Confirming TDP2 Mutation in Spinocerebellar Ataxia Autosomal Recessive 23 (SCAR23) Guido Zagnoli-Vieira, Francesco Bruni, Kyle Thompson, Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Confirming TDP2 Mutation in Spinocerebellar Ataxia Autosomal Recessive 23 (SCAR23) Guido Zagnoli-Vieira, Francesco Bruni, Kyle Thompson, Et Al ARTICLE OPEN ACCESS Confirming TDP2 mutation in spinocerebellar ataxia autosomal recessive 23 (SCAR23) Guido Zagnoli-Vieira, BSc, Francesco Bruni, PhD,* Kyle Thompson, PhD, Langping He, MD, PhD, Correspondence Sarah Walker, PhD, Arjan P.M. de Brouwer, PhD, Robert Taylor, PhD, FRCPath, Dmitriy Niyazov, MD, Dr. Caldecott [email protected] and Keith W. Caldecott, PhD Neurol Genet 2018;4:e262. doi:10.1212/NXG.0000000000000262 Abstract Objective To address the relationship between mutations in the DNA strand break repair protein tyrosyl DNA phosphodiesterase 2 (TDP2) and spinocerebellar ataxia autosomal recessive 23 (SCAR23) and to characterize the cellular phenotype of primary fibroblasts from this disease. Methods We have used exome sequencing, Sanger sequencing, gene editing and cell biology, bio- chemistry, and subcellular mitochondrial analyses for this study. Results We have identified a patient in the United States with SCAR23 harboring the same homozy- gous TDP2 mutation as previously reported in 3 Irish siblings (c.425+1G>A). The current and Irish patients share the same disease haplotype, but the current patient lacks a homozygous variant present in the Irish siblings in the closely linked gene ZNF193, eliminating this as a contributor to the disease. The current patient also displays symptoms consistent with mitochondrial dysfunction, although levels of mitochondrial function in patient primary skin fibroblasts are normal. However, we demonstrate an inability in patient primary fibroblasts to rapidly repair topoisomerase-induced DNA double-strand breaks (DSBs) in the nucleus and profound hypersensitivity to this type of DNA damage. Conclusions These data confirm the TDP2 mutation as causative for SCAR23 and highlight the link between defects in nuclear DNA DSB repair, developmental delay, epilepsy, and ataxia. *Current address: Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy. From the Genome Damage and Stability Centre (G.Z-V., K.W.C.), University of Sussex, Falmer, Brighton, United Kingdom; Wellcome Centre for Mitochondrial Research (F.B., K.T., L.H., R.T.), Institute of Neuroscience, Newcastle University, Tyne, United Kingdom; Sussex Drug Discovery Centre (S.W.), University of Sussex, Falmer, Brighton, United Kingdom; Department of Human Genetics (A.P.M.d.B.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; and Medical Genetics (A.P.M.d.B., D.N.), Ochsner Health Center for Children, New Orleans, LA. Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG. The Article Processing Charge was funded by the authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 1 Glossary DSB = double-strand break; ETC = electron transport chain; FCS = fetal calf serum; NHEJ = nonhomologous end joining; SCAR23 = spinocerebellar ataxia, autosomal recessive 23; TDP2 = tyrosyl DNA phosphodiesterase 2; WCE = whole-cell extract; WES = Whole-exome sequencing. DNA is under constant threat from attack by endogenous and also easily fatigued and a 14-year-old maternal half-sister exogenous electrophilic molecules,1 and DNA topoisomerase with attention deficit hyperactivity disorder (ADHD). enzymes can introduce DNA breaks as abortive intermediates – of their activity.2 4 Topoisomerase “poisons” such as etopo- The patient has difficulty keeping balance and has an ataxic side inhibit the ligation activity of topoisomerase 2 (TOP2), gait. He has been tested several times for abnormalities in thereby promoting the formation of abortive DNA double- blood, urine, and CSF, and by MRI and EEG, and only the strand break (DSB) intermediates that require DSB repair. latter is abnormal. Seizures began at the age of 5 months, and DSBs are repaired in cells by either homologous his EEGs show increased slowing and occasional spikes in the recombination–mediated repair or by nonhomologous end right posterior quadrant, and during drowsiness, he had 2 joining (NHEJ).2 The repair of TOP2-induced DSBs by generalized bursts of polyspike and slow-wave activity at NHEJ involves the enzyme tyrosyl DNA phosphodiesterase 2 a frequency of 4–5 Hz. The patient’s 180K oligoarray, very (TDP2), which removes trapped topoisomerase peptide from long chain fatty acids, carbohydrate-deficient transferrin, CSF the 59-termini at the DSB and thereby allows the DNA ends to lactate, and neurotransmitters and plasma amino acids were – be ligated.3 5 The loss of TDP2 in mouse results in reduced normal. expression of >100 genes in the brain,6 and TDP2 mutation in humans has been associated with intellectual disability, seiz- The patient exhibited several phenotypes consistent with mi- ures, and ataxia,6 a disease now denoted as spinocerebellar tochondrial dysfunction such as hypotonia, low energy, fati- ataxia, autosomal recessive 23 (SCAR23). To date, our un- gability, hypersomnia, failure to thrive, short stature, derstanding of SCAR23 has been limited by the availability of constipation, neutropenia, hyponatremia, cardiac arrhythmia, only 3 Irish siblings with a mutation in TDP2 and by the lack and gastrointestinal dysmotility. Consistent with this, electron of availability of fibroblast cell lines from these patients for transport chain (ETC) studies on muscle biopsy at age 1 year molecular and cellular characterization. Here, we have showed a severe reduction of complex I + III and II + III addressed these limitations and identified an SCAR23 patient activity, which satisfied the major Walker criteria after cor- in the United States with the same homozygous TDP2 mu- rection for increased citrate synthase activity. CoQ10 de- tation as present in the Irish siblings, confirming the associ- ficiency was suggested based on the complex I + III and II + III ation of this disease with mutated TDP2. In addition, we have deficiency, and his metabolic tests were abnormal with the characterized at the molecular and cellular level primary pa- high lactate and high lactate/pyruvate ratio. The patient was tient fibroblasts from the current SCAR23 patient. placed on ubiquinol, carnitine, and leucovorin, and anecdot- ally, he responded well (particularly to liposomal ubiquinol, the active or reduced form of CoQ10) in terms of energy and Methods developmental progress. He is reportedly no longer sleepy and lethargic and has a stable gait, but is “still behind” in language Patient case report and cognitive skills and is in special education. He still has The patient is currently a 6-year-old caucasian boy from idiopathic fevers but has not been admitted to the hospital for the United States presenting with developmental delay, 15 months. He does not have as many infections but still has microcephaly, and failure to thrive. His mother and father gastric dysmotility. His seizures have reduced in frequency. are aged 29 years and 32 years, respectively, and there is no previous family history of related disease, but there is Standard protocol approvals, registrations, and possible consanguinity (3rd cousins). The patient started patient consents walking at the age of 14 months and talking at 3 years, his We confirm that we have received approval from an in- hearing was reportedly normal, but he did not have audi- stitutional ethics standards committee for this work, and we tory brainstem response. The patient is easily fatigued, and have written informed consent for research from the guardian his parents reported that he eats excessively, becomes ir- of the patient for participation in this study. ritable, and falls asleep sometimes for days or up to 2 weeks. He is now below the fifth percentile for weight and Exome sequencing and haplotype analysis 5% for height, with a body mass index at <5%. He has Whole-exome sequencing (WES) (trio study) of the patient was a G-tube and is followed by a dietitian and receives nutri- performed by GeneDx using the Agilent Clinical Research tional liquid supplements (PediaSure; Abbott, Lake Forest, Exome kit to target the exonic regions and flanking splice IL). He has a history of constipation and is followed up by junctions of the genome. These targeted regions were sequenced a gastroenterologist. He has a 12-year-old brother who is simultaneously by massively parallel (NextGen, Irvine, CA) 2 Neurology: Genetics | Volume 4, Number 4 | August 2018 Neurology.org/NG sequencing on an Illumina HiSeq sequencing system with 37°C. TDP2-mutated patient primary human fibroblasts were 100bp paired-end reads. Bidirectional sequence was assembled, established from a patient’s skin biopsy and were denoted 850- aligned to reference gene sequences based on human genome BR. The control human fibroblast cell line 1-BR.3 (denoted build GRCh37/UCSC hg19, and analyzed for sequence var- here for simplicity as 1-BR) was previously derived from an iants in the selected genes or regions of interest using a custom- unrelated normal individual and has been described pre- developed analysis tool (Xome Analyzer). Capillary sequencing viously.8 For complementation experiments, we used 1-BR was used to confirm all potentially pathogenic variants identi- cells that were immortalized previously with hTERT (denoted fied in this individual. Sequence alterations were reported as 1-BR hTERT) and a derivative of 850-BR immortalized in according to the nomenclature guidelines of the Human the current study by retroviral-mediated hTERT expression Genome Variation Society. The WES identified a homozygous and selected in a medium containing 1 μg/ml puromycin splice site mutation (c.425+1G>A) in the TDP2 gene. For (denoted as 850-BR hTERT). For complementation with comparison of the current patient with the Irish pedigree human TDP2, 850-BR hTERT cells were transfected with ei- previously reported,6 we conducted haplotype analysis.
Recommended publications
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • Airway Inflammation Mitochondrial Dysfunction Increases Allergic
    Mitochondrial Dysfunction Increases Allergic Airway Inflammation Leopoldo Aguilera-Aguirre, Attila Bacsi, Alfredo Saavedra-Molina, Alexander Kurosky, Sanjiv Sur and Istvan This information is current as Boldogh of October 1, 2021. J Immunol 2009; 183:5379-5387; Prepublished online 28 September 2009; doi: 10.4049/jimmunol.0900228 http://www.jimmunol.org/content/183/8/5379 Downloaded from References This article cites 61 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/183/8/5379.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mitochondrial Dysfunction Increases Allergic Airway Inflammation1 Leopoldo Aguilera-Aguirre,*§ Attila Bacsi,*¶ Alfredo Saavedra-Molina,§ Alexander Kurosky,† Sanjiv Sur,‡ and Istvan Boldogh*2 The prevalence of allergies and asthma among the world’s population has been steadily increasing due to environmental factors.
    [Show full text]
  • UQCRC2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50Ul [email protected] 100 Ul √ √ Web
    TD12339 UQCRC2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b- c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c (By similarity). The 2 core subunits UQCRC1/QCR1 and UQCRC2/QCR2 are homologous to the 2 mitochondrial-processing peptidase (MPP) subunits beta-MPP and alpha-MPP respectively, and they seem to have preserved their MPP processing properties (By similarity). May be involved in the in situ processing of UQCRFS1 into the mature Rieske protein and its mitochondrial
    [Show full text]
  • UQCRFS1N Assembles Mitochondrial Respiratory Complex-III Into an Asymmetric 21-Subunit Dimer
    Protein Cell 2018, 9(6):586–591 https://doi.org/10.1007/s13238-018-0515-x Protein & Cell LETTER TO THE EDITOR UQCRFS1N assembles mitochondrial respiratory complex-III into an asymmetric 21-subunit dimer Dear Editor, Although several structures have been solved with very high resolution, the full length N-terminal processed peptide (1– Mitochondrial respiratory chain consists of four multimeric 78 amino acids, UQCRFS1N) of the iron-sulfur Rieske pro- protein complexes, Complex I-IV (CI, NADH dehydroge- tein (UQCRFS1) subunit has not been assigned in all of nase; CII, succinate:ubiquinone oxidoreductase; CIII, cyto- these structures (Table 1). UQCRFS1N is the N-terminal chrome bc1 complex; and CIV, cytochrome c oxidase). Cell mitochondrial targeting sequence of UQCRFS1, and after its These four complexes transfer electrons from NADH or cleavage from the precursor, this small peptide remains & FADH to oxygen and pump protons from mitochondrial 2 bound to CIII with unknown functions. In this letter, we show matrix to intermembrane space, generating electrochemical that one UQCRFS1N links the two 10-subunit CIII protomers gradient across the inner membrane which is harnessed by together to form the intact CIII, which resultantly contains complex V to synthesize ATP, providing the majority of only 21 subunits rather than previously assumed 22 subunits energy acquired by living organisms. Respiratory chain Protein (Fig. 1A and 1B). complexes were reported to interact with each other to form Firstly, we rebuilt the high-resolution crystal structures of supercomplexes, even megacomplex (Guo et al., 2017). bovine CIII (PDB: 2A06) (Huang et al., 2005) and chicken However, despite decades of intensive research, many CIII (PDB:3TGU) (Hao et al., 2012).
    [Show full text]
  • Differential Expression of Multiple Disease-Related Protein Groups
    brain sciences Article Differential Expression of Multiple Disease-Related Protein Groups Induced by Valproic Acid in Human SH-SY5Y Neuroblastoma Cells 1,2, 1, 1 1 Tsung-Ming Hu y, Hsiang-Sheng Chung y, Lieh-Yung Ping , Shih-Hsin Hsu , Hsin-Yao Tsai 1, Shaw-Ji Chen 3,4 and Min-Chih Cheng 1,* 1 Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; [email protected] (T.-M.H.); [email protected] (H.-S.C.); [email protected] (L.-Y.P.); fi[email protected] (S.-H.H.); [email protected] (H.-Y.T.) 2 Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Yilan County 26247, Taiwan 3 Department of Psychiatry, Mackay Medical College, New Taipei City 25245, Taiwan; [email protected] 4 Department of Psychiatry, Taitung Mackay Memorial Hospital, Taitung County 95064, Taiwan * Correspondence: [email protected]; Tel.: +886-3888-3141 (ext. 475) These authors contributed equally to this work. y Received: 10 July 2020; Accepted: 8 August 2020; Published: 12 August 2020 Abstract: Valproic acid (VPA) is a multifunctional medication used for the treatment of epilepsy, mania associated with bipolar disorder, and migraine. The pharmacological effects of VPA involve a variety of neurotransmitter and cell signaling systems, but the molecular mechanisms underlying its clinical efficacy is to date largely unknown. In this study, we used the isobaric tags for relative and absolute quantitation shotgun proteomic analysis to screen differentially expressed proteins in VPA-treated SH-SY5Y cells. We identified changes in the expression levels of multiple proteins involved in Alzheimer’s disease, Parkinson’s disease, chromatin remodeling, controlling gene expression via the vitamin D receptor, ribosome biogenesis, ubiquitin-mediated proteolysis, and the mitochondrial oxidative phosphorylation and electron transport chain.
    [Show full text]
  • UQCRC2 Antibody
    Efficient Professional Protein and Antibody Platforms UQCRC2 Antibody Basic information: Catalog No.: UPA60311 Source: Rabbit Size: 50ul/100ul Clonality: Polyclonal Concentration: 1mg/ml Isotype: Rabbit IgG Purification: Protein affinity purified. Useful Information: WB:1:1000-2000 ICC:1:50-1:200 Applications: IHC:1:50-1:200 FC:1:50-1:100 Reactivity: Human, Mouse, Rat Specificity: This antibody recognizes UQCRC2 protein. Immunogen: Recombinant protein within human UQCRC2 aa 100-350. Cytochrome c is a well characterized, mobile electron transport protein that is essential to energy conversion in all aerobic organisms. Cytochrome b as- sociates with cytochrome c subunit 1 and the Rieske protein to form com- plex III (also designated cytochrome bc1 complex), which is involved in cel- lular respiration. Ubiquinol cytochrome c reductase (UQCRFS1), also re- ferred to as Rieske iron-sulfur protein, represents an important subunit of Description: complex III of the mitochondrial respiratory chain that transfers electrons from ubiquinol to cytochrome c. The UQCRFS1 complex is made up of 3 res- piratory subunits (cytochrome b, cytochrome c1, Rieske protein), 2 core proteins, and 6 low-molecular weight proteins. Ubiquinol cytochrome-c re- ductase complex core protein 2 (UQCRC2) represents one of the core pro- teins of UQCRFS1, and it is required for the assembly of the complex. Uniprot: P22695(Human) Q9DB77(Mouse) P32551(Rat) BiowMW: 48 kDa Buffer: 1*TBS (pH7.4), 0.5%BSA, 50%Glycerol. Preservative: 0.05% Sodium Azide. Storage: Store at 4°C short term and -20°C long term. Avoid freeze-thaw cycles. Note: For research use only, not for use in diagnostic procedure.
    [Show full text]
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . UQCRC2 (H-135): sc-292924 BACKGROUND RECOMMENDED SECONDARY REAGENTS Cytochrome c is a well characterized, mobile electron transport protein that To ensure optimal results, the following support (secondary) reagents are is essential to energy conversion in all aerobic organisms. Cytochrome b asso - recommended: 1) Western Blotting: use goat anti-rabbit IgG-HRP: sc-2004 ciates with cytochrome c subunit 1 and the Rieske protein to form complex III (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible goat anti- (also designated cytochrome bc1 complex), which is involved in cellular res - rabbit IgG-HRP: sc-2030 (dilution range: 1:2000-1:5000), Cruz Marker™ piration. Ubiquinol cytochrome c reductase (UQCRFS1), also referred to as Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: Rieske iron-sulfur protein, represents an important subunit of complex III of sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecip- the mitochondrial respiratory chain that transfers electrons from ubiquinol to itation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). cytochrome c. The UQCRFS1 complex is made up of three respiratory sub - 3) Immunofluorescence: use goat anti-rabbit IgG-FITC: sc-2012 (dilution units (cytochrome b, cytochrome c1, Rieske protein), two core proteins, and range: 1:100-1:400) or goat anti-rabbit IgG-TR: sc-2780 (dilution range: six low-molecular weight proteins. Ubiquinol cytochrome-c reductase com plex 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941. core protein 2 (UQCRC2) represents one of the core proteins of UQCRFS1, and it is required for the assembly of the complex.
    [Show full text]
  • Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces Cerevisiae
    life Review Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae Leticia V. R. Franco 1,2,* , Luca Bremner 1 and Mario H. Barros 2 1 Department of Biological Sciences, Columbia University, New York, NY 10027, USA; [email protected] 2 Department of Microbiology,Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil; [email protected] * Correspondence: [email protected] Received: 27 October 2020; Accepted: 19 November 2020; Published: 23 November 2020 Abstract: The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast. Keywords: mitochondrial diseases; respiratory chain; yeast; Saccharomyces cerevisiae; pet mutants 1.
    [Show full text]
  • Clinical Utility Gene Card For: 16P12.2 Microdeletion
    European Journal of Human Genetics (2017) 25, doi:10.1038/ejhg.2016.158 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg CLINICAL UTILITY GENE CARD Clinical utility gene card for: 16p12.2 microdeletion Lucilla Pizzo1, Joris Andrieux2, David J Amor3 and Santhosh Girirajan*,1,4 European Journal of Human Genetics (2017) 25, doi:10.1038/ejhg.2016.158; published online 16 November 2016 1. DISEASE CHARACTERISTICS and altered brain activity.5 Limited functional information is available 1.1 Name of the disease (synonyms) on PDZD9, C16orf52 and VWA3A. Even though the basic functionality 16p12.1 microdeletion (hg18/NCBI36). Please note that the updated has been reported for some genes within the region, their exact role release of the human reference genome (hg19/GRCh37) annotates this towards pathogenicity owing to the 16p12.2 deletion is not known, region as 16p12.2. highlighting the need for in-depth molecular studies of these genes. 1.2 OMIM# of the disease 1.6 Analytical methods 136570. The presence of the deletion can be detected by genome-wide or 1.3 Name of the analysed genes or DNA/chromosome segments targeted approaches that determine copy number in the region. Recent Chromosome 16p12.2 (hg19 chr16:g.(?_ 21950000)_(22470000_?)del). studies using genome-wide technologies such as comparative genomic hybridization and SNP microarrays have enabled discovery of this microdeletion, which otherwise would have been missed by lower 1.4 OMIM# of the gene(s) resolution assays such as chromosomal banding techniques. The UQCRC2 (*191329); EEF2K (*606968); CDR2 (*117340); PDZD9 (no accuracy of estimation of the deletion size depends on the type of OMIM entry); C16orf52 (no OMIM entry); VWA3A (no OMIM microarray used (targeted or whole genome) and the density of probes entry); and POLR3E (no OMIM entry).
    [Show full text]
  • Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase
    BASIC RESEARCH www.jasn.org Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase † ‡ Yifei Zhong,* Edward Y. Chen, § Ruijie Liu,*¶ Peter Y. Chuang,* Sandeep K. Mallipattu,* ‡ ‡ † | ‡ Christopher M. Tan, § Neil R. Clark, § Yueyi Deng, Paul E. Klotman, Avi Ma’ayan, § and ‡ John Cijiang He* ¶ *Department of Medicine, Mount Sinai School of Medicine, New York, New York; †Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ‡Department of Pharmacology and Systems Therapeutics and §Systems Biology Center New York, Mount Sinai School of Medicine, New York, New York; |Baylor College of Medicine, Houston, Texas; and ¶Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York ABSTRACT The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases.
    [Show full text]
  • Mutations in CYC1, Encoding Cytochrome C1 Subunit Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT CYC1 c Mutations in , Encoding Cytochrome 1 Subunit of Respiratory Chain Complex III, Cause Insulin-Responsive Hyperglycemia Pauline Gaignard,1,21 Minal Menezes,2,21 Manuel Schiff,3,4,5 Aure´lien Bayot,3,4 Malgorzata Rak,3,4 He´le`ne Ogier de Baulny,5 Chen-Hsien Su,6 Mylene Gilleron,7,8 Anne Lombes,7,8 Heni Abida,6 Alexander Tzagoloff,6 Lisa Riley,9 Sandra T. Cooper,2,10 Kym Mina,11,12 Padma Sivadorai,13 Mark R. Davis,13 Richard J.N. Allcock,14,15 Nina Kresoje,14 Nigel G. Laing,16,17 David R. Thorburn,18,19 Abdelhamid Slama,1 John Christodoulou,2,9,20 and Pierre Rustin3,4,* Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report > > CYC1 c mutations (c.288G T [p.Trp96Cys] and c.643C T [p.Leu215Phe]) in , encoding the cytochrome 1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c c . Cytochrome 1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals’ fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity.
    [Show full text]
  • Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions
    International Journal of Molecular Sciences Review Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions Margherita Protasoni 1 and Massimo Zeviani 1,2,* 1 Mitochondrial Biology Unit, The MRC and University of Cambridge, Cambridge CB2 0XY, UK; [email protected] 2 Department of Neurosciences, University of Padova, 35128 Padova, Italy * Correspondence: [email protected] Abstract: Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets. Keywords: ATP production; biogenesis of the respiratory chain; mitochondrial disease; mi-tochondrial electrochemical gradient; mitochondrial potential; mitochondrial proton pumping; mitochondrial respiratory chain; oxidative phosphorylation; respiratory complex; respiratory supercomplex Citation: Protasoni, M.; Zeviani, M.
    [Show full text]