawn into close-fit joints by capillary action (surface tension forces). Brazing filler melts >450˚C, solder <450˚C Welding Weld A joint produced by heat or pressure or both so there is continuity of material. Filler (if used) has a melting temperature similar to the base material Welding processes Fusion welding Welding in the liquid state with no pressure Union is by molten metal bridging Solid phase welding Carried out below the melting point without filler additions Pressure often used Allied processes Thermal cutting Oxyfuel gas, plasma, laser cutting Gouging Air-arc, plasma, oxyfuel gas Surfacing Powder and arc spray coating Clad welding, hardfacing Solid phase welding Hot processes Forge welding Friction welding Diffusion bonding Cold processes Ultrasonic welding Explosive welding Fusion welding Intense energy source melts base metal locally Energy density 0.001 W/cm2 to 1 MW/cm2 Energy source may be stationary or move at a constant speed Filler metal From electrode Independently added filler No filler (autogenous
    [Show full text]
  • Metallurgical Abstracts (General and Non-Ferrous)
    METALLURGICAL ABSTRACTS (GENERAL AND NON-FERROUS) Volume 2 1935 Part 13 I —PROPERTIES OF METALS (Continued from pp. 553-568.) Refined Aluminium. Robert GaDeau (Metallurgist (Suppt. to Engineer), 1936, 11, 94-96).—Summary of a paper presenteD to the Congrès Inter­ nationale Des Mines, De la Métallurgie, et De la Géologie Appliquée, Paris. See Met. Abs., this vol., pp. 365 anD 497.—R. G. _ On the Softening and Recrystallization of Pure Aluminium. ------ (A lu­ minium, 1935, 17, 575-576).—A review of recent work of Calvet anD his collaborators ; see Met. Abs., this vol., pp. 453, 454. A. R. P. *Some Optical Observations on the Protective Films on Aluminium in Nitric, Chromic, and Sulphuric Acids. L. TronstaD anD T. HbverstaD (Trans. Faraday Soc., 1934, 30, 362-366).—The optical properties of natural films on aluminium were measureD in various solutions anD their change with time of immersion observeD. Little change occurs in such films in chromic aciD solutions with or without chloriDe ; the films are not protective in concentrateD sulphuric aciD, anD in concentrateD nitric aciD the protective films are alternately DissolveD anD re-formeD. The mean thickness of natural films on aluminium is 100 p. or more than 10 times as thick as those on iron.—A. R. P. *Light from [Burning] Aluminium and Aluminium-Magnésium [Alloy], J. A. M. van Liempt anD J. A. De VrienD (Bee. trav. chim., 1935, 54, 239-244). „ . —S. G. ’"Investigations Relating to Electrophotophoresis Exhibited by Antimony Gisela Isser anD AlfreD Lustig (Z . Physik, 1935, 94, 760-769).—UnchargeD submicroscopic particles subjecteD to an electric fielD in an intense beam of light are founD to move either in the Direction of, or against, the fielD.
    [Show full text]
  • Hybrid Sol-Gel Coatings: Smart and Green Materials for Corrosion
    coatings Review Hybrid Sol Sol-Gel‐Gel Coatings: Smart and Green Materials for Corrosion Mitigation Rita B. Figueira 1,*, Isabel R. Fontinha 1, Carlos J. R. Silva 2 and Elsa V. Pereira 1 Rita B. Figueira 1,*, Isabel R. Fontinha 1, Carlos J. R. Silva 2 and Elsa V. Pereira 1 1 LNEC, Laboratório Nacional de Engenharia Civil, Av. Brasil 101, Lisboa 1700‐066, Portugal; 1 [email protected], Laboratório (I.R.F.); Nacional [email protected] de Engenharia (E.V.P.) Civil, Av. Brasil 101, Lisboa 1700-066, Portugal; 2 [email protected] de Química, (I.R.F.);Universidade [email protected] do Minho, (E.V.P.) Campus de Gualtar, Braga 4710‐057, Portugal; 2 [email protected] de Química, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; * Correspondence:[email protected] [email protected] or [email protected]; Tel.: +351‐218‐443‐634 or +351‐966‐430‐142 * Correspondence: rmfi[email protected] or rita@figueira.pt; Tel.: +351-218-443-634 or +351-966-430-142 Academic Editor: Naba K. Dutta Received:Academic 17 Editor: December Naba 2015; K. Dutta Accepted: 11 March 2016; Published: March 2016 Received: 17 December 2015; Accepted: 11 March 2016; Published: 16 March 2016 Abstract: CorrosionCorrosion degradation degradation of of materials materials and and metallic metallic structures structures is one is one of the of major the major issues issues that givethat giverise riseto depreciation to depreciation of assets, of assets, causing causing great great financial financial outlays outlays in in their their recovery recovery and and or prevention.
    [Show full text]
  • Effects of Pulsed Nd:YAG Laser Welding Parameters on Penetration and Microstructure Characterization of a DP1000 Steel Butt Joint
    metals Article Effects of Pulsed Nd:YAG Laser Welding Parameters on Penetration and Microstructure Characterization of a DP1000 Steel Butt Joint Xin Xue 1,2, António B. Pereira 2 ID , José Amorim 2 and Juan Liao 1,* 1 School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China; [email protected] or [email protected] 2 Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (A.B.P.); [email protected] (J.A.) * Correspondence: [email protected] or [email protected]; Tel.: +86-0591-2286-6793 Received: 13 June 2017; Accepted: 27 July 2017; Published: 1 August 2017 Abstract: Of particular importance and interest are the effects of pulsed Nd:YAG laser beam welding parameters on penetration and microstructure characterization of DP1000 butt joint, which is widely used in the automotive industry nowadays. Some key experimental technologies including pre-welding sample preparation and optimization design of sample fixture for a sufficient shielding gas flow are performed to ensure consistent and stable testing. The weld quality can be influenced by several process factors, such as laser beam power, pulse duration, overlap, spot diameter, pulse type, and welding velocity. The results indicate that these key process parameters have a significant effect on the weld penetration. Meanwhile, the fusion zone of butt joints exhibits obviously greater hardness than the base metal and heat affected zone of butt joints. Additionally, the volume fraction of martensite of dual-phase steel plays a considerable effect on the hardness and the change of microstructure characterization of the weld joint.
    [Show full text]
  • Joining of AI-B4C Metal Matrix Composites by Laser Welding and Friction Stir Welding
    Joining of AI-B4C Metal Matrix Composites by Laser Welding and Friction Stir Welding Dissertation Presented in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy By Junfeng Guo UNIVERSITE DU QUEBEC A CHICOUTIMI 2012 Director: X. Grant Chen (UQAC) Co-director: Patrick Gougeon (NRC-ATC) Abstract AI-B4C MMCs are important materials as neutron absorber in spent nuclear fuel storage and transportation due to their high boron (10B) concentration and thus high neutron absorption capability. However, wide application of these materials is still limited due to the lack of suitable joining techniques to fully take advantage of the materials. Problems such as porosity and chemical reaction between Al matrix and B4C particles can arise during fusion welding of the material. Therefore, the present study is intended to find effective and reliable welding techniques for AI-B4C MMCs. The weldability of AA1100- 16%B4C (particle size: 11 pirn) and AA1100-30%B4C MMCs (median particle size: 15 pirn) was evaluated using laser welding and friction stir welding. In comparison with conventional arc welding techniques, the deep and narrow fusion zones associated with laser welding can result in smaller heat affected zones, and thus less thermal distortion and mechanical property degradation. On the other hand, friction stir welding, as a solid state process, seems promising as it can avoid various problems that may otherwise be encountered during fusion welding of MMCs. For laser welding without filler, it was found that most B4C particles were decomposed during welding leading to formation of needle-like AIB2 and AI3BC phases in the weld.
    [Show full text]
  • Cold Metal Transfer Welding of AA1050 Aluminum Thin Sheets
    ISSN 1517-7076 artigo 11730, pp.615-622, 2016 Cold metal transfer welding of AA1050 aluminum thin sheets Alaattin Ozan İrizalp 1, Hülya Durmuş2 Nilay Yüksel2, İlyas Türkmen2 1Celal Bayar University, Institute of Natural and Applied Sciences, Manisa, Turkey e-mail: [email protected] 2Celal Bayar University, Faculty of Engineering, Materials Engineering Department, Manisa, Turkey e-mail:[email protected]; [email protected]; [email protected] ABSTRACT This study was aimed to investigate the welding parameters on mechanical behavior of 2 mm thick AA1050 sheet materials joined by cold metal transfer (CMT) method. Macro structural examination showed that decreasing heat input decreased the pore size in the weld metal. Tensile test was applied and failure occurred in heat affected zone of aluminum sheet metal. Maximum tensile strength was found in the sample with minimum heat input. Heat affected zone was observed explicitly in the sample produced with the maximum heat input. Decreasing joint gap affected the bending strength positively. Bending strength was found superior with maximum bonding line length. Keywords: CMT welding, mechanical characterization, AA1050. 1. INTRODUCTION Arc welding of thin sheet aluminum alloys pose unique challenges. Due to comparatively high coefficients of thermal expansion and thermal conductivity when compared to steel, control of heat input to the weldments is a major prerequisite to avoid some problems such as burning through and distortion [1,2]. The benefits including thin heat affected zone, little distortion and improved productivity made the cold metal transferring (CMT) process incomparable when applied in welding thin plates and weld-brazing [3].
    [Show full text]
  • Effect of Focal Position Offset on Joint Integrity of AA1050 Battery Busbar Assembly During Remote Laser Welding
    journal of materials research and technology 2021;14:2715e2726 Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jmrt Original Article Effect of focal position offset on joint integrity of AA1050 battery busbar assembly during remote laser welding * Tianzhu Sun , Pasquale Franciosa, Dariusz Ceglarek Warwick Manufacturing Group (WMG), University of Warwick, Coventry, CV4 7AL, UK article info abstract Article history: This paper aims at studying the impact of focal position offset on joint integrity of AA1050 Received 14 December 2020 battery busbar during remote laser welding. Welding experiments were conducted at Accepted 2 August 2021 different focal position offsets in the AA1050 L-joint with the integration of laser beam Available online 9 August 2021 oscillation. The impact of focal position offset was evaluated by multiple joint indicators including weld geometry, thermal profile, weld porosity and mechanical strength. Results Keywords: showed that defocusing of the laser beam tends to be favourable for the reduction of peak Remote laser welding (RLW) temperatures and weld porosity. However, a defocusing more than 3 mm can lead to 60% Battery busbar assembly drop in bonding integrity and 40% loss of joint strength. A tolerance window of [-2 1] mm AA1050 was determined for the focal position offset, corresponding to 70% and 30% of the Rayleigh Joint integrity length. This result is a useful reference to inform precise focal position control with respect Focal position offset to the accumulated variations of part tolerance, part-to-part gap and part positioning er- rors. This study also indicated that the thermal measurement can be a potential approach for in-process monitoring of joint integrity.
    [Show full text]