UQCRC2 Antibody

Total Page:16

File Type:pdf, Size:1020Kb

UQCRC2 Antibody Efficient Professional Protein and Antibody Platforms UQCRC2 Antibody Basic information: Catalog No.: UPA60311 Source: Rabbit Size: 50ul/100ul Clonality: Polyclonal Concentration: 1mg/ml Isotype: Rabbit IgG Purification: Protein affinity purified. Useful Information: WB:1:1000-2000 ICC:1:50-1:200 Applications: IHC:1:50-1:200 FC:1:50-1:100 Reactivity: Human, Mouse, Rat Specificity: This antibody recognizes UQCRC2 protein. Immunogen: Recombinant protein within human UQCRC2 aa 100-350. Cytochrome c is a well characterized, mobile electron transport protein that is essential to energy conversion in all aerobic organisms. Cytochrome b as- sociates with cytochrome c subunit 1 and the Rieske protein to form com- plex III (also designated cytochrome bc1 complex), which is involved in cel- lular respiration. Ubiquinol cytochrome c reductase (UQCRFS1), also re- ferred to as Rieske iron-sulfur protein, represents an important subunit of Description: complex III of the mitochondrial respiratory chain that transfers electrons from ubiquinol to cytochrome c. The UQCRFS1 complex is made up of 3 res- piratory subunits (cytochrome b, cytochrome c1, Rieske protein), 2 core proteins, and 6 low-molecular weight proteins. Ubiquinol cytochrome-c re- ductase complex core protein 2 (UQCRC2) represents one of the core pro- teins of UQCRFS1, and it is required for the assembly of the complex. Uniprot: P22695(Human) Q9DB77(Mouse) P32551(Rat) BiowMW: 48 kDa Buffer: 1*TBS (pH7.4), 0.5%BSA, 50%Glycerol. Preservative: 0.05% Sodium Azide. Storage: Store at 4°C short term and -20°C long term. Avoid freeze-thaw cycles. Note: For research use only, not for use in diagnostic procedure. Data: Gene Universal Technology Co. Ltd www.universalbiol.com Tel: 0550-3121009 E-mail: [email protected] Efficient Professional Protein and Antibody Platforms Western blot analysis of UQCRC2 on rat heart tissue lysate using anti-UQCRC2 antibody at 1/5,000 dilution. ICC staining UQCRC2 in HepG2 cells (green). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS. DAPI was used to stain the cell nuclei (blue). ICC staining UQCRC2 in LOVO cells (green). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS. DAPI was used to stain the cell nuclei (blue). ICC staining UQCRC2 in SiHa cells (green). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS. DAPI was used to stain the cell nuclei (blue). Gene Universal Technology Co. Ltd www.universalbiol.com Tel: 0550-3121009 E-mail: [email protected] .
Recommended publications
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • Airway Inflammation Mitochondrial Dysfunction Increases Allergic
    Mitochondrial Dysfunction Increases Allergic Airway Inflammation Leopoldo Aguilera-Aguirre, Attila Bacsi, Alfredo Saavedra-Molina, Alexander Kurosky, Sanjiv Sur and Istvan This information is current as Boldogh of October 1, 2021. J Immunol 2009; 183:5379-5387; Prepublished online 28 September 2009; doi: 10.4049/jimmunol.0900228 http://www.jimmunol.org/content/183/8/5379 Downloaded from References This article cites 61 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/183/8/5379.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mitochondrial Dysfunction Increases Allergic Airway Inflammation1 Leopoldo Aguilera-Aguirre,*§ Attila Bacsi,*¶ Alfredo Saavedra-Molina,§ Alexander Kurosky,† Sanjiv Sur,‡ and Istvan Boldogh*2 The prevalence of allergies and asthma among the world’s population has been steadily increasing due to environmental factors.
    [Show full text]
  • UQCRC2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50Ul [email protected] 100 Ul √ √ Web
    TD12339 UQCRC2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b- c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c (By similarity). The 2 core subunits UQCRC1/QCR1 and UQCRC2/QCR2 are homologous to the 2 mitochondrial-processing peptidase (MPP) subunits beta-MPP and alpha-MPP respectively, and they seem to have preserved their MPP processing properties (By similarity). May be involved in the in situ processing of UQCRFS1 into the mature Rieske protein and its mitochondrial
    [Show full text]
  • The Landscape of Genomic Imprinting Across Diverse Adult Human Tissues
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Research The landscape of genomic imprinting across diverse adult human tissues Yael Baran,1 Meena Subramaniam,2 Anne Biton,2 Taru Tukiainen,3,4 Emily K. Tsang,5,6 Manuel A. Rivas,7 Matti Pirinen,8 Maria Gutierrez-Arcelus,9 Kevin S. Smith,5,10 Kim R. Kukurba,5,10 Rui Zhang,10 Celeste Eng,2 Dara G. Torgerson,2 Cydney Urbanek,11 the GTEx Consortium, Jin Billy Li,10 Jose R. Rodriguez-Santana,12 Esteban G. Burchard,2,13 Max A. Seibold,11,14,15 Daniel G. MacArthur,3,4,16 Stephen B. Montgomery,5,10 Noah A. Zaitlen,2,19 and Tuuli Lappalainen17,18,19 1The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel; 2Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; 3Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 4Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; 5Department of Pathology, Stanford University, Stanford, California 94305, USA; 6Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA; 7Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom; 8Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland; 9Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland;
    [Show full text]
  • NDUFAB1 Protects Heart by Coordinating Mitochondrial Respiratory Complex
    bioRxiv preprint doi: https://doi.org/10.1101/302281; this version posted April 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. NDUFAB1 Protects Heart by Coordinating Mitochondrial Respiratory Complex and Supercomplex Assembly Running title: Hou et al. Cardiac Protection by NDUFAB1 Tingting Hou 1; Rufeng Zhang 1; Chongshu Jian 1; Wanqiu Ding 1; Yanru Wang 1; Qi Ma 1; Xinli Hu 1; Heping Cheng 1,†; Xianhua Wang 1,† 1State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, China. † Corresponding author. Xianhua Wang Tel: 86-10-62754605 Email: [email protected] Heping Cheng Tel: 86-10-62765957 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/302281; this version posted April 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The impairment of mitochondrial bioenergetics, often coupled with exaggerated reactive oxygen species (ROS) production, is emerging as a common mechanism in diseases of organs with a high demand for energy, such as the heart. Building a more robust cellular powerhouse holds promise for protecting these organs in stressful conditions. Here, we demonstrate that NDUFAB1 (NADH:ubiquinone oxidoreductase subunit AB1), acts as a powerful cardio-protector by enhancing mitochondrial energy biogenesis. In particular, NDUFAB1 coordinates the assembly of respiratory complexes I, II, and III and supercomplexes, conferring greater capacity and efficiency of mitochondrial energy metabolism.
    [Show full text]
  • UQCRFS1N Assembles Mitochondrial Respiratory Complex-III Into an Asymmetric 21-Subunit Dimer
    Protein Cell 2018, 9(6):586–591 https://doi.org/10.1007/s13238-018-0515-x Protein & Cell LETTER TO THE EDITOR UQCRFS1N assembles mitochondrial respiratory complex-III into an asymmetric 21-subunit dimer Dear Editor, Although several structures have been solved with very high resolution, the full length N-terminal processed peptide (1– Mitochondrial respiratory chain consists of four multimeric 78 amino acids, UQCRFS1N) of the iron-sulfur Rieske pro- protein complexes, Complex I-IV (CI, NADH dehydroge- tein (UQCRFS1) subunit has not been assigned in all of nase; CII, succinate:ubiquinone oxidoreductase; CIII, cyto- these structures (Table 1). UQCRFS1N is the N-terminal chrome bc1 complex; and CIV, cytochrome c oxidase). Cell mitochondrial targeting sequence of UQCRFS1, and after its These four complexes transfer electrons from NADH or cleavage from the precursor, this small peptide remains & FADH to oxygen and pump protons from mitochondrial 2 bound to CIII with unknown functions. In this letter, we show matrix to intermembrane space, generating electrochemical that one UQCRFS1N links the two 10-subunit CIII protomers gradient across the inner membrane which is harnessed by together to form the intact CIII, which resultantly contains complex V to synthesize ATP, providing the majority of only 21 subunits rather than previously assumed 22 subunits energy acquired by living organisms. Respiratory chain Protein (Fig. 1A and 1B). complexes were reported to interact with each other to form Firstly, we rebuilt the high-resolution crystal structures of supercomplexes, even megacomplex (Guo et al., 2017). bovine CIII (PDB: 2A06) (Huang et al., 2005) and chicken However, despite decades of intensive research, many CIII (PDB:3TGU) (Hao et al., 2012).
    [Show full text]
  • Differential Expression of Multiple Disease-Related Protein Groups
    brain sciences Article Differential Expression of Multiple Disease-Related Protein Groups Induced by Valproic Acid in Human SH-SY5Y Neuroblastoma Cells 1,2, 1, 1 1 Tsung-Ming Hu y, Hsiang-Sheng Chung y, Lieh-Yung Ping , Shih-Hsin Hsu , Hsin-Yao Tsai 1, Shaw-Ji Chen 3,4 and Min-Chih Cheng 1,* 1 Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; [email protected] (T.-M.H.); [email protected] (H.-S.C.); [email protected] (L.-Y.P.); fi[email protected] (S.-H.H.); [email protected] (H.-Y.T.) 2 Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Yilan County 26247, Taiwan 3 Department of Psychiatry, Mackay Medical College, New Taipei City 25245, Taiwan; [email protected] 4 Department of Psychiatry, Taitung Mackay Memorial Hospital, Taitung County 95064, Taiwan * Correspondence: [email protected]; Tel.: +886-3888-3141 (ext. 475) These authors contributed equally to this work. y Received: 10 July 2020; Accepted: 8 August 2020; Published: 12 August 2020 Abstract: Valproic acid (VPA) is a multifunctional medication used for the treatment of epilepsy, mania associated with bipolar disorder, and migraine. The pharmacological effects of VPA involve a variety of neurotransmitter and cell signaling systems, but the molecular mechanisms underlying its clinical efficacy is to date largely unknown. In this study, we used the isobaric tags for relative and absolute quantitation shotgun proteomic analysis to screen differentially expressed proteins in VPA-treated SH-SY5Y cells. We identified changes in the expression levels of multiple proteins involved in Alzheimer’s disease, Parkinson’s disease, chromatin remodeling, controlling gene expression via the vitamin D receptor, ribosome biogenesis, ubiquitin-mediated proteolysis, and the mitochondrial oxidative phosphorylation and electron transport chain.
    [Show full text]
  • The Human Genome Project
    TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences.
    [Show full text]
  • Mrna-Binding Protein Tristetraprolin Is Essential for Cardiac Response To
    mRNA-binding protein tristetraprolin is essential for PNAS PLUS cardiac response to iron deficiency by regulating mitochondrial function Tatsuya Satoa,1, Hsiang-Chun Changa,1, Marina Bayevaa, Jason S. Shapiroa, Lucia Ramos-Alonsob, Hidemichi Kouzua, Xinghang Jianga, Ting Liua, Sumeyye Yara, Konrad T. Sawickia, Chunlei Chena, María Teresa Martínez-Pastorc, Deborah J. Stumpod, Paul T. Schumackere, Perry J. Blacksheard, Issam Ben-Sahraf, Sergi Puigb, and Hossein Ardehalia,2 aFeinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; bDepartamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain; cDepartamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain; dSignal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; eDepartment of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and fDepartment of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Edited by J. G. Seidman, Harvard Medical School, Boston, MA, and approved May 23, 2018 (received for review March 23, 2018) Cells respond to iron deficiency by activating iron-regulatory electron transport chain (ETC) (11). However, energy pro- proteins to increase cellular iron uptake and availability. However, duction by oxidative phosphorylation in mitochondria is non- it is not clear how cells adapt to conditions when cellular iron essential for survival, at least in the short term, as demonstrated uptake does not fully match iron demand. Here, we show that the by a switch to anaerobic respiration and heavy reliance on gly- mRNA-binding protein tristetraprolin (TTP) is induced by iron colysis in muscle during vigorous exercise, when oxygen demand deficiency and degrades mRNAs of mitochondrial Fe/S-cluster- outmatches its supply (12).
    [Show full text]
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . UQCRC2 (H-135): sc-292924 BACKGROUND RECOMMENDED SECONDARY REAGENTS Cytochrome c is a well characterized, mobile electron transport protein that To ensure optimal results, the following support (secondary) reagents are is essential to energy conversion in all aerobic organisms. Cytochrome b asso - recommended: 1) Western Blotting: use goat anti-rabbit IgG-HRP: sc-2004 ciates with cytochrome c subunit 1 and the Rieske protein to form complex III (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible goat anti- (also designated cytochrome bc1 complex), which is involved in cellular res - rabbit IgG-HRP: sc-2030 (dilution range: 1:2000-1:5000), Cruz Marker™ piration. Ubiquinol cytochrome c reductase (UQCRFS1), also referred to as Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: Rieske iron-sulfur protein, represents an important subunit of complex III of sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecip- the mitochondrial respiratory chain that transfers electrons from ubiquinol to itation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). cytochrome c. The UQCRFS1 complex is made up of three respiratory sub - 3) Immunofluorescence: use goat anti-rabbit IgG-FITC: sc-2012 (dilution units (cytochrome b, cytochrome c1, Rieske protein), two core proteins, and range: 1:100-1:400) or goat anti-rabbit IgG-TR: sc-2780 (dilution range: six low-molecular weight proteins. Ubiquinol cytochrome-c reductase com plex 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941. core protein 2 (UQCRC2) represents one of the core proteins of UQCRFS1, and it is required for the assembly of the complex.
    [Show full text]
  • Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces Cerevisiae
    life Review Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae Leticia V. R. Franco 1,2,* , Luca Bremner 1 and Mario H. Barros 2 1 Department of Biological Sciences, Columbia University, New York, NY 10027, USA; [email protected] 2 Department of Microbiology,Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil; [email protected] * Correspondence: [email protected] Received: 27 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 Abstract: The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast. Keywords: mitochondrial diseases; respiratory chain; yeast; Saccharomyces cerevisiae; pet mutants 1.
    [Show full text]
  • Clinical Utility Gene Card For: 16P12.2 Microdeletion
    European Journal of Human Genetics (2017) 25, doi:10.1038/ejhg.2016.158 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg CLINICAL UTILITY GENE CARD Clinical utility gene card for: 16p12.2 microdeletion Lucilla Pizzo1, Joris Andrieux2, David J Amor3 and Santhosh Girirajan*,1,4 European Journal of Human Genetics (2017) 25, doi:10.1038/ejhg.2016.158; published online 16 November 2016 1. DISEASE CHARACTERISTICS and altered brain activity.5 Limited functional information is available 1.1 Name of the disease (synonyms) on PDZD9, C16orf52 and VWA3A. Even though the basic functionality 16p12.1 microdeletion (hg18/NCBI36). Please note that the updated has been reported for some genes within the region, their exact role release of the human reference genome (hg19/GRCh37) annotates this towards pathogenicity owing to the 16p12.2 deletion is not known, region as 16p12.2. highlighting the need for in-depth molecular studies of these genes. 1.2 OMIM# of the disease 1.6 Analytical methods 136570. The presence of the deletion can be detected by genome-wide or 1.3 Name of the analysed genes or DNA/chromosome segments targeted approaches that determine copy number in the region. Recent Chromosome 16p12.2 (hg19 chr16:g.(?_ 21950000)_(22470000_?)del). studies using genome-wide technologies such as comparative genomic hybridization and SNP microarrays have enabled discovery of this microdeletion, which otherwise would have been missed by lower 1.4 OMIM# of the gene(s) resolution assays such as chromosomal banding techniques. The UQCRC2 (*191329); EEF2K (*606968); CDR2 (*117340); PDZD9 (no accuracy of estimation of the deletion size depends on the type of OMIM entry); C16orf52 (no OMIM entry); VWA3A (no OMIM microarray used (targeted or whole genome) and the density of probes entry); and POLR3E (no OMIM entry).
    [Show full text]